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Dec. 1 2006

Lecture 25: Phase Plane Analysis and Critical Points

Reading:
Kreyszig Sections: 4.1, 4.2 (pages131–135, 136–139)

Phase Plane and Critical Points

A few examples of physical models that can be represented by systems of first-order differential equa-
tions:

d~y

dt
≡ d

dt


y1(t)
y2(t)

...
yN (t)

 =


F1(y1, y2, . . . , t)
F2(y1, y2, . . . , t)

...
FN (y1, y2, . . . , t)

 =


F1(~y, t)
F2(~y, t)

...
FN (~y, t)

 ≡ ~F (~y, t) (25-1)

and, furthermore, it has been shown that many higher-order systems of ODEs can be reduced to larger
systems of first-order ODEs.

The behavior of systems of first-order equations can be visually interpreted by plotting the tra-
jectories ~y(t) for a variety of initial conditions ~y(t = 0). An illustrative example is provided by the
equation for the pendulum, MR2θ̈ + MgR sin θ = 0. can be re-written with the angular momentum ω
as the system of first-order ODEs

dθ

dt
=

ω

MR
dω

dt
= −Mg sin θ

(25-2)

which was shown in Lecture 22 to have solutions:

ω2

2M
−MgR cos θ = Eo (25-3)

Eq. 25-3 can be used to plot the the trajectories in the phase plane.
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Figure 25-26: Example of the phase plane for the pendulum equation. The small closed orbits

are the stable harmonic oscillations about the stable position
|
•. The larger orbits are those with

increasing energy until the energy is just large enough that the pendulum rises to its unstable

equilibrium position
•
|. The two kinds of fixed points (i.e., the stable and unstable points where

ω̇ = θ̇ = 0) regulate the portrait of the phase plane. (Note: The word “phase” here should not
be confused with the common usage of phase in materials science. In the current context for
example, the phase represents the positions and momenta of all the particles in a system—this
usage is important in statistical mechanics. However, the word “phase” in materials science
and engineering is usually interpreted as a portion of material that lies within an identifiable
interface—this usage is implied in “equilibrium phase diagrams.”)

Behavior for a wide variety of initial conditions can be comprehended by the following approach:

Identify Fixed Points If all the points in the phase plane where d~y/dt = 0 can be established,
then these fixed points can be used as reference points around which the phase-behavior will be
determined.

Linearization At each fixed point, Linearization is obtained by expanding Eq. 25-1 to first order in
~η = ~y − ~yfixed, the zeroth-order term vanishes by construction:

d

dt


η1(t)
η2(t)

...
ηN (t)

 =



∂F1
∂y1

∣∣∣
~yfixed

∂F1
∂y2

∣∣∣
~yfixed

. . . ∂F1
∂yN

∣∣∣
~yfixed

∂F2
∂y1

∣∣∣
~yfixed

. . .

...
...

∂FN
∂y1

∣∣∣
~yfixed

. . . . . . ∂FN
∂yN

∣∣∣
~yfixed




η1

η2
...

ηN

 (25-4)

Eigenvalues/Eigenvectors When the system Eq. 25-4 is transformed into a coordinate frame in
which the matrix is diagonal, then each component of ~ηeigen-frame has a trajectory that is unaffected
by the others and determined by only the diagonal entry associated with that component.

The ~ηeigen-frame are the eigenvectors of Eq. 25-4 and the diagonal component is its associated
eigenvalue.

Fixed Point Characterization If the eigenvalue is real, then any point that lies in the direction of
its eigenvector will evolve along a straight path parallel to the eigenvector. If the real eigenvalue
is negative, that straight path will asymptotically approach the origin; if the eigenvalue is positive
the trajectory will diverge along the straight-path towards infinity.

If the eigenvalue is imaginary, then the trajectory will circulate about the fixed point with a
frequency proportional the eigenvalue’s magnitude.
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If the eigenvalue, λ is complex, its trajectory will both circulate with a frequency proportional to
its imaginary part and diverge from or converge to the fixed point according to ηo exp(Reλ).

If any one of the fixed points has an eigenvalue with a positive real part, the fixed point cannot
be stable—this is because “typical” points in the neighborhood of the fixed points will possess
some component of the unstable eigenvector.

