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Nov. 20 2006

Lecture 21: Higher-Order Ordinary Differential Equations

Reading:
Kreyszig Sections: 2.1, 2.2 (pages45–52, 53–58)

Higher-Order Equations: Background

For first-order ordinary differential equations (ODEs), F (y′(x), y(x), x), one value y(xo) was needed to
specify a particular solution. Recall the example in Lecture 19 of a first-order differencing scheme: at
each iteration the function grew proportionally to its current size. In the limit of very small forward
differences, the scheme converged to exponential growth.

Now consider a situation in which function’s current rate of growth increases proportionally to two
terms: its current rate of growth and its size.

Change in Value’s Rate of Change + α (the Value) + β (Value’s Rate of Change) = 0

To calculate a forward differencing scheme for this case, let ∆ be the forward-differencing increment.(
Fi+2−Fi+1

∆ − Fi+1−Fi

∆

∆

)
+ αFi + β

(
Fi+1 − Fi

∆

)
= 0

and then solve for the “next increment” Fi+2 if Fi+1 and Fi are known.
This indicates that, for second-order equations, two independent values are needed to generate the

‘solution trajectory.’
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Lecture 21 Mathematica R© Example 1

A Second-Order Forward Differencing Example

Download notebooks, pdfs, or html from http://pruffle.mit.edu/3.016-2006.

A second order differencing formula is developed for the case of constant growth and acceleration coefficients.

1: CurrentChangeperDelta is an example of a first-order finite difference.
2: Applying the first-order difference operator twice, a second-order dif-

ferencing operator is obtained. Notice that, as the higher the order of
difference operation goes, the number of surrounding points required to
evaluate the difference gets larger and larger—i.e., for the second order
difference, function values are needed at three different i compared to two
different i for the first-order case.

3: For a particular case of d2y/dx2 = −αdy/dx − βy, the two difference
operators replace the derivatives and a difference relation can be derived
as a function of parameters α and β.

4: The difference operator is derived by solving the difference relation for
Fi+2—it will depend on the immediate last value Fi+1 and that value’s
antecedent Fi. Therefore, any value—including the first one calculated—
requires two values to be specified.

5: Typically, the current j–value is expressed in terms of the (j − 1) and
(j − 2)–values. This form is generated by the replacement i → j − 2.

6: The difference operator is incorporated in GrowList : a function that
grows a list (input as ValuesList) using a difference ∆ and parameters
α and β. The two previous values in the list become localized variables in
a Module function. The Module returns a new list that is created using
Append to place the current value at end of the input list.

7: Here is an example of using GrowList once.
8: Using Nest the list can be grown iteratively to N times to generate a

sequence of length N + 2 (the first two values being specified).
10: ListPlot visualizes the results for different growth constants α and β.

This is the current change or approximation to velocity

1 CurrentChangePerDelta@F_, i_, D_D := F@i+ 1D - F@iD
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

D

Finite difference approximation to second derivative

2
CurrentChangeinCurrentChangeperDelta@F_, i_, D_D :=

SimplifyA 1
ÅÅÅÅÅÅ
D
HCurrentChangePerDelta@F, i+ 1, DD -

CurrentChangePerDelta@F, i, DDLE
Let the acceleration is proportional to  size of the current function 
and its velocity, let these proportions be: -a and -b

3
DifferenceRelation =

CurrentChangeinCurrentChangeperDelta@F, i, DD ==
-b CurrentChangePerDelta@F, i, DD - a F@iD

4 ForDiffSol = Solve@DifferenceRelation, F@i+ 2DD êê Flatten

5 ForDiffSolV2 = ForDiffSol ê. i Ø j- 2

6

GrowList@ValuesList_List, D_ , a_ , b_D := Module@8Minus1 = ValuesList@@-1DD, Minus2 = ValuesList@@-2DD<,
Append@ValuesList,

2*Minus1 - Minus2 +
D * Hb * HMinus2 - Minus1L -a*D*Minus2LDD

7 result = GrowList@81, 1<, .001, 1, .1D
Generate a sequence of length 20 from initial values {1,1} for 
D=0.001, a=1, b=0.1

8 Nest@GrowList@#, .001, 1, .1D &, 81, 1<, 20D
9 ListPlot@Nest@GrowList@#, .001, 1, .1D &, 81, 1<, 20000DD
Change parameters for Growth Function (this  shows that the 
numerical solution does not converge to the accurate solution):

10 ListPlot@Nest@GrowList@#, 0.01, 0.5, 0D &, 81, 1<, 20000DD

Linear Differential Equations; Superposition in the Homogeneous Case

A linear differential equation is one for which the function and its derivatives are each linear—that is
they appear in distinct terms and only to the first power. In the case of a homogeneous linear differential
equation, the solutions are superposable. In other words, sums of solutions and their multiples are also
solutions.

