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Nov. 20 2006

Lecture 21: Higher-Order Ordinary Differential Equations

Reading:
Kreyszig Sections: 2.1, 2.2 (pages45-52, 53-58)

Higher-Order Equations: Background

For first-order ordinary differential equations (ODEs), F(y/(x),y(z),z), one value y(x,) was needed to
specify a particular solution. Recall the example in Lecture 19 of a first-order differencing scheme: at
each iteration the function grew proportionally to its current size. In the limit of very small forward
differences, the scheme converged to exponential growth.

Now consider a situation in which function’s current rate of growth increases proportionally to two
terms: its current rate of growth and its size.

Change in Value’s Rate of Change + « (the Value) + 3 (Value’s Rate of Change) = 0

To calculate a forward differencing scheme for this case, let A be the forward-differencing increment.

Fijo—Fiq1 Fip1—F;
_ F.i—F
A A i+1 7
F; —_— | =
< A ) +aF;+ ( A ) 0

and then solve for the “next increment” Fj,o if F;y; and F; are known.
This indicates that, for second-order equations, two independent values are needed to generate the
‘solution trajectory.’
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Lecture 21 MATHEMATICA®R) Example 1

A Second-Order Forward Differencing Example

Download notebooks, pdfs, or html from http://pruffle.mit.edu/3.016-2006.

A second order differencing formula is developed for the case of constant growth and acceleration coefficients.

1:  CurrentChangeperDelta is an example of a first-order finite difference. 1| curencnangeperpeair , i a1 - A=l
2: Applying the first-order difference operator twice, a second-order dif- Fintedifference approximation to second derivative
ferencing operator is obtained. Notice that, as the higher the order of |CurrentChangeinCurrentChangeperDeltalf., i, A1 :=
. . . . . 2| Simplify[—(CurrentChangePerDeltalF, i + 1, Al —
difference operation goes, the number of surrounding points required to Cl,ﬁenmhangepe,[,e"alﬁ L ab]
eValuate the dlﬁerence gets la‘rger and largeril'e'v fOI' the SeCOnd Order Let the acceleration is proportional to size of the current function
difference, function values are needed at three different 7 compared to two 2its velodly, lot these proportions be: -« and 4
different i for the first-order case. 3| e mgemGurtentChangeperDetalF, |, A] ==
—B CurrentChangePerDeltalF, i, A] - « Flil
. : 2 2 _ _ .
3' FOI' a parthular case Of d y/dfl] - Oldy/dfﬁ By’ the tWO dlﬁerence 4|ForDiffSoI=SoIve[DiﬁerenceReIation, Fli+ 211 // Flatten
operators replace the derivatives and a difference relation can be derived o [ForDifSalVZ - ForDifSol/ 1~ ]2
as a funCtiOn Of parameters « and ﬁ GrowList[ValuesList_List, A_, a_, B_] := Module[
. . . . . 3 {Minus1 :Value;Listll—ﬂJ, Minus2 = ValuesListl[-211},
4: The difference operator is derived by solving the difference relation for ¢ AgpendValestist
F;o—it will depend on the immediate last value F;+; and that value’s & (g (Wmee = (M) =i e
antecedent F;. Therefore, any value—including the first one calculated — 7L = Growtiiit, 1 001, 1. 1
. . Generate a sequence of length 20 from initial values {1,1} for
requires two values to be specified. =001, a=1, =0.1
5: Typically, the current jvalue is expressed in terms of the (j — 1) and ®[NeslGrowisti 0011, 1181, 1.201
. . . . . ListPlot[Nest[GrowList[#, .001, 1, .1] &, {1, 1},
(j — 2)-values. This form is generated by the replacement i — j — 2. P A G, 7, T 200
Change parameters for Growth Function (this shows that the
6: The difference operator is incorporated in GrowList : a function that numerical solution does notconverge to the acourate solution):
grows a list (input as ValuesList) using a difference A and parameters °[LsPloiNestiGronlisi# 001,05, 018 (1, 1), 200001
« and B. The two previous values in the list become localized variables in
a Module function. The Module returns a new list that is created using
Append to place the current value at end of the input list.
7: Here is an example of using GrowList once.
8: Using Nest the list can be grown iteratively to N times to generate a
sequence of length N + 2 (the first two values being specified).
10: ListPlot visualizes the results for different growth constants o and 3.