Stability of Critical Points

For the two-dimensional linear system

d

dt

(
η1(t)
η2(t)

)
=

(
a b
c d

) (
η1

η2

)
(25-5)

can be analyzed because the eigenvalues can be calculated directly from the quadratic equation.
Every two-by-two matrix has two invariants (i.e., values that do not depend on a unitary transfor-

mation of coordinates). These invariants are the trace, T of the matrix (the sum of all the diagonals)
and the determinant D. The eigenvalue equation can be written in terms of these two invariants:

λ2 − Tλ + D = 0 (25-6)

The discriminant ∆ ≡ T 2 − 4D appears in the solutions to the eigenvalues:

λ± =
T ±

√
∆

2
(25-7)

There are five regions of behavior:

∆ ≥ 0 The eigenvalues are real.

Eigenvalues both positive An Unstable Node: All trajectories in the neighborhood of the
fixed point will be directed outwards and away from the fixed point.

Eigenvalues both negative A Stable Node: All trajectories in the neighborhood of the fixed
point will be directed towards the fixed point.

Eigenvalues opposite sign An Unstable Saddle Node: Trajectories in the general direction
of the negative eigenvalue’s eigenvector will initially approach the fixed point but will diverge
as they approach a region dominated by the positive (unstable) eigenvalue.

∆ < 0 Eigenvalues are complex conjugates—their real parts are equal and their imaginary parts have
equal magnitudes but opposite sign.

Real parts positive An Unstable Spiral: All trajectories in the neighborhood of the fixed
point spiral away from the fixed point with ever increasing radius.

Real parts negative An Stable Spiral: All trajectories in the neighborhood of the fixed point
spiral into the fixed point with ever decreasing radius.

The curves separating these regions have singular behavior. For example, where T = 0 for positive
D, the eigenvalues are purely imaginary and trajectories circulate about the fixed point in a stable
orbit. This is called a center and is the case for an undamped harmonic oscillator.

The regions can be mapped with the invariants and the following diagram illustrates the behavior.
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Eigenvalues are complex conjugates

positive real partnegative real part
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Figure 25-27: Illustration of the five regions according to their behavior near the fixed point.

At the point where the five regions come together, all the entries of the matrix of coefficients are
zero and the physical behavior is then determined by expanding Eq. 25-1 to the next highest order at
which the coefficients are not all zero.
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Lecture 25 Mathematica R© Example 1

Functions to Analyze Fixed Points for Two-Dimensional Systems

Download notebooks, pdfs, or html from http://pruffle.mit.edu/3.016-2006.

Several functions are defined that identify the type of fixed point, their stability and the orientation of the stable
and unstable eigenvectors.

1: Eigenconsistency takes two eigenvalues as arguments and checks if they
derive from a real 2 × 2 matrix. If the eigenvalues are complex and the
matrix is real, then the two eigenvalues must be complex conjugates.

2: Eigenstability determines the sign of the real part of each eigenvalue and
uses Print to display a friendly message about the solution’s stability.

3: From the nature of the two eigenvalues, EigenTrajectory will print a
friendly message about the fixed point type.

4: EigenDescription collects the previous three messaging functions into a
single function.

6: EigenDirector takes a the stucture resulting from Eigensystem and
uses the orientation of the eigenvectors and ArcTan to describe the local
orientation of any stable or unstable directions.

7: LinearDescription takes the entries of a 2 × 2 matrix, calculates the
eigensystem, removes any numerically trivial parts with Chop and then
proceeds to call all the previous messaging functions to give a complete
description of the fixed points behavior.

1
EigenConsistency@eval1_, eval2_D :=
If@And@And@Im@eval1D ≠ 0, Im@eval2D ≠ 0D,

Conjugate@eval1D ≠ eval2D,
Print@"Coefficients are not real"DD

2

EigenStability@eval1_, eval2_D :=
If@And@Re@eval1D < 0, Re@eval2D < 0D,
Print@"Stable and Attractive"D,
If@Or@Re@eval1D > 0, Re@eval2D > 0D, Print@"Unstable"D,
Print@"Stable Orbits about Fixed Point"DDD