Therefore, a linear heterogeneous ordinary differential equation can be written as a product of

http://pruffle.mit.edu/3.016-2006/Notebooks/L21/Lecture-21.nb
http://pruffle.mit.edu/3.016-2006/pdf/L21/Lecture-21-1.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-21/HTMLLinks/index_1.html
http://pruffle.mit.edu/3.016-2006
http://pruffle.mit.edu/3.016-2006/html/Lecture-21/HTMLLinks/index_1.html
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general functions of the dependent variable and the derivatives for the n-order linear case:

0 = f0(x) + f1(x)
dy

dx
+ f2(x)

d2y

dx2
+ · · ·+ fn(x)

dny

dxn

= (f0(x), f1(x), f2(x), . . . , fn(x)) ·
(

1,
dy

dx
,
d2y

dx2
, . . . ,

dny

dxn

)
= ~f(x) · ~Dny

(21-1)

The homogeneous nth-order linear ordinary differential equation is defined by f0(x) = 0 in Eq. 21-1:

0 = f1(x)
dy

dx
+ f2(x)

d2y

dx2
+ · · ·+ fn(x)

dny

dxn

= (0, f1(x), f2(x), · · · , fn(x)) ·
(

1,
dy

dx
,
d2y

dx2
, . . . ,

dny

dxn

)
= ~fhom(x) · ~Dny

(21-2)

Equation 21-1 can always be multiplied by 1/fn(x) to generate the general form:

0 = F0(x) + F1(x)
dy

dx
+ F2(x)

d2y

dx2
+ · · ·+ dny

dxn

= (F0(x), F1(x), F2(x), . . . , 1)) · (1,
dy

dx
,
d2y

dx2
, . . . ,

dny

dxn
)

= ~F (x) · ~Dny

(21-3)

For the second-order linear ODE, the heterogeneous form can always be written as:

d2y

dx2
+ p(x)

dy

dx
+ q(x)y = r(x) (21-4)

and the homogeneous second-order linear ODE is:

d2y

dx2
+ p(x)

dy

dx
+ q(x)y = 0 (21-5)

Basis Solutions for the homogeneous second-order linear ODE

Because two values must be specified for each solution to a second order equation—the solution can be
broken into two basic parts, each deriving from a different constant. These two independent solutions
form a basis pair for any other solution to the homogeneous second-order linear ODE that derives from
any other pair of specified values.

The idea is the following: suppose the solution to Eq. 21-5 is found the particular case of specified
parameters y(x = x0) = A0 and y(x = x1) = A1, the solution y(x;A0, A1) can be written as the sum
of solutions to two other problems.

y(x;A0, A1) = y(x,A0, 0) + y(x, 0, A1) = y1(x) + y2(x) (21-6)

where

y(x0, A0, 0) = A0 and y(x1, A0, 0) = 0
y(x0, 0, A1) = 0 and y(x1, 0, A1) = A1

(21-7)

from these two solutions, any others can be generated.
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The two arbitrary integration constants can be included in the definition of the general solution:

y(x) = C1y1(x) + C1y2(x)
= (C1, C2) · (y1, y2)

(21-8)

Second Order ODEs with Constant Coefficients

The most simple case—but one that results from models of many physical phenomena—is that functions
in the homogeneous second-order linear ODE (Eq. 21-5) are constants:

a
d2y

dx2
+ b

dy

dx
+ cy = 0 (21-9)

If two independent solutions can be obtained, then any solution can be formed from this basis pair.
Surmising solutions seems a sensible strategy, certainly for shrewd solution seekers. Suppose the

solution is of the form y(x) = exp(λx) and put it into Eq. 21-9:

(aλ2 + bλ + c)eλx = 0 (21-10)

which has solutions when and only when the quadratic equation aλ2 + λx + c = 0 has solutions for λ.
Because two solutions are needed and because the quadratic equation yields two solutions:

λ+ =
−b +

√
b2 − 4ac

2a

λ− =
−b−

√
b2 − 4ac

2a

(21-11)



MIT 3.016 Fall 2006 Lecture 21 c© W.C Carter 183

or by removing the redundant coefficient by diving through by a:

λ+ =
−β

2
+

√
(
β

2
)2 − γ

λ− =
−β

2
−
√

(
β

2
)2 − γ

(21-12)

where β ≡ b/a and γ ≡ c/a.
Therefore, any solution to Eq. 21-9 can be written as

y(x) = C+eλ+x + C−eλ−x (21-13)

This solution recreated with a slightly different method in the following Mathematica R© example.