180

This is the current change or approximation to velocity

Linear Differential Equations; Superposition in the Homogeneous Case

A linear differential equation is one for which the function and its derivatives are each linear—that is
they appear in distinct terms and only to the first power. In the case of a homogeneous linear differential
equation, the solutions are superposable. In other words, sums of solutions and their multiples are also
solutions.

Therefore, a linear heterogeneous ordinary differential equation can be written as a product of
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general functions of the dependent variable and the derivatives for the n-order linear case:

d d? dan
0= fole) + fil@) 5 + @) 5+ 4+ fula) T
2 n
:4ﬁuxﬁu»ﬁuxuwhu»(}jjigwwiﬂ> (21-1)

— —

= f(z) - Dpy

The homogeneous n’-order linear ordinary differential equation is defined by fo(z) = 0 in Eq. 21-1:

d d? dm
0=f1($)£+f2(a:)d—;é+---+fn(m)—dxg
dy d? dar )

= fh;m(x) . D:zy

Equation 21-1 can always be multiplied by 1/f,(z) to generate the general form:

dy d*y d"y
0=F Fi(z)=2 + Folz)—2 + - 4 —2
(@) + Fi(@) dx + 2($)dx2 Tt dz™
dy d?y d™y (21-3)
= (F F F: B ) R R P
( O(x)7 1(1.)7 Q(x)7 ) )) ( ) d;]j’ dx27 b dxn)
= ﬁ(x) - Dyy
For the second-order linear ODE, the heterogeneous form can always be written as:
d*y dy
Sl @) L+ alaly = (@) (21-4)
and the homogeneous second-order linear ODE is:
d*y dy
hallt- 4 i = 21-
12 + p(x) e +q(x)y =0 (21-5)

Basis Solutions for the homogeneous second-order linear ODE

Because two values must be specified for each solution to a second order equation—the solution can be
broken into two basic parts, each deriving from a different constant. These two independent solutions
form a basis pair for any other solution to the homogeneous second-order linear ODE that derives from
any other pair of specified values.

The idea is the following: suppose the solution to Eq. 21-5 is found the particular case of specified
parameters y(x = x9) = Ag and y(x = 1) = Ay, the solution y(z; Ag, A1) can be written as the sum
of solutions to two other problems.

y(ﬂj; Ao, Al) = y(l’, Ao, 0) + y(x’()?Al) = yl(qj) + yQ(SU) (21'6)

where

y(x0, Ao, 0) = Ay and  y(x1,A40,0) =0

21-7
y(x()v 07 Al) =0 and y(:Ul?O?Al) = Al ( )

from these two solutions, any others can be generated.
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The two arbitrary integration constants can be included in the definition of the general solution:

y(z) = Cry1(z) + Crya(z)

= (C1,C2) - (y1,92) (21-8)

Second Order ODEs with Constant Coefficients

The most simple case—but one that results from models of many physical phenomena—is that functions
in the homogeneous second-order linear ODE (Eq. 21-5) are constants:
d%y

dy

If two independent solutions can be obtained, then any solution can be formed from this basis pair.
Surmising solutions seems a sensible strategy, certainly for shrewd solution seekers. Suppose the
solution is of the form y(z) = exp(Az) and put it into Eq. 21-9:

(aA? 4+ bA + ¢)e™ =0 (21-10)

which has solutions when and only when the quadratic equation a\? + Az + ¢ = 0 has solutions for \.
Because two solutions are needed and because the quadratic equation yields two solutions:

—b+ Vb? — dac

A+ = 2a
21-11
\ _—b—\/b2—4ac ( )

2a
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or by removing the redundant coefficient by diving through by a:

r= g yGr -
(21-12)
Y AT
2 2
where § =b/a and v = ¢/a.
Therefore, any solution to Eq. 21-9 can be written as
y(z) = Cret® + C_er? (21-13)

This solution recreated with a slightly different method in the following MATHEMATICA®) example.

