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Nov. 23 2006

Lecture 23: Resonance Phenomena, Beam Theory

Reading:
Kreyszig Sections: 2.8, 2.9, 3.1, 3.2, 3.3 (pages84—90, 91-96, 105-111, 111-115, 116—121)

Resonance Phenomena

The physics of an isolated damped linear harmonic oscillator follows from the behavior of the homoge-
neous equation:'?

d*y(t)
dt?
This equation is the sum of three forces:

dy(t)

M
dt

+nly + K,y(t) =0 (23-1)

inertial force depending on the acceleration of the object.
drag force depending on the velocity of the object.

spring force depends on the displacement of the object.

The system is autonomous in the sense that everything depends on the system itself; there are no
outside agents changing the system.

The zero on the right-hand-side of Eq. 23-1 implies that there are no external forces applied to the
system. The system oscillates with a characteristic frequency w = /K;/M with amplitude that are
damped by a characteristic time 7 = (2M)/(nl,) (i.e., the amplitude is damped o exp(—t/7).)

5 A concise and descriptive description of fairly general harmonic oscillator behavior appears at
http://hypertextbook.com/chaos/41.shtml


http://hypertextbook.com/chaos/41.shtml
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Lecture 23 MATHEMATICA® Example 1

Simulating Harmonic Oscillation with Biased and Unbiased Noise

Download notebooks, pdfs, or html from http://pruffle.mit.edu/3.016-2006.

The second-order differencing simulation of a harmonic oscillator is modified to include white and biased stochas-

tic nudging.

1:

10:

GrowListGeneralNoise is extended from a previous example for simulat-
ing 4+ By + ay = 0 (GrowList in example 21-1) and adds a random
uniform displacement y+ 6, 6 € (—randomamp, randomamp) at each iter-
ation. The ValuesList_List argument should be a list containing two lists:
the first list is comprised of the sequence of displacements y; the second list
records the corresponding stochastic displacement §. The function uses a
list’s two previous values and Append and to grow the list iteratively.

Exemplary data from 2 x 10° iterations (using Nest) is produced for the
specific case of A =0.001, a« =2, 5 =0.

The displacements (i.e., first list) are plotted with ListPlot.
The random ‘nudges’ (i.e., second list) are also plotted.

Biased nudges are simulated with GrowListBiasedNoise . This extends
the unbiased example above, by including a wavelength for a cosine-biased
random amplitude. A sample, d, from the uniform random distribution as
above is selected and then multiplied by cos 2wt/A. The time-like variable
is simulated with Length and the current data.

The biased data for approximately the resonance condition for the same
model parameters above is plotted with the biased noise.

A general model for a damped and forced harmonic oscillator is

d*y(t) dy(t)

M
dt? dt

+ Ky(t) = F

+nlo

where Fy,;,, represents a time-dependent applied force to the mass M.

General Solutions to Non-homogeneous ODEs

app(t)

GrowListGeneralNoise[ValuesList_List, A_, a_, B_,
randomamp_] := Module[{Minus1 = ValuesList[[1, —1]],
Minus2 = ValuesList[[1, —2]],
noise = Random[Real, {-randomamp, randomamp}]},
{Append|ValuesListl[1]],
2:xMinus1 — Minus2 + A «
(8+(Minus2 — Minus1) — a A «Minus2) + noise],
Append|ValuesListl[2]], noisel}]

GrowListSpecificNoiselInitialList_List] :=
GrowListGeneralNoise[InitialList, .001, 2, 0, 10A(-5)]

3| Nest|GrowListSpecificNoise, {{1, 1}, {0, 0}}, 10]

TheData =
Nest[GrowListSpecificNoise, {{1, 1}, {0, 0}}, 20000];

5 ListPlotl TheDatal[111]

6| ListPlotl TheDatal[211]

Now suppose there is a periodic bias that tends to kick the
displacement one direction more than the other:

GrowlListBiasedNoise[ValuesList_List,
A_, a_, B_, randomamp_, lambda_] :=
Module[{Minus1 = ValuesList[[1, —1]], Minus2 =