Lecture 21 Mathematica R© Example 2

Solutions to the Homogeneous Linear Second Order ODE with Constant Coefficients

Download notebooks, pdfs, or html from http://pruffle.mit.edu/3.016-2006.

Even though Mathematica R© is able to determine solutions to linear second-order ODEs with constant
coefficients directly, it is still instructive to use Mathematica R© to derive these solutions.

1: TheODE represents the left-hand side of any second-order ODE with
constant coefficients. It takes an argument for the name of the function
(i.e., y) and the dependent variable (i.e., x in y(x)).

3: This will serve as a ‘guess’ of a solution—if we can find λ(s) that satisfy
the ODE, then the solution(s) are determined.

5: Using Solve with the guess inserted into TheODE will determine solu-
tiion conditions on λ—this will be a quadratic equation in λ.

6: By inspecting the solution, assignments can be made to the two possible
λ.

7: This is the form of the general solution in terms of two arbitrary constants.
9: This should show that the general solution always satisfies the ODE.

Analysis of basis solutions to  y'' + by' + gy = 0 in terms of 
constant coefficients b and g

1 TheODE@function_, var_D := D@function@varD, 8var, 2<D +
bD@function@varD, varD + g function@varD

2 TheODE@y, xD
3 TheGuess@x_D := Exp@l xD
4 TheODE@TheGuess, xD
5 lSolution = Solve@TheODE@TheGuess, xDã 0, lD
The two roots l+ and l+ are:

6 8lMinus, lPlus< = l ê. lSolution

7 GeneralSolution@x_D :=
C@LPlusDExp@lPlus xD + C@LMinusDExp@lMinus xD

8 TheODE@GeneralSolution, zD
9 Simplify@TheODE@GeneralSolution, zDD

http://pruffle.mit.edu/3.016-2006/Notebooks/L21/Lecture-21.nb
http://pruffle.mit.edu/3.016-2006/pdf/L21/Lecture-21-2.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-21/HTMLLinks/index_2.html
http://pruffle.mit.edu/3.016-2006
http://pruffle.mit.edu/3.016-2006/html/Lecture-21/HTMLLinks/index_2.html


184 MIT 3.016 Fall 2006 c© W.C Carter Lecture 21

Lecture 21 Mathematica R© Example 3

Characterizing the Solution Behavior for the Second-Order ODE with Constant Coefficients

Download notebooks, pdfs, or html from http://pruffle.mit.edu/3.016-2006.

Because the fundamental solution depend on only two parameters β and γ, the behavior (i.e., whether <λ
>
< 0

and =λ
?= 0) of all solutions can be visualized in the γ-β plane.

1: Reduce is a function for determing the conditions on parameters (here
β and γ assumed to be real numbers) such that an expression satisfies
particular constraints. The result will create the following graphic.

2: This will create a plot that distinguishes two regions in the γ-β plane:
above γ = β2/4, the λ are real; below, the λ are complex and oscillatory
solutions appear (because exp(r + ıθ) = exp(r)(cos(θ) + ı sin(θ))).

3: Graphics and Text create annotation; Show combines annotation and
the plot.

4: This will create a plot for the conditions that the <(λ) are real and either
positive or negative. The sign of the real part of λ in exp(λx) deter-
mines whether the solution grows without bound (<(λ) > 0) or shrinks
asympotically towards 0 (<λ < 0).

5: This creates graphics to annotate and display together with the plot.
The extra function StyleForm allows the passage of options (such as
FontColor, FontFamily, etc.) to be passed simply.

7: Reduce determines the conditions on β and γ so that both λ are positive
and real. These will be unbounded and non-oscillating solutions.

8: The conditions will be annotated by greating a graphical object.
10: Here the curves and annotation are created for the case of mixed real roots

(i.e., λ+ > 0 and λ− < 0—one growing and one decaying non-oscillatory
solutions)

12: The final region to be determined and annotated is the one with the
monotonically decaying solutions λ− < λ− < 0.

13: Collecting all the graphical objects together into one image that was used
to construct Fig. 21-21.

