Lecture 19: Ordinary Differential Equations: Introduction

Reading:
Kreyszig Sections: 1.1, 1.2, 1.3 (pages2-8, 9-11, 12-17)

Differential Equations: Introduction 3.016 Home

Ordinary differential equations are relations between a function of a single variable, its derivatives, and
the variable:
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A first-order Ordinary Differential Equation (ODE) has only first derivatives of a function.
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A second-order ODE has second and possibly first derivatives.
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For example, the one-dimensional time-independent Shrédinger equation,
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is a second-order ordinary differential equation that specifies a relation between the wave function,
Y (zx), its derivatives, and a spatially dependent function U(x).

Differential equations result from physical models of anything that varies—whether in space, in
time, in value, in cost, in color, etc. For example, differential equations exist for modeling quantities
such as: volume, pressure, temperature, density, composition, charge density, magnetization, fracture
strength, dislocation density, chemical potential, ionic concentration, refractive index, entropy, stress,
etc. That is, almost all models for physical quantities are formulated with a differential equation.

The following example illustrates how some first-order equations arise:
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Lecture 19 MATHEMATICA®) Example 1

Iteration: First-Order Sequences

notebook (non-evaluated)

pdf (evaluated)

html (evaluated)

Sequences are developed in which the next iteration only depends on the current value; in this most simple case

simulate exponential growth and decay.

1:

EzampleFunction taking two arguments is defined: the first argument
represents the iteration and the second represents a single parameter ex-
pressing how the current iteration grows. The value at the i + 1'® iteration
is the sum of the value of the ™ plus a times value of the i*!iteration.
If this is a bank account and interest is compounded yearly, then the
i®"iteration is the value of an account after i years at a compounded an-
nual interest rate of «. This function has improved performance (but
consumes more memory) by storing its intermediate values. Of course,
the function would iterate for ever if an initial value is not specified. . .

Because the initial value and the ‘growth factor’ a deterimine all subse-
quent iterations, it is sensible to ‘overload’ FxampleFunction to take an
extra argument for the intial value: here, if EzampleFunction is called
with three arguments and the first argument is zero, then the initial value
is set; otherwise it is a recursive definition with intermediate value storage.

Trajectory is an example of a function that builds a list by first-order
iteration; its resulting list structure is plotted with ListPlot.

To visualize the behavior as a function of its initial value, several plots
can be superposed with MultipleListPlot from the MultipleListPlot
package. If a > 0, the function goes to +0o depending on the sign of the
initial value. For a fixed o every point in the plane belongs to one and
only one trajectory associated with an initial value and that «.

If @ < 0, the function asymptotically goes to zero, independent of the
initial value. In this case as well, the plane is completely covered by
non-intersecting trajectories.

Suppose a function, F[i], changes proportional to its current size,
i.e., Fli+1] = F[i] + oFfi]

ExampleFunction[i_, alpha_] := ExampleFunctionli, alpha] =
1 ExampleFunction[i — 1, alpha] +

alphax ExampleFunctionli — 1, alpha]

3.016 Home

The function needs some value at some time (an initial condition)
from which it obtains all its other values:

i

2[ ExampleFunction[0, 0.25] = /4 [

3[ ExampleFunction[18, 0.25] [

ExampleFunction[0,0.25] = /4 above serves as an initial value
for the function. The initial value and « determine the value at
any later time. The initial value can be expressed as another
parameter for the function:

PRI

ExampleFunction[0, alpha_, InitialValue_] := InitialValue
ExampleFunction[Increment_Integer, alpha_,
4 InitialValue_] := ExampleFunctionli, alpha, InitialValue] =

ExampleFunction[i — 1, alpha, InitialValue] +
alphax ExampleFunction[i - 1, alpha, InitialValue]

5

Trajectory[alpha_, Steps_, InitialValue_] := Table[
ExampleFunction[i, alpha, InitialValue], {i, 0, Steps - 1}]

6] ListPlotiTrajectory[0.01, 300, 0.0001], PlotJoined - Truel | Full Screen

7[ << Graphics MultipleListPlot" [

Plotting curves for a range of intial values, but fixed @ >0

MultipleListPlot[ Trajectory[.01, 300, —.5],
8| Trajectory[.01, 300, .5], Trajectory[.01, 300, 1],
Trajectory[.01, 300, 1.5], PlotJoined - True]

A similar plot for negative « value. In either case each point in
space correstponds a particular initial value for a fixed &