Lecture 21 MATHEMATICA® Example 2

Solutions to the Homogeneous Linear Second Order ODE with Constant Coefficients

Download notebooks, pdfs, or html from http://pruffle.mit.edu/3.016-2006.

Even though MATHEMATICA® is able to determine solutions to linear second-order ODEs with constant
coefficients directly, it is still instructive to use MATHEMATICA® to derive these solutions.

Analysis of basis solutions to y" + gy' + yy = 0 in terms of
constant coefficients 8 and y

1: TheODE represents the left-hand side of any second-order ODE with
constant coefficients. It takes an argument for the name of the function
(i.e., y) and the dependent variable (i.e., x in y(x)).

TheODEI[function_, var_] := DIfunctionlvarl, {var, 2}] +

U B Dlfunctionlvarl, var] + y functionlvar]

2| TheODELy, x]

. .. . , Lo .
3: This will serve as a ‘guess’ of a solution—if we can find A(s) that satisfy 4[TreoDETreGuess. ]
the ODE, then the solution(s) are determined. 5 [\Solution = SovelTheODE[TheGuess, xI =0,1]

5: Using Solve with the guess inserted into TheODE will determine solu- Iheworools i+ and i+ are:
tiion conditions on A—this will be a quadratic equation in . | [, s = L

|
3| TheGuess[x_] := Explax] |
|
|

7

6: By inspecting the solution, assignments can be made to the two possible OlLPIus| ExplAPIus x] + ClLMinus] ExplAMinus x]

)\ 8| TheODE[GeneralSolution, z]

|
GeneralSolution[x_] := ‘
|
|

9 | Simplify[ TheODE[GeneralSolution, z

7: This is the form of the general solution in terms of two arbitrary constants.
9: This should show that the general solution always satisfies the ODE.
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Lecture 21 MATHEMATICA® Example 3

Characterizing the Solution Behavior for the Second-Order ODE with Constant Coefficients

Download notebooks, pdfs, or html from http://pruffle.mit.edu/3.016-2006.

>
Because the fundamental solution depend on only two parameters 8 and ~, the behavior (i.e., whether *A < 0

and S\ = 0) of all solutions can be visualized in the -0 plane.

1:

10:

12:

13:

Reduce is a function for determing the conditions on parameters (here
[ and v assumed to be real numbers) such that an expression satisfies
particular constraints. The result will create the following graphic.

This will create a plot that distinguishes two regions in the -8 plane:
above v = 32/4, the \ are real; below, the \ are complex and oscillatory
solutions appear (because exp(r + 10) = exp(r)(cos(d) + ¢sin(h))).

Graphics and Text create annotation; Show combines annotation and
the plot.

This will create a plot for the conditions that the R()\) are real and either
positive or negative. The sign of the real part of A in exp(A\x) deter-
mines whether the solution grows without bound (R(A) > 0) or shrinks
asympotically towards 0 (RA < 0).

This creates graphics to annotate and display together with the plot.
The extra function StyleForm allows the passage of options (such as
FontColor, FontFamily, etc.) to be passed simply.

Reduce determines the conditions on § and = so that both A are positive
and real. These will be unbounded and non-oscillating solutions.

The conditions will be annotated by greating a graphical object.