1 Reduce@lPlus œ Reals && lMinus œ Reals, 8b, g<, RealsD
2 CplexReal = Plot@b^2 ê4, 8b, -1, 1<, AxesLabelØ 8"b", "g"<D
3
CplexRealAnnote = Show@CplexReal, Graphics@Text@

"Complex\nCongugate\nRoots", 80.25, 0.25<, 8-1, 1<DD,
Graphics@Text@"Real Roots", 80.75, 0.05<DDD

4
CplexPosNeg = ParametricPlot@80, t<,8t, 0, .25<, PlotStyleØ 8Thickness@0.015D, Hue@0D<,

DisplayFunctionØ IdentityD
5

CplexPosNegAnnote = Show@CplexPosNeg,
Graphics@Text@StyleForm@"Positive\nReal\nPart",

FontColorØ Hue@0DD, 8-.5, 0.15<, 8-1, 1<DD,
Graphics@Text@StyleForm@"Negative\nReal\nPart",

FontColorØ Hue@0DD, 8.5, 0.15<, 81, 1<DD,
DisplayFunctionØ $DisplayFunctionD

6 CplexPlot = Show@CplexRealAnnote, CplexPosNegAnnoteD
7 Reduce@8lPlus > 0, lMinus > 0<D
8
AnnotePosRealRoots =
Graphics@Text@StyleForm@"Positive Roots",

FontColorØ Hue@.6DD, 8-1.0, 0.025<, 8-1, 0<DD
9 Reduce@8lPlus > 0, lMinus < 0<D
10

MixedRealRoots =
Plot@0, 8t, -1, 1<, PlotStyleØ 8Hue@0.6D, Thickness@0.015D<,
DisplayFunctionØ IdentityD

AnnoteMixedRealRoots = Show@MixedRealRoots,
Graphics@Text@StyleForm@"Mixed Real Roots",

FontColorØ Hue@.6DD, 80.2, -0.1<, 8-1, 0<DD,
DisplayFunctionØ $DisplayFunctionD

11 Reduce@8lPlus < 0, lMinus < 0<D
12

AnnoteNegRealRoots =
Graphics@Text@StyleForm@"Negative Roots",

FontColorØ Hue@.6DD, 81.0, 0.025<, 81, 0<DD
13 Show@CplexPlot, AnnotePosRealRoots,

AnnoteMixedRealRoots, AnnoteNegRealRootsD

The behavior of all solutions can be collected into a simple picture:

http://pruffle.mit.edu/3.016-2006/Notebooks/L21/Lecture-21.nb
http://pruffle.mit.edu/3.016-2006/pdf/L21/Lecture-21-3.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-21/HTMLLinks/index_3.html
http://pruffle.mit.edu/3.016-2006
http://pruffle.mit.edu/3.016-2006/html/Lecture-21/HTMLLinks/index_3.html
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γ

γ = β2

4

β

Roots are Complex Conjugates

Positive and Negative

Positive Real Part Negative Real Part

Positive Roots Negative Roots

Roots are Real

Figure 21-21: The behaviors of the linear homogeneous second-order ordinary differential

equation d2y
dx2 + β dy

dx + γy = 0 plotted according the behavior of the solutions for all β and γ.

The case that separates the complex solutions from the real solutions, γ = (β/2)2 must be treated
separately, for the case γ = (β/2)2 it can be shown that y(x) = exp(βx/2) and y(x) = x exp(βx/2)
form an independent basis pair (see Kreyszig AEM, p. 74).

Boundary Value Problems

It has been shown that all solutions to d2y
dx2 +β dy

dx +γy = 0 can be determined from a linear combination
of the basis solution. Disregard for a moment whether the solution is complex or real, and ignoring
the special case γ = (β/2)2. The solution to any problem is given by

y(x) = C+eλ+x + C−eλ−x (21-14)

How is a solution found for a particular problem? Recall that two values must be specified to get a
solution—these two values are just enough so that the two constants C+ and C− can be obtained.

In many physical problems, these two conditions appear at the boundary of the domain. A typical
problem is posed like this:

Solve

m
d2y(x)
dx2

+ ν
dy(x)
dx

+ ky(x) = 0 on 0 < x < L (21-15)

subject to the boundary conditions

y(x = 0) = 0 and y(x = L) = 1
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or, solve

m
d2y(x)
dx2

+ ν
dy(x)
dx

+ ky(x) = 0 on 0 < x < ∞ (21-16)

subject to the boundary conditions

y(x = 0) = 1 and y′(x = L) = 0

When the value of the function is specified at a point, these are called Dirichlet conditions; when
the derivative is specified, the boundary condition is called a Neumann condition. It is possible have
boundary conditions that are mixtures of Dirichlet and Neumann.