Close

MultipleListPlot[Trajectory[-.01, 300, —.5],
Trajectory[-.01, 300, .5], Trajectory[-.01, 300, 1],
Trajectory[-.01, 300, 1.5], PlotJoined - True]
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The previous example is generalized to a discrete change At of a continous (i.e., time-like) parameter
t. The following example demonstrates first-order Fuler finite differencing or Euler integration. It is
an integration approximation because the method uses a finite time step At to approximate f(t) =
fto tA(t)dt for a known first-order differential equation df /dt = A(t) where f(to) is an initial condition.
In this example, the iteration sequence approximates

(f(t = 0),f (A1), fF2AL),...) ~
df

d
( FE=0) fpr(A0) = St =00+ | At fup(20) = fun(200) + AAt,...)
= t=At

= 0), A(t = 0)At, A(t = AD)AL, ... 5 016 Home
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Lecture 19 MATHEMATICA® Example 2

First-Order Finite Differences
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Two functions that ‘grow’ lists by using simple forward Euler finite differencing are constructed.

1:

The function ForwardDifferenceV1 is defined with four arguments: ar-
gument 1 is a placeholder for another function that determines how each
increment changes (i.e., the function df/ft); argument 2 is the initial
value; argument 3 is the distrete forward difference (i.e., At); argument
4 indicates the size of the list that will be returned. The function uses
Module to hide an internal variable representing the current value of the
list, and AppendTo to incrementally grow the list. In a following example,

NestList and NestWhileList will be used to generate more efficient
functions than the ones generate by AppendTo here.

exampleFunction is defined to to pass to sequence-generating functions—
it plays the role of df /dt in Eq. 19-4.

ListPlot will produce a plot of the exemplary result which is a list of
length 500.

ForwardDifference V1 is unsatisfactory because the x-axis of the plot
is the iteration and not the time-like variable that is more physical; so
it is generalized with ForwardDifferenceV2 which also takes arguments
for the initial value and the final value of the continuous parameter. This
function returns a list containing lists (z;, f(z;)) also suitable an argument
to ListPLot.

Create a function to return a list of values by forward differencing
with a function (these examples were modified from those found
in “"Computer Science with Mathematica" by Roman E. Maeder,
Cambridge University Press, (2000).)

ForwardDifferenceListV1[AFunction_,
InitialValue_, delta_, ListLength_Integer] :=
Module[{TheResultList = {InitialValue},
1 TheValue = InitialValue},
Do[TheValue = TheValue + delta AFunction[TheValuel;
AppendTo[TheResultList, TheValue],
{ListLength}]; TheResultList]

2| exampleFunction[x_] := 0.1x

3

ForwardDifferenceListV1[exampleFunction, 1, 0.01, 500]

4| result // Short

result = |

5[ ListPlotiresult, PlotJoined - True]

Write another version of this forward difference function that
returns a list of values

and the "x" value for subsequent use in ListPlot, this one will take
X, and y(x,) as an argument in a list

6| ClearlForwardDifferenceListV2] |

ForwardDifferenceListV2[
AFunction_, x0_, fx0_, delta_, Xlast_| :=
Module[{TheResultList = {{x0, fx0}},
TheValue = fx0, CurrentX = x0},

7 While[CurrentX < Xlast,

CurrentX = CurrentX + delta;

TheValue = TheValue + delta AFunction[TheValuel;

AppendTo[TheResultList, {CurrentX, TheValue}]];
TheResultList]

result =

8 ForwardDifferenceListV2[exampleFunction, 0, 1, 0.01, 4];

9| result // Short |
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10| ListPlotlresult] |

Quit
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Lecture 19 MATHEMATICA® Example 3

Nested Operations

notebook (non-evaluated)
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The concept of nesting operations to produce finite differences is demonstrated. The MATHEMATICA® notion

of a pure function is utilized with an example.

1:

Construct a function, StepOnce , that operates on its first argument (the
pair {z;,y;(x;)}) with an input function dy/dx and a discrete increment
0. The function returns a list (the pair {z;+1,y(x;+1)}) representing the
finite difference approximation at “time” x; + ¢.

Here, a specific case is developed by defining a function that explicitely
defines both the input function (here exampleFunction ) and the fixed
increment (here At = 0.01). The result is a function that takes a single
Z-Y pair.

Instead of the forward difference techniques that used AppendTo to grow
a list of z-y pairs—here, NestList is used to build a list (result) by
repeatedly (400 times) applying a function to the result at the previous
iteration.