(Cos[2 x LengthlValuesList[[11]] /lambda] +
Random(Real, {-1, 1}])},
{Append|ValuesList([11],
2xMinus1 — Minus2 +
A «(B+(Minus2 — Minus1) — a A« Minus2) +
biasednoise],
Append|ValuesListl[2]], biasednoisel}]

ValuesList([1, —2]], biasednoise = 0.5« randomamp «

GrowListSpecificBiasedNoise[InitialList_List] :=
GrowListBiasedNoise[InitialList, .001, 2, 0, 10A(~6), 4500]

| TheBiasedData =

Nest[GrowListSpecificBiasedNoise, {{1, 1}, {0, 0}}, 20000];

ListPlot[TheBiasedDatall111]
ListPlotTheBiasedDatal[2]]]

(23-2)

Equation 23-2 is a non-homogeneous ODE—the functions and its derivatives appear on one side and
an arbitrary function appears on the other. The general solution to Eq. 23-2 will be the sum of two

parts:
ygen(t) = ypart(t) + yhomog(t) (23_3)
ygen(t> = yFapp (t) + yhOng (t)
Cre Mt O_e=IA-It (nly)? > 4M K, Over-damped
Yhomg(t) = Cre= Nt 1 Cote— Al (nlp)> = 4M Ky Critical Damping ~ (23-4)

C e~ Rertellmalt o o—Redite—lmAit (742 < 40K, Under-damped


http://pruffle.mit.edu/3.016-2006/Notebooks/L23/Lecture-23.nb
http://pruffle.mit.edu/3.016-2006/pdf/L23/Lecture-23-1.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-23/HTMLLinks/index_1.html
http://pruffle.mit.edu/3.016-2006
http://pruffle.mit.edu/3.016-2006/html/Lecture-23/HTMLLinks/index_1.html

200 MIT 3.016 Fall 2006 © W.C Carter Lecture 23

where Ypart = Yr,,, 1S the solution for the particular Fg,, on the right-hand-side and yjomog is the
solution for the right-hand-side being zero. Adding the homogeneous solution Ynomog to the particular
solution Ypart s equivalent to adding a “zero” to the applied force Fypy,

Interesting cases arise when the applied force is periodic Fyp,(t) = Fapp(t+T) = Fapp(t + 27 [wapp),
especially when the applied frequency, wqp, is close to the the characteristic frequency of the oscillator

Wehar = V/ KS/M

Modal Analysis

For the case of a periodic forcing function, the time-dependent force can be represented by a Fourier
Series. Because the second-order ODE (Eq. 23-2) is linear, the particular solutions for each term in a
Fourier series can be summed. Therefore, particular solutions can be analyzed for one trigonometric
term at a time:

d?y(t dy(t
M dtg ) + nlo de ) + Ksy(t) = Fapp COS(Wappt) (23—5)
There are three general cases for the particular solution:
Condition Solution for F(t) = F,pp cos(wappt)
Undamped,
Frequency- n=0
F t
Mismatch K, Ypart (t) = app COS(Wappt)
w?ha’r‘ = M 7& ngp M(wChar + wapp)(wchar — wapp)
Undamped, ‘
Frequency— n= 0 Ypart (t) — Fappt Sln(wappt)
Matched K 2Mwqpp
2 _ s 2
Wehar M = Wepp
Damped
>0
n N Fopp cos(wappt + dlag)
pare(f) = 2( 2 2 )2 2 272
\/M (wchar - wapp) + Wapp'l lo
_ Wappnlo
Plag = tan 1
“ M(wzhar - wgpp)

The phenomenon of resonance can be observed as the driving frequency approaches the character-
istic frequency.
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Lecture 23 MATHEMATICA® Example 2

Resonance and Near-Resonance Behavior

Download notebooks, pdfs, or html from http://pruffle.mit.edu/3.016-2006.

Solutions to mi + ny + ky = Fupp cos(weppt) analyzed near the resonance condition wypp & wWepar = v/k/m.