Lecture 21 Mathematica R© Example 4

Determining Solution Constants from Boundary Values

Download notebooks, pdfs, or html from http://pruffle.mit.edu/3.016-2006.

Here is an example of taking the general solution with undetermined constants and using boundary conditions
to determine a specific solution.

1: GeneralSolution is the solution to y′′ + βy′ + γy = 0 with undetermined
constants Cplus and Cminus.

2: To find the constants for a particular solution the boundary conditions,
y(0) = 0 and y(L) = 1 where y(x) is the general solution, are used with
Solve to determine the constants.

3: The form of the particular solution is obtained by back-substituting the
solution for the constants into the general solution.

4: For application of a Neumann condition, the symbolic form of the deriva-
tive is required.

6: The particular solution for boundary conditions y′(0) = y(0) = 0 is ob-
tained by inserting these equations into Solve and subsequent replace-
ment into the general solution.

1 GeneralSolution@x_D :=
CPlus Exp@lPlus xD + CMinus Exp@lMinus xD

Second order ODEs require that two conditions  be specified to 
generate a particular solution. For  y(0) = 0 and y(L)=1

2
SolutionOne =

Solve@8GeneralSolution@0D == 0, GeneralSolution@LD == 1<,
8CPlus, CMinus<D

3 SpecificSolutionOne =
Simplify@GeneralSolution@xD ê. SolutionOneD

Second example with different form of boundary condition: 
 y(0) = 1 and y'(0)=0

4 DGen = D@GeneralSolution@xD, xD

5
SolutionTwo =

Solve@8GeneralSolution@0Dã 1, HDGen ê. x Ø 0Lã 0<,
8CPlus, CMinus<D

6 SpecificSolutionTwo =
Simplify@GeneralSolution@xD ê. SolutionTwoD

Fourth Order ODEs, Elastic Beams

Another linear ODE that has important applications in materials science is that for the deflection of a
beam. The beam deflection y(x) is a linear fourth-order ODE:

d2

dx2

(
EI

d2y(x)
dx2

)
= w(x) (21-17)

http://pruffle.mit.edu/3.016-2006/Notebooks/L21/Lecture-21.nb
http://pruffle.mit.edu/3.016-2006/pdf/L21/Lecture-21-4.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-21/HTMLLinks/index_4.html
http://pruffle.mit.edu/3.016-2006
http://pruffle.mit.edu/3.016-2006/html/Lecture-21/HTMLLinks/index_4.html
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where w(x) is the load density (force per unit length of beam), E is Young’s modulus of elasticity for
the beam, and I is the moment of inertia of the cross section of the beam:

I =
∫

A×−sect

y2dA (21-18)

is the second-moment of the distribution of heights across the area.
If the moment of inertia and the Young’s modulus do not depend on the position in the beam (the

case for a uniform beam of homogeneous material), then the beam equation becomes:

EI
d4y(x)
dx4

= w(x) (21-19)

The homogeneous solution can be obtained by inspection—it is a general cubic equation yhomog(x) =
C0 + C1x + C2x

2 + C3x
3 which has the four constants that are expected from a fourth-order ODE.

The particular solution can be obtained by integrating w(x) four times—if the constants of inte-
gration are included then the particular solution naturally contains the homogeneous solution.

The load density can be discontinuous or it can contain Dirac-delta functions Foδ(x − xo) repre-
senting a point load Fo applied at x = xo.

It remains to determine the constants from boundary conditions. The boundary conditions can be
determined because each derivative of y(x) has a specific meaning as illustrated in Fig. 21-22.

slope: dy
dx

d4y
dx4 = w

EI

w(x)

S

load density
stiffness

d3y
dx3 = S

EI

shear force
stiffness d2y

dx2 = M
EI

bending moment
stiffness

S M M

Figure 21-22: The shape of a loaded beam is determined by the loads applied over its length
and its boundary conditions. The beam curvature is related to the local moment (imagine two
handles rotated in opposite directions on a free beam) divided by the effective beam stiffness.
Shear forces are related to the rate of change of moment along the beam.
(Polar Bear Photo Art Wolfe The Zone Network
http://classic.mountainzone.com/climbing/greenland/graphics/polar-bear.html )

There are common loading conditions that determine boundary conditions:

http://classic.mountainzone.com/climbing/greenland/graphics/polar-bear.html
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Free No applied moments or applied shearing force:

M =
d2y

dx2

∣∣∣∣
boundary

= 0

S =
d3y

dx3

∣∣∣∣
boundary

= 0

Point Loaded local applied moment, displacement specified.