Here the curves and annotation are created for the case of mixed real roots
(i.e., Ay > 0 and A_ < 0—one growing and one decaying non-oscillatory
solutions)

The final region to be determined and annotated is the one with the
monotonically decaying solutions A\_ < A_ < 0.

dhiechshaviorie! alpinlations Gandgethelactediato s itnplavhiciie:

to construct Fig. 21-21.

1[ ReducelAPlus & Reals && AMinus < Reals, {5, 7}, Reals| |

2[ CplexReal = Plot[3"2/4, (8, —1, 1}, AxesLabel - ('8","y"}] |

CplexRealAnnote = Show[CplexReal, Graphics[Text]
8 "Complex\nCongugate\nRoots", {0.25, 0.25}, {-1, 1}]],
Graphics[Text["Real Roots", {0.75, 0.05}]]]

CplexPosNeg = ParametricPlot[{0, t},
4 {t, 0, .25}, PlotStyle - {Thicknessl0.015], Huel0l},
DisplayFunction - Identity]

CplexPosNegAnnote = Show|[CplexPosNeg,
Graphics[Text[StyleForm["Positive\nReal\nPart",
FontColor - Huel0l], {-.5, 0.15}, {-1, 1}]],
Graphics[Text[StyleForm["Negative\nReal\nPart",
FontColor - Huel0l], {.5, 0.15}, {1, 1}1],
DisplayFunction - $DisplayFunction]

5

6| CplexPlot = Show[CplexRealAnnote, CplexPosNegAnnote] |

7[ReducelAPlus > 0, AMinus > 0]] |

AnnotePosRealRoots =
8| Graphics|Text[StyleForm["Positive Roots",
FontColor - Huel.61], {-1.0, 0.025}, {-1, 0}]]

9[ Reducel(APlus > 0, AMinus < 0}]

MixedRealRoots =
Plot[0, {t, -1, 1}, PlotStyle - {Huel0.6l, Thicknessl0.015},
DisplayFunction — Identity]
AnnoteMixedRealRoots = Show|[MixedRealRoots,
Graphics|Text[StyleForm["Mixed Real Roots",
FontColor - Huel.6l], {0.2, 0.1}, {~1, 0}]],
DisplayFunction - $DisplayFunction]

=)

1" | Reduce[{APlus <0, AMinus < 0}]

AnnoteNegRealRoots =
12| Graphics[Text[StyleForm["Negative Roots",
FontColor - Huel.61], {1.0, 0.025}, {1, 0}1]

13| Show[CplexPlot, AnnotePosRealRoots, |

AnnoteMixedRealRoots, AnnoteNegRealRoots]
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Roots are Complex Conjugates

Y

Positive Real Part Negative Real Part I

Positive Roots Negative Roots

Positive and Negative

N
|

Figure 21-21: The behaviors of the linear homogeneous second-order ordinary differential
2
equation fil—x% + ﬂ% + vy = 0 plotted according the behavior of the solutions for all 3 and ~.

The case that separates the complex solutions from the real solutions, v = (/3/2)? must be treated
separately, for the case v = (/2)? it can be shown that y(z) = exp(fz/2) and y(z) = zexp(Bz/2)
form an independent basis pair (see Kreyszig AEM, p. 74).

Boundary Value Problems

It has been shown that all solutions to % +4 % +~y = 0 can be determined from a linear combination
of the basis solution. Disregard for a moment whether the solution is complex or real, and ignoring
the special case v = (3/2)2. The solution to any problem is given by

y(z) = CLe™® + O_et? (21-14)

How is a solution found for a particular problem? Recall that two values must be specified to get a
solution—these two values are just enough so that the two constants C and C_ can be obtained.
In many physical problems, these two conditions appear at the boundary of the domain. A typical
problem is posed like this:
Solve )
mddym(;:) + ud'qil(;) + ky(x) =0 on0<z<L (21-15)

subject to the boundary conditions
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or, solve

dy(z) | dy(z)
m— s +v I + ky(z) =0 on <z <oo (21-16)

subject to the boundary conditions

ylr=0)=1 and Y(@x=L)=0

When the value of the function is specified at a point, these are called Dirichlet conditions; when
the derivative is specified, the boundary condition is called a Neumann condition. It is possible have
boundary conditions that are mixtures of Dirichlet and Neumann.

