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Nov. 23 2006

Lecture 23: Resonance Phenomena, Beam Theory

Reading:
Kreyszig Sections: 2.8, 2.9, 3.1, 3.2, 3.3 (pages84–90, 91–96, 105–111, 111–115, 116–121)

Resonance Phenomena

The physics of an isolated damped linear harmonic oscillator follows from the behavior of the homoge-
neous equation:15

M
d2y(t)
dt2

+ ηlo
dy(t)
dt

+ Ksy(t) = 0 (23-1)

This equation is the sum of three forces:

inertial force depending on the acceleration of the object.

drag force depending on the velocity of the object.

spring force depends on the displacement of the object.

The system is autonomous in the sense that everything depends on the system itself; there are no
outside agents changing the system.

The zero on the right-hand-side of Eq. 23-1 implies that there are no external forces applied to the
system. The system oscillates with a characteristic frequency ω =

√
Ks/M with amplitude that are

damped by a characteristic time τ = (2M)/(ηlo) (i.e., the amplitude is damped ∝ exp(−t/τ).)
15 A concise and descriptive description of fairly general harmonic oscillator behavior appears at

http://hypertextbook.com/chaos/41.shtml

http://hypertextbook.com/chaos/41.shtml
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Lecture 23 Mathematica R© Example 1

Simulating Harmonic Oscillation with Biased and Unbiased Noise

Download notebooks, pdfs, or html from http://pruffle.mit.edu/3.016-2006.

The second-order differencing simulation of a harmonic oscillator is modified to include white and biased stochas-
tic nudging.

1: GrowListGeneralNoise is extended from a previous example for simulat-
ing ÿ + βẏ + αy = 0 (GrowList in example 21-1) and adds a random
uniform displacement y+δ, δ ∈ (−randomamp, randomamp) at each iter-
ation. The ValuesList List argument should be a list containing two lists:
the first list is comprised of the sequence of displacements y; the second list
records the corresponding stochastic displacement δ. The function uses a
list’s two previous values and Append and to grow the list iteratively.

4: Exemplary data from 2× 105 iterations (using Nest) is produced for the
specific case of ∆ = 0.001, α = 2, β = 0.

5: The displacements (i.e., first list) are plotted with ListPlot.
6: The random ‘nudges’ (i.e., second list) are also plotted.
7: Biased nudges are simulated with GrowListBiasedNoise . This extends

the unbiased example above, by including a wavelength for a cosine-biased
random amplitude. A sample, δ, from the uniform random distribution as
above is selected and then multiplied by cos 2πt/λ. The time-like variable
is simulated with Length and the current data.

10: The biased data for approximately the resonance condition for the same
model parameters above is plotted with the biased noise.

1

GrowListGeneralNoise@ValuesList_List, D_ , a_ , b_,
randomamp_D := Module@8Minus1 = ValuesList@@1, -1DD,

Minus2 = ValuesList@@1, -2DD,
noise = Random@Real, 8-randomamp, randomamp<D<,8Append@ValuesList@@1DD,

2 *Minus1 - Minus2 + D *Hb * HMinus2 - Minus1L -a*D*Minus2L + noiseD,
Append@ValuesList@@2DD, noiseD<D

2 GrowListSpecificNoise@InitialList_ListD :=
GrowListGeneralNoise@InitialList, .001, 2, 0, 10^ H-5LD

3 Nest@GrowListSpecificNoise, 881, 1<, 80, 0<<, 10D
4 TheData =

Nest@GrowListSpecificNoise, 881, 1<, 80, 0<<, 20000D;
5 ListPlot@TheData@@1DDD
6 ListPlot@TheData@@2DDD
Now suppose there is a periodic bias  that tends to kick the 
displacement one direction more than the other:

7

GrowListBiasedNoise@ValuesList_List,
D_ , a_ , b_, randomamp_, lambda_D :=

Module@8Minus1 = ValuesList@@1, -1DD, Minus2 =
ValuesList@@1, -2DD, biasednoise = 0.5* randomamp*HCos@2 p Length@ValuesList@@1DDD ê lambdaD+