3
EigenTrajectory@eval1_, eval2_D :=
If@Or@Im@eval1D ≠ 0 , Im@eval2D ≠ 0D, Print@"Circulation"D,
If@Hs1 = Sign@Re@eval1DDL ≠ Hs2 = Sign@Re@eval2DDL,
Print@"Saddle"D, Print@"Node"DDD

4
EigenDescription@eval1_, eval2_D :=
Module@8<, EigenConsistency@eval1, eval2D;
EigenStability@eval1, eval2D; EigenTrajectory@eval1, eval2DD

5 EigenDescription@ -1 + Â, -1 - ÂD
EigenConsistency@1 + Â, 1D

6

EigenDirector@eval_, 8ex_, ey_<D :=
Module@8theta = N@180*ArcTan@ex, eyD êpD<, If@eval > 0,

Print@"Unstable Hl=", eval, "L direction is q = ", thetaDD;
If@eval < 0, Print@"Stable Hl=", eval,

"L direction is q = ", thetaDDD

7

LinearDescription@a_, b_ , c_ , d_D :=
Module@8esys, eval1, eval2, evec1, evec2<,
esys = Eigensystem@88a, b<, 8c, d<<D;
eval1 = Chop@esys@@1, 1DDD; eval2 = Chop@esys@@1, 2DDD;
evec1 = Chop@esys@@2, 1DDD; evec2 = Chop@esys@@2, 2DDD;
EigenDescription@eval1, eval2D;
Print@"Eigenvalues = ", eval1, " and ", eval2D;
If@And@Im@eval1D ã 0, Im@eval1D ã 0D,
EigenDirector@eval1, evec1D;
EigenDirector@eval2, evec2DD; esysD

8 LinearDescription@1, .1, 1, -3D

http://pruffle.mit.edu/3.016-2006/Notebooks/L25/Lecture-25.nb
http://pruffle.mit.edu/3.016-2006/pdf/L25/Lecture-25-1.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-25/HTMLLinks/index_1.html
http://pruffle.mit.edu/3.016-2006
http://pruffle.mit.edu/3.016-2006/html/Lecture-25/HTMLLinks/index_1.html
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Lecture 25 Mathematica R© Example 2
Visualizing the Behavior at a Fixed Point in the Plane

Download notebooks, pdfs, or html from http://pruffle.mit.edu/3.016-2006.

A function for visualizing the behavior of a fixed point with oriented arrows is constructed.
1: Linsol , with four arguments representing the Jacobian entries, calculates

the solution for an initial point picked randomly from the domain (−10 ≤
x ≤ 10), (−10 ≤ y ≤ 10). In this case, the fixed point is assumed to
have been translated to the origin. It calls DSolve, on a coupled pair of
first-order ODEs and uses Random to generate the initial conditions.

2: This function takes the entries for the Jacobian and then uses
ParametricPlot to plot the solution returns from LinSolve . However,
the results are not very easy to interpret: one can’t discern the direction
of the tragjectory, nor the nature of an fixed point.

3: Graphics‘Arrow‘ has arrow graphics objects to indicate the direction.
4: CritPointPlotPointsMany is an elaborate function that provides four

graphical views of a critical point by computing and plotting a large
number of trajectories emanating from random intial points. This func-
tion illustrates an example of the use of optional function-arguments in
howmany :100 (i.e., the number of random trajectories to compute) which
defaults to 100 if that argument is left off the function when it is called.

4A Compute the eigensystem and assign it to esys, LinearDescription will
also print information about the critial point.

4B funcs is a list of solution-pairs for different initial points.
4C Show will be called recursively to add graphical objects to a list lstack.

1

LinSol@a_, b_ , c_ , d_ D :=
8x@tD, p@tD< ê. Flatten@

DSolve@8x'@tD ã a x@tD + b p@tD, p '@tD ã c x@tD + d p@tD,
x@0D ã Random@Real, 8-10, 10<D,
p@0D ã Random@Real, 8-10, 10<D<, 8x@tD, p@tD<, tDD

2
CritPointPlot@a_, b_ , c_ , d_ D :=
ParametricPlot@Evaluate@LinSol@a, b, c, dDD,
8t, 0, 20<, PlotRangeØ 88-15, 15<, 8-15, 15<<D