Lecture 21 MATHEMATICA® Example 4

Determining Solution Constants from Boundary Values

Download notebooks, pdfs, or html from http://pruffle.mit.edu/3.016-2006.

Here is an example of taking the general solution with undetermined constants and using boundary conditions
to determine a specific solution.

GeneralSolution[x_] :=
CPlus ExplAPlus x| + CMinus ExplAMinus x]

. . . . 17 / _ . .
1' GenemlSolutwn 1S the SOhlthl’l tO y + ﬁy + fyy - 0 Wlth undetermlned Second order ODEs require that two conditions be specified to
COnStantS CpluS and Cminus generate a particular solution. For y(0) = 0 and y(L)=1

1

SolutionOne =

2: To find the constants for a particular solution the boundary conditions, 2 STllee STt Gy St sl
y(0) = 0 and y(L) = 1 where y(z) is the general solution, are used with
Solve to determine the constants.

SpecificSolutionOne =
Simplify[GeneralSolutionlx] /. SolutionOne]

Second example with different form of boundary condition:

3: The form of the particular solution is obtained by back-substituting the y@=1andy(=0

solution for the constants into the general solution. 4 DGen = DiGeneraiSoluton, x |
SolutionTwo =

4: For application of a Neumann condition, the symbolic form of the deriva- s Solel(GeneralSoltnl0l =1, ©Gen/.x +0) =0l
. . . us, CMinus
tive is required.

SpecificSolutionTwo =
Simplify[GeneralSolutionlx] /. SolutionTwo]

6: The particular solution for boundary conditions y'(0) = y(0) = 0 is ob-
tained by inserting these equations into Solve and subsequent replace-
ment into the general solution.

Fourth Order ODEs, Elastic Beams

Another linear ODE that has important applications in materials science is that for the deflection of a
beam. The beam deflection y(z) is a linear fourth-order ODE:

@ <Eld2y(x)> = w(x) (21-17)

dz? dx?
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where w(z) is the load density (force per unit length of beam), E is Young’s modulus of elasticity for
the beam, and I is the moment of inertia of the cross section of the beam:

I= / y*dA (21-18)
A><—sect

is the second-moment of the distribution of heights across the area.
If the moment of inertia and the Young’s modulus do not depend on the position in the beam (the
case for a uniform beam of homogeneous material), then the beam equation becomes:
d*y(z)

EI e = w(z) (21-19)

The homogeneous solution can be obtained by inspection—it is a general cubic equation ypomeg(x) =
Co + Ciz + Cya® + C323 which has the four constants that are expected from a fourth-order ODE.

The particular solution can be obtained by integrating w(z) four times—if the constants of inte-
gration are included then the particular solution naturally contains the homogeneous solution.

The load density can be discontinuous or it can contain Dirac-delta functions F,d(z — x,) repre-
senting a point load F, applied at x = x,.

It remains to determine the constants from boundary conditions. The boundary conditions can be
determined because each derivative of y(z) has a specific meaning as illustrated in Fig. 21-22.

bending moment
load density shear force stiffness

stiffness dtiffness dy _ M
dy — w dy_ s &2 ~ El
dx* ~ EI dx3 El

Figure 21-22: The shape of a loaded beam is determined by the loads applied over its length
and its boundary conditions. The beam curvature is related to the local moment (imagine two
handles rotated in opposite directions on a free beam) divided by the effective beam stiffness.
Shear forces are related to the rate of change of moment along the beam.