Random@Real, 8-1, 1<DL <,8Append@ValuesList@@1DD,
2 *Minus1 - Minus2 +
D * Hb * HMinus2 - Minus1L -a*D*Minus2L +
biasednoiseD,

Append@ValuesList@@2DD, biasednoiseD<D
8 GrowListSpecificBiasedNoise@InitialList_ListD :=

GrowListBiasedNoise@InitialList, .001, 2, 0, 10^H-6L, 4500D
9 TheBiasedData =

Nest@GrowListSpecificBiasedNoise, 881, 1<, 80, 0<<, 20000D;
10 ListPlot@TheBiasedData@@1DDD

ListPlot@TheBiasedData@@2DDD

A general model for a damped and forced harmonic oscillator is

M
d2y(t)
dt2

+ ηlo
dy(t)
dt

+ Ksy(t) = Fapp(t) (23-2)

where Fapp represents a time-dependent applied force to the mass M .

General Solutions to Non-homogeneous ODEs

Equation 23-2 is a non-homogeneous ODE—the functions and its derivatives appear on one side and
an arbitrary function appears on the other. The general solution to Eq. 23-2 will be the sum of two
parts:

ygen(t) = ypart(t) + yhomog(t)
ygen(t) = yFapp(t) + yhomog(t)

(23-3)

yhomg(t) =


C+e−|λ+|t + C−e−|λ−|t (ηlo)2 > 4MKs Over-damped
C1e

−|λ|t + C2te
−|λ|t (ηlo)2 = 4MKs Critical Damping

C+e−|Reλ|teı|Imλ|t + C−e−|Reλ|te−ı|Imλ|t (ηlo)2 < 4MKs Under-damped
(23-4)

http://pruffle.mit.edu/3.016-2006/Notebooks/L23/Lecture-23.nb
http://pruffle.mit.edu/3.016-2006/pdf/L23/Lecture-23-1.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-23/HTMLLinks/index_1.html
http://pruffle.mit.edu/3.016-2006
http://pruffle.mit.edu/3.016-2006/html/Lecture-23/HTMLLinks/index_1.html
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where ypart ≡ yFapp is the solution for the particular Fapp on the right-hand-side and yhomog is the
solution for the right-hand-side being zero. Adding the homogeneous solution yhomog to the particular
solution ypart is equivalent to adding a “zero” to the applied force Fapp

Interesting cases arise when the applied force is periodic Fapp(t) = Fapp(t+T ) = Fapp(t+2π/ωapp),
especially when the applied frequency, ωapp is close to the the characteristic frequency of the oscillator
ωchar =

√
Ks/M .

Modal Analysis

For the case of a periodic forcing function, the time-dependent force can be represented by a Fourier
Series. Because the second-order ODE (Eq. 23-2) is linear, the particular solutions for each term in a
Fourier series can be summed. Therefore, particular solutions can be analyzed for one trigonometric
term at a time:

M
d2y(t)
dt2

+ ηlo
dy(t)
dt

+ Ksy(t) = Fapp cos(ωappt) (23-5)

There are three general cases for the particular solution:
Condition Solution for F (t) = Fapp cos(ωappt)

Undamped,
Frequency-
Mismatch

η = 0

ω2
char =

Ks

M
6= ω2

app

ypart(t) =
Fapp cos(ωappt)

M(ωchar + ωapp)(ωchar − ωapp)

Undamped,
Frequency-
Matched

η = 0

ω2
char =

Ks

M
= ω2

app

ypart(t) =
Fappt sin(ωappt)

2Mωapp

Damped
η > 0

ypart(t) =
Fapp cos(ωappt + φlag)√

M2(ω2
char − ω2

app)2 + ω2
appη

2l2o

φlag = tan−1

(
ωappηlo

M(ω2
char − ω2

app)

)

The phenomenon of resonance can be observed as the driving frequency approaches the character-
istic frequency.
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Lecture 23 Mathematica R© Example 2

Resonance and Near-Resonance Behavior

Download notebooks, pdfs, or html from http://pruffle.mit.edu/3.016-2006.

Solutions to mÿ + ηẏ + ky = Fapp cos(ωappt) analyzed near the resonance condition ωapp ≈ ωchar ≡
√

k/m.