The general solution will include two arbitrary constants C[1] and C[2]
in terms that derive from the homogeneous solution plus a part that
derives from the heterogeneous (i.e., forced) part.

Examining the form of the general solution at t = 0, it will be clear that
the constants from the homogeneous part will be needed to satisfy arbi-
trary boundary conditions—most importantly, the constants will include
terms that depend on the characteristic and applied frequencies.

Here DSolve will be used yParticularSolution to analyze the particular
case of a forced (F'(t) = Fipp cos(wqppt)) and damped harmonic oscillator
initially at resting equilibrium (y(t = 0) =1 and y'(t = 0) = 0).

The most interesting cases are the resonance and near resonance cases:
ResonantSolution is obtained by setting the forcing frequency equal to
the characteristic frequency.

To analyze the at-resonance case, the solution will be expanded to sec-
ond order for small viscosity with Series. Some extra manipulation is
required to display the results in a form that is straightforward to inter-
pret. Here, Map will be used with a pure function to simplify each term
produced by Series. First, the SeriesData object created by Series
is transformed into a regular expression with Normal. The pure function
will first transform any exp(z) into cosh(x) + sinh(x), then any fractional
powers will be cleaned up (e.g., Va2 — x) assuming real parameters;
finally the individual terms will be simplified.

Apply a forcing function: Fap, COS(wapp t)

To solve problems in terms of the mass and natural frequency,
eliminate the spring constant in equations by defining it in
terms of the mass and natural frequency.

1 | Kspring = M wchar?

Mathematica can solve the nonhomogeneous ODE with a
forcing function at with an applied frequency:

yGeneralSol =
Simplify[ylt] /. DSolve[My"[t] + ny'lt] + Kspringylt] =
Fapp Cos|wapp ], ylt], tjl[11]]

n

Consider the behavior of the general solution at time t=0. This
will show that the homogeneous parts of the solution are needed
to satisfy boundary conditions, even if the oscillator is initially at
rest at zero displacement (i.e., y(0) =y (0) = 0).

3| SimplifylyGeneralSol /.t > 0]

Consider the particular case of anequillbrium at-rest oscillator

yParticularSol = Simplify[
4 yltl /. DSolve[(My"[t] + ny'lt] + Kspringyltl = Fapp
Cos[wappt], yl0] ==0, y'lo] == 0}, ylt], t]l[11]]

The resonant solution is the case: wapp —~ wchar

5| ResonantSolution = Simplify[yParticularSol /. wapp — wchar]

ResonantSolutionSmallViscosity =
Map][Simplify[PowerExpand [ ExpToTrigl#1]] &,
Normal[Series[ResonantSolution, {r, 0, 2}]]]

)

ResonantSolutionSmallViscosityDetuned =
7| Map[Simplify[PowerExpand [ ExpToTrigl#1]] &,
Normal[Series|yParticularSol, {wapp, wchar, 1}, {1, 0, 2}]]]

The leading behavior could have been obtained directly, viz

ResonatSolZeroViscosity = Simplify[ylt] /.
8 DSolve[{My"lt] + Kspringylt] = Fapp Coslwchart],
ylol == 0, y'lol == 0}, ylt], tj[11]]

This illustrates how near resonance wqpp ~ Wehar can be analyzed in the small viscosity limit. Here, Series
first expands around 7 = 0 to second order and then around small dw = wWapp — Wehar-

Setting the viscosity to zero a priori is possible and returns the leading order behavior, but the asymptotic

behavior for small parameters cannot be ascertained.


http://pruffle.mit.edu/3.016-2006/Notebooks/L23/Lecture-23.nb
http://pruffle.mit.edu/3.016-2006/pdf/L23/Lecture-23-2.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-23/HTMLLinks/index_2.html
http://pruffle.mit.edu/3.016-2006
http://pruffle.mit.edu/3.016-2006/html/Lecture-23/HTMLLinks/index_2.html
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Lecture 23 MATHEMATICA® Example 3

Visualizing Forced and Damped Harmonic Oscillation

Download notebooks, pdfs, or html from http://pruffie.mit.edu/3.016-2006.