(Polar Bear Photo Art Wolfe The Zone Network
http://classic.mountainzone.com/climbing/greenland /graphics/polar-bear.html )

There are common loading conditions that determine boundary conditions:
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Free No applied moments or applied shearing force:

_ Ty _o
dx? boundary
d3
s=°7 =0
dzx boundary
Point Loaded local applied moment, displacement specified.
d2
M= — M,
dx boundary

y($)|boundary = Yo

Clamped Displacement specified, slope specified

dy
dx

boundary

y(x”boundary = Yo

© W.C Carter 188

Lecture 21 MATHEMATICA® Example 5

Visualizing Beam Deflections

Download notebooks, pdfs, or html from http://pruffle.mit.edu/3.016-2006.

A method for solving and visualizing the deflection of a uniform beam is developed for typical boundary

conditions and load distributions

1:

BeamFEquation takes arguments for the (unknown) deflection y and its
dependent argument z, a loading density w(z), and boundary condition
lists BC1 and BC2, and uses DSolve to return replacement rules for a
particular solution to the beam deflection equation (i.e., d*y/dz* = w(z)).

Clamp , PointLoad , and FreeEnd are functions that specify the typical
boundary conditions: Clamp takes an z-value where the clamp is applied,
the displacement (position) of the clamp and the clamps angle. Point-
Load takes a position, deflection, and applied torque; FreeEnd specifies
a point that is unloaded and untorqued.

noload is an example loading distribution where there is no applied load.

As an example of application of BeamEquation , here the solution for an
unloaded beam is calculated with a fixed horizontal clamp at the origin
and a fixed torque-free displacent at the end.

To plot the beam deflection, the solution condition is applied to y(z).
The function BeamViz collects the solution with the visualization for
beams of unit normalized length, and uniform normalized stiffness F1I.

etc. Several different loading conditions and boundary conditions are
visualized as examples of BeamViz

BeamEquation[y_, x_, w_, BC1_, BC2_] := DSolve[

U Flatten[{y""[x] == wixl, BC1, BC2}], ylx], x] // Flatten

Clamply_, x_, position_, slope_] :=
{ylx] == position, y'lx] == slope}

2| PointLoad[y_, x_, position_, moment_] :=
{ylx] == position, y"[x] = moment}

FreeEndly_, x_] := {y"[x]=0, y"[x] =0}

3| noload[x_] := 0 |

BeamEquationly, x, noload,
Clamply, 0, 0, 0], PointLoadly, 1, —.1, 0]]

Plot[Evaluate[
ylx] /. BeamEquationly, x, noload,
Clamply, 0, 0, 0], PointLoadly, 1, —.25, 0]]
1, {x, 0, 1}, PlotRange — {-0.5, 0.5}, AspectRatio - 1]

o

BeamViz[DistLoadx_, BC1_, BC2_] :=
Plot[Evaluate[
ylx] /. BeamEquation[y, x, DistLoadx, BC1, BC2]]
, 1%, 0, 1}, PlotRange - {-0.5, 0.5}, AspectRatio - 1,
PlotStyle —> {Thickness[0.03], Huel0l}]

[

7| unitioad(x_] := 1

8| BeamViz[unitload, Clamply, 0, 0, 0], FreeEndly, 1]]

|
|
9| midioadix_] = —10 DiracDeltalx — 1/2I |
|

10| BeamViz[midload, Clamply, 0, 0, 0], PointLoad]y, 1, 0, 0]]

11| BeamViz[midload, PointLoad[y, 0, 0, 0], PointLoad][y, 1, 0, 0]]|

12 testioad(x_] :=500+(1/2 - x |

13| BeamVizltestioad, PointLoadly, 0, 0, 0], PointLoadly, 1, 0, O]]|

14

boxload[x_] := —500x
(UnitSteplx - (3/4 - 1/8)] — UnitSteplx - (3/4 + 1/8)])

15| Plot[boxloadlx], {x, 0, 1}] |

16| BeamViz[boxload, Clamply, 0, 0, 0], Clamply, 1, 0, 0]] |
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