M =
d2y

dx2

∣∣∣∣
boundary

= Mo

y(x)|boundary = yo

Clamped Displacement specified, slope specified

dy

dx

∣∣∣∣
boundary

= so

y(x)|boundary = yo

Lecture 21 Mathematica R© Example 5

Visualizing Beam Deflections

Download notebooks, pdfs, or html from http://pruffle.mit.edu/3.016-2006.

A method for solving and visualizing the deflection of a uniform beam is developed for typical boundary
conditions and load distributions

1: BeamEquation takes arguments for the (unknown) deflection y and its
dependent argument x, a loading density w(x), and boundary condition
lists BC1 and BC2, and uses DSolve to return replacement rules for a
particular solution to the beam deflection equation (i.e., d4y/dx4 = w(x)).

2: Clamp , PointLoad , and FreeEnd are functions that specify the typical
boundary conditions: Clamp takes an x-value where the clamp is applied,
the displacement (position) of the clamp and the clamps angle. Point-
Load takes a position, deflection, and applied torque; FreeEnd specifies
a point that is unloaded and untorqued.

3: noload is an example loading distribution where there is no applied load.
4: As an example of application of BeamEquation , here the solution for an

unloaded beam is calculated with a fixed horizontal clamp at the origin
and a fixed torque-free displacent at the end.

5: To plot the beam deflection, the solution condition is applied to y(x).
6: The function BeamViz collects the solution with the visualization for

beams of unit normalized length, and uniform normalized stiffness EI.
7: etc. Several different loading conditions and boundary conditions are

visualized as examples of BeamViz

1 BeamEquation@y_ , x_ , w_, BC1_ , BC2_D := DSolve@
Flatten@8y''''@xD == w@xD, BC1, BC2<D, y@xD, xD êê Flatten

2

Clamp@y_ , x_ , position_, slope_D :=8y@xD == position, y '@xD == slope<
PointLoad@y_, x_, position_, moment_D :=8y@xD ã position, y ''@xD ã moment<
FreeEnd@y_ , x_D := 8y''@xD ã 0, y '''@xD ã 0<

3 noload@x_D := 0

4 BeamEquation@y, x, noload,
Clamp@y, 0, 0, 0D, PointLoad@y, 1, -.1, 0DD

5
Plot@Evaluate@

y@xD ê. BeamEquation@y, x, noload,
Clamp@y, 0, 0, 0D, PointLoad@y, 1, -.25, 0DDD, 8x, 0, 1<, PlotRangeØ 8-0.5, 0.5<, AspectRatioØ 1D

6

BeamViz@DistLoadx_, BC1_, BC2_D :=
Plot@Evaluate@

y@xD ê. BeamEquation@y, x, DistLoadx, BC1, BC2DD
, 8x, 0, 1<, PlotRange Ø 8-0.5, 0.5<, AspectRatioØ 1,
PlotStyle -> 8Thickness@0.03D, Hue@0D<D

7 unitload@x_D := 1

8 BeamViz@unitload, Clamp@y, 0, 0, 0D, FreeEnd@y, 1DD
9 midload@x_D := -10 DiracDelta@x - 1 ê2D
10 BeamViz@midload, Clamp@y, 0, 0, 0D, PointLoad@y, 1, 0, 0DD
11 BeamViz@midload, PointLoad@y, 0, 0, 0D, PointLoad@y, 1, 0, 0DD
12 testload@x_D := 500* H1 ê2 - xL
13 BeamViz@testload, PointLoad@y, 0, 0, 0D, PointLoad@y, 1, 0, 0DD
14 boxload@x_D := -500*HUnitStep@x- H3 ê4- 1 ê8LD - UnitStep@x - H3 ê4 + 1 ê8LDL
15 Plot@boxload@xD, 8x, 0, 1<D
16 BeamViz@boxload, Clamp@y, 0, 0, 0D, Clamp@y, 1, 0, 0DD

http://pruffle.mit.edu/3.016-2006/Notebooks/L21/Lecture-21.nb
http://pruffle.mit.edu/3.016-2006/pdf/L21/Lecture-21-5.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-21/HTMLLinks/index_5.html
http://pruffle.mit.edu/3.016-2006
http://pruffle.mit.edu/3.016-2006/html/Lecture-21/HTMLLinks/index_5.html
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