2: The general solution will include two arbitrary constants C[1] and C[2]
in terms that derive from the homogeneous solution plus a part that
derives from the heterogeneous (i.e., forced) part.

3: Examining the form of the general solution at t = 0, it will be clear that
the constants from the homogeneous part will be needed to satisfy arbi-
trary boundary conditions—most importantly, the constants will include
terms that depend on the characteristic and applied frequencies.

4: Here DSolve will be used yParticularSolution to analyze the particular
case of a forced (F (t) = Fapp cos(ωappt)) and damped harmonic oscillator
initially at resting equilibrium (y(t = 0) = 1 and y′(t = 0) = 0).

5: The most interesting cases are the resonance and near resonance cases:
ResonantSolution is obtained by setting the forcing frequency equal to
the characteristic frequency.

6: To analyze the at-resonance case, the solution will be expanded to sec-
ond order for small viscosity with Series. Some extra manipulation is
required to display the results in a form that is straightforward to inter-
pret. Here, Map will be used with a pure function to simplify each term
produced by Series. First, the SeriesData object created by Series
is transformed into a regular expression with Normal. The pure function
will first transform any exp(x) into cosh(x)+ sinh(x), then any fractional
powers will be cleaned up (e.g.,

√
x2 → x) assuming real parameters;

finally the individual terms will be simplified.

Apply a forcing function: Fapp cos(wapp t)
To solve problems in terms of the mass and natural frequency, 
eliminate the spring constant in equations by defining it in 
terms of the mass and natural frequency.

1 Kspring = M wchar2

Mathematica can solve the nonhomogeneous ODE with a  
forcing function at with an applied frequency:

2
yGeneralSol =

Simplify@y@tD ê. DSolve@M y''@tD + h y'@tD + Kspring y@tD ã
Fapp Cos@wapp tD, y@tD, tD@@1DDD

Consider the behavior of the general solution at time t=0.  This 
will show that the homogeneous parts of the solution are needed 
to satisfy boundary conditions, even if the oscillator is initially at 
rest at zero displacement (i.e., y(0) = y°  H0L = 0L.
3 Simplify@yGeneralSol ê. t -> 0D
Consider the particular case of anequillbrium at-rest oscillator

4
yParticularSol = Simplify@

y@tD ê. DSolve@8M y''@tD + h y'@tD + Kspring y@tD ã Fapp
Cos@wapp tD, y@0D == 0, y'@0D == 0<, y@tD, tD@@1DDD

The resonant solution is the case: wapp Ø wchar

5 ResonantSolution = Simplify@yParticularSol ê. wapp Ø wcharD

6
ResonantSolutionSmallViscosity =

Map@Simplify@PowerExpand @ ExpToTrig@#DDD &,
Normal@Series@ResonantSolution, 8h, 0, 2<DDD

7
ResonantSolutionSmallViscosityDetuned =

Map@Simplify@PowerExpand @ ExpToTrig@#DDD &,
Normal@Series@yParticularSol, 8wapp, wchar, 1<, 8h, 0, 2<DDD

The  leading behavior could have been obtained directly, viz

8
ResonatSolZeroViscosity = Simplify@y@tD ê.

DSolve@8M y''@tD + Kspring y@tD ã Fapp Cos@wchar tD,
y@0D == 0, y'@0D == 0<, y@tD, tD@@1DDD

7: This illustrates how near resonance ωapp ≈ ωchar can be analyzed in the small viscosity limit. Here, Series
first expands around η = 0 to second order and then around small δω = ωapp − ωchar.

8: Setting the viscosity to zero a priori is possible and returns the leading order behavior, but the asymptotic
behavior for small parameters cannot be ascertained.

http://pruffle.mit.edu/3.016-2006/Notebooks/L23/Lecture-23.nb
http://pruffle.mit.edu/3.016-2006/pdf/L23/Lecture-23-2.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-23/HTMLLinks/index_2.html
http://pruffle.mit.edu/3.016-2006
http://pruffle.mit.edu/3.016-2006/html/Lecture-23/HTMLLinks/index_2.html
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Lecture 23 Mathematica R© Example 3

Visualizing Forced and Damped Harmonic Oscillation

Download notebooks, pdfs, or html from http://pruffle.mit.edu/3.016-2006.