3 << Graphics`Arrow`

4

CritPointPlotPointsMany@a_, b_ , c_ , d_ , howmany_: 100D :=
Module@8esys, eval1, eval2, funcs , data, lendata, gstack, lp,

rstack, lstack, magrange, rstackmag, lstackmag<,
H*A*L esys = LinearDescription@a, b, c, dD; Print@esysD;
eval1 = esys@@1, 1DD; eval2 = esys@@1, 2DD;
H*B*L funcs = Table@Chop@LinSol@a, b, c, dDD,

8i, howmany<D; H*C*L lstack = 8<; rstack = 8<;
For@imany = 1, imany § howmany, imany++,
H*D*Ldata = Chop@Table@Evaluate@

funcs@@imanyDD ê. t Ø itimeD, 8itime, 0, 20, .1<DD;
lendata = Length@dataD; gstack = 8Hue@0D, Arrow@

data@@1DD, data@@2DD, HeadScalingØ AbsoluteD<;
H*E*LFor@iend = 4, iend § lendata ê2, iend += 8,
H*F*LAppendTo@gstack, Hue@iend*0.66*2 ê lendataDD;
H*G*LAppendTo@gstack, Arrow@data@@iend- 1DD,

data@@iendDD, HeadScalingØ AbsoluteDDD;
H*H*Llp = ListPlot@data, PlotJoinedØ True,

AspectRatioØ 1, PlotRange Ø 88-15, 15<, 8-15, 15<<,
PlotStyleØ Hue@Random@DD,
DisplayFunctionØ IdentityD;

H*I*Llstack = Show@lp, Graphics@gstackD, lstackD;
H*J*Lrstack = Show@lp, rstackDD;

H*K*LIf@Or@Re@eval1D > 0, Re@eval2D > 0D,
magrange = 88-60, 60<, 8-60, 60<<,
magrange = 88-1, 1<, 8-1, 1<<D;

rstackmag = Show@rstack, PlotRange Ø magrangeD;
lstackmag = Show@lstack, PlotRangeØ magrangeD;
H*L*LShow@
GraphicsArray@88lstack, rstack<, 8lstackmag, rstackmag<<D,
ImageSizeØ 1000,
DisplayFunction Ø $DisplayFunctionDD

5 CritPointPlotPointsMany@-1, 0.25, 0.75, -1D

lstack is a placeholder for plots that contain arrows. Items D–J are in the body of a loop over each of the
homany trajectories. 4D: data is created for 20 discrete points at equal ∆t = 0.1 along the current trajectory.
A red arrow object is created at the beginning of the trajectory and stored in gstack. 4E: This will loop over
points the first half of the data. Items F–G are within the loop’s body. 4F: The color of the arrow will shift
towards blue with time. 4G: The arrow object is added to gstack. 4H: The data is plotted with ListPlot.
4I: This combines the contents of the plot and the two graphics-lists and assigns it to lstack—this iteratively
grows lstack. 4J: rstack will only contain plots and no arrows. 4K: To focus on the long-time behavior, the
PlotRange will need to be large (like a telescope) for unstable systems and small (like a microscope) for stable
fixed points. The If will pick the appropriate PlotRange. 4L: GraphicsArray produces an array of plots.

Unstable Manifolds

The phase portraits that were visualized in the above example help illustrate a very powerful mathe-
matical method from non-linear mechanics.

Consider the saddle-node that has one positive (unstable) and one negative (stable) eigenvalue.
Those initial points that are located in regions where the negative (stable) eigenvalue dominates are
quickly swept towards the fixed point and then follow the unstable direction away from the fixed point.
Roughly speaking, the stable values are ‘smashed’ onto the unstable direction and virtually all of the
motion takes place near the unstable direction.

This idea allows a large system (i.e., one in which the vector ~y(t) has many components) to be
reduced to a smaller system in which the stable directions have been approximated by a thin region
near the trajectories associated with the unstable eigenvalues. This is sometimes called reduction of
“fast variables” onto the unstable manifolds.

http://pruffle.mit.edu/3.016-2006/Notebooks/L25/Lecture-25.nb
http://pruffle.mit.edu/3.016-2006/pdf/L25/Lecture-25-2.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-25/HTMLLinks/index_2.html
http://pruffle.mit.edu/3.016-2006
http://pruffle.mit.edu/3.016-2006/html/Lecture-25/HTMLLinks/index_2.html
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