Here, NestList is called with a pure function which is indicated by the &
that appears the StepOnce [#,exampleFunction,0.01]& definition; the
# is a placeholder for the functions argument. NestList calls this pure
function repeatedly starting with the first argument (here {0,1}) and
stores intermediate values in a list.

In the next few steps, the goal is to generate such trajectories for a variety
of initial conditions. This is achieved by creating and saving plots as
Graphics Objects. In this step, rules (DisplayLater and DisplayNow) are
defined that can be passed to plotting functions that control whether the
created Graphics Object is displayed or not.

A function is defined that creates a Graphics object for a trajectory as a
function of its sole argument representing the initial value. dd

A list of trajectories for initial values (—4,—3.5,...,3.5,4.0) are plotted
together.

Because each iteration is the same, the iteration can be
considered a functional operation, for the case considered above,
{Xis1, Vie1} = X+ 6, yi+ 6 f(y;)}. Therefore a "Incrementing
Operator" can be obtained that updates the values:

1 {x+ delta, y + delta AFunction[y]}

StepOnce[{x_, y_}, AFunction_, delta_] := ‘
3.016 Home

i

Then, the trajectory should be obtained from:
{{xo,yo},StepOnce[{x0,yo}], StepOnce[StepOnce[{x0,yo}]], ...}
This is what the built-in Mathematica function

NestList[function, initialvalue,depth] does:

2

OurStepOncel[{x_, y_}] = ‘

StepOncel{x, y}, exampleFunction, 0.01]
% “ <> | d g

ListPlot[ ‘

3[ result = NestListOurStepOnce, (0, 1}, 400J;

4[ ListPlotlresult]

Using a Mathematica trick of a *pure function" one can eliminate
the intervening function (OurStepOnce) definition:

NestList[StepOnce[#, exampleFunction, 0.01] &, {0, 1}, 400]]

DisplayLater = DisplayFunction - Identity;
DisplayNow = DisplayFunction - $DisplayFunction;

Full Screen

Ipli_] :=
7 ListPlot[NestList[StepOnce[#, exampleFunction, 0.01] &,
{0, i}, 400], DisplayLater];

This will plot a family of related curves, each for a different
starting value of the iterated function:

8[ Show[Table[lplil, {i, -4, 4, .5}], DisplayNow] [

To summarize what was done up to now, we've seen how a
given function can be changed incrementally by stepping forward
the independent variables and calculating a corresponding
change in the function's value. By doing so, we trace out
trajectories in space, the paths of which depend on the starting
values of the independent variables.
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Geometrical Interpretation of Solutions

The relationship between a function and its derivatives for a first-order ODE,

dy(x)
F , ,x) =0 19-5
(= y(@).2) (19-5)
can be interpreted as a level set formulation for a two-dimensional surface embedded in a three-
dimensional space with coordinates (y,y,x). The surface specifies a relationship that must be satisfied
between the three coordinates.
If y/(z) can be solved for exactly,

WD) _ fa.y) (19-6)
then y/(z) can be thought of as a height above the z-y plane.
For a very simple example, consider Newton’s law of cooling which relates the change in temperature,
dT'/dt, of a body to the temperature of its environment and a kinetic coefficient k:

IO _ -t (19-7)
dt

It is very useful to “non-dimensionalize” variables by scaling via the physical parameters. In this way,

a single ODE represents all physical situations and provides a way to describe universal behavior in

terms of the single ODE. For Newton’s law of cooling, this can be done by defining non-dimensional

temperatures and time with © = T'/T, and 7 = kt, then if T, and k are constants:

de(r)
dr

—(1-0)
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Lecture 19 MATHEMATICA® Example 4

The Geometry of First-Order ODES
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The surface representation provides a useful way to think about differential equations—much can be inferred

about a solution’s behavior without computing the solution exactly. This is shown for a simple case of Newton’s

law of cooling Equation 19 and an artificial case.

1:

For first-order ODEs, behavior is dominated by whether the derivative
term is positive or negative. Here, a 3D graphics object is created for a
gray-colored horizontal plane at z = 0. This is achieved by combining (in
a list) the SurfaceColor directive in a Graphics3D object, and then
using Plot3D to create the plane with delayed display.

This will create the surface associated with Newton’s law of cooling with
the zero plane. This case is very simple. The sign of the change of ©
depends only the sign of 1 — © and therefore d©/dt = 0 is the parametric
curve (a line in this case) (d©/dt = 0,0 = 1,7). That is, if © = 1 at
any time 7 it will stay there at all subsequent times (also, at all previous
times as well). Because ©(7) will always increase when © < 1 and will
always decrease when © > 1, the solutions will asymptotically approach