1: This function solves the heterogeneous damped harmonic oscillator ODE
(where F (t) = cos(ωappt)) for any input mass, damping coefficient, and
spring constant M , η, k = Mω2

char.
2: Undamped resonance ωchar = ωapp = 1/2 should show linearly growing

amplitude.
3: Near resonance will show a beat-phenomena because of ”de-tuning.”
4: Damped resonance will show that the amplitudes approaching to a finite

asymptotic limit.
6: The beats will still be apparent for the damped near resonance condi-

tion, but the finite damping coefficient will prevent the amplitude from
completely disappearing.

Create a Mathematica  function that returns the solution for 
specified mass, viscous term, characteristic and applied 
frequencies

1
y@M_ , h_ , wchar_, wapp_D := Chop@

y@tD ê. DSolve@8M y''@tD + h y'@tD + M wchar^2 y@tD ã Cos@
wapp tD, y@0D == 1, y '@0D == 0<, y@tD, tD êê FlattenD

Undamped Resonance:

2 Plot@Evaluate@y@1, 0, 1 ê2, 1 ê2DD, 8t, 0, 200<, PlotPoints Ø 200D
Undamped Near Resonance:

3 Plot@Evaluate@y@1, 0, 1 ê2 + 0.05, 1 ê2DD,8t, 0, 200<, PlotPoints Ø 200D
Damped Resonance:

4 Plot@Evaluate@y@1, 1 ê10, 1 ê2, 1 ê2DD, 8t, 0, 200<D
Overdamped Resonance:

5 Plot@Evaluate@y@1, 10, 1 ê2, 1 ê2DD, 8t, 0, 200<D
Damped Near Resonance:

6 Plot@Evaluate@y@1, .05, 1 ê2 + 0.05, 1 ê2DD,8t, 0, 200<, PlotPoints Ø 200D
Heavily damped Near Resonance:

7 Plot@Evaluate@y@1, 2.5, 1 ê2 + 0.05, 1 ê2DD,8t, 0, 200<, PlotPoints Ø 200D

Resonance can have catastrophic or amusing (or both) consequences:

http://pruffle.mit.edu/3.016-2006/Notebooks/L23/Lecture-23.nb
http://pruffle.mit.edu/3.016-2006/pdf/L23/Lecture-23-3.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-23/HTMLLinks/index_3.html
http://pruffle.mit.edu/3.016-2006
http://pruffle.mit.edu/3.016-2006/html/Lecture-23/HTMLLinks/index_3.html
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Figure 23-24: Picture and illustration of the bells at Kendall square. Many people shake the
handles vigorously but with apparently no pleasant effect. The concept of resonance can be
used to to operate the bells efficiently Perturb the handle slightly and observe the frequencies
of the the pendulums—select one and wiggle the handle at the pendulum’s characteristic
frequency. The amplitude of that pendulum will increase and eventually strike the neighboring
tubular bells.
From Cambridge Arts Council Website:

http://www.ci.cambridge.ma.us/˜CAC/public art tour/map 11 kendall.html

Artist: Paul Matisse Title: The Kendall Band - Kepler, Pythagoras, Galileo Date: 1987

Materials: Aluminum, teak, steel

Handles located on the platforms allow passengers to play these mobile-like instruments, which are suspended in arches

between the tracks, ”Kepler” is an aluminum ring that will hum for five minutes after it is struck by the large teak

hammer above it. ”Pythagoras” consists of a 48-foot row of chimes made from heavy aluminum tubes interspersed with

14 teak hammers. ”Galileo” is a large sheet of metal that rattles thunderously when one shakes the handle.

http://www.ci.cambridge.ma.us/~CAC/public_art_tour/map_11_kendall.html
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Figure 23-25: The Tacoma bridge disaster is perhaps one of the most well-known failures that
resulted directly from resonance phenomena. It is believed that the the wind blowing across the
bridge caused the bridge to vibrate like a reed in a clarinet.(Images from Promotional Video
Clip from The Camera Shop 1007 Pacific Ave., Tacoma, Washington Full video Available
http://www.camerashoptacoma.com/)

http://www.camerashoptacoma.com/
http://www.camerashoptacoma.com/
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