Create a Mathematica function that returns the solution for
specified mass, viscous term, characteristic and applied

1: This function solves the heterogeneous damped harmonic oscillator ODE  freauencies
= i i 1 yIM_, 7_, wchar_, wapp_]:= Chop[
(where F(t) = cos(wappt)) for any input mass, damping coefficient, and | e e etk S
spring constant M, n, k = Mw? wappt], yl0] == 1,y'10] == 0], ylt, ] / Fiatten]

d d char h ld h 1 1 . Undamped Resonance:
2 Un %mpe IeSONANCe Wehar = Wapp = 1/2 should show linearly growing 2| PlotiEvaluately(1, 0, 1/2, 1/2I1, {t, 0, 200}, PlotPoints - 200] |
amphtude. Undamped Near Resonance:

3: Near resonance will show a beat-phenomena because of ”de-tuning.”

Plot[Evaluatelyl1, 0, 1/2 + 0.05, 1/2]],
{t, 0, 200}, PlotPoints - 200]

4: Damped resonance will show that the amplitudes approaching to a finite Damped Resonance:
asymptotic limit. 4 PlotiEvaluately(1, 1/10, 1/2, 1/2Il, {t, 0, 200)] |

Overdamped Resonance:

6: The beats will still be apparent for the damped near resonance condi-
tion, but the finite damping coefficient will prevent the amplitude from
completely disappearing.

5[ Plot[Evaluately[1, 10, 1/2, 1/2]], {t, 0, 200)] |

Damped Near Resonance:

Plot[Evaluate[y[1, .05, 1/2 + 0.05, 1/2]],
{t, 0, 200}, PlotPoints — 200]

Heavily damped Near Resonance:

7

Plot[Evaluate[y[1, 2.5, 1/2 + 0.05, 1/2]],
{t, 0, 200}, PlotPoints — 200]

Resonance can have catastrophic or amusing (or both) consequences:


http://pruffle.mit.edu/3.016-2006/Notebooks/L23/Lecture-23.nb
http://pruffle.mit.edu/3.016-2006/pdf/L23/Lecture-23-3.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-23/HTMLLinks/index_3.html
http://pruffle.mit.edu/3.016-2006
http://pruffle.mit.edu/3.016-2006/html/Lecture-23/HTMLLinks/index_3.html
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Figure 23-24: Picture and illustration of the bells at Kendall square. Many people shake the
handles vigorously but with apparently no pleasant effect. The concept of resonance can be
used to to operate the bells efficiently Perturb the handle slightly and observe the frequencies
of the the pendulums—select one and wiggle the handle at the pendulum’s characteristic
frequency. The amplitude of that pendulum will increase and eventually strike the neighboring
tubular bells.

From Cambridge Arts Council Website:
http://www.ci.cambridge.ma.us/”CAC/public_art_tour/map_11_kendall.html

Artist: Paul Matisse Title: The Kendall Band - Kepler, Pythagoras, Galileo Date: 1987
Materials: Aluminum, teak, steel

Handles located on the platforms allow passengers to play these mobile-like instruments, which are suspended in arches
between the tracks, "Kepler” is an aluminum ring that will hum for five minutes after it is struck by the large teak

hammer above it. " Pythagoras” consists of a 43-foot row of chimes made from heavy aluminum tubes interspersed with

14 teak hammers. " Galileo” is a large sheet of metal that rattles thunderously when one shakes the handle.



http://www.ci.cambridge.ma.us/~CAC/public_art_tour/map_11_kendall.html
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Figure 23-25: The Tacoma bridge disaster is perhaps one of the most well-known failures that
resulted directly from resonance phenomena. It is believed that the the wind blowing across the
bridge caused the bridge to vibrate like a reed in a clarinet.(Images from Promotional Video
Clip from The Camera Shop 1007 Pacific Ave., Tacoma, Washington Full video Available
http://www.camerashoptacoma.com/)



http://www.camerashoptacoma.com/
http://www.camerashoptacoma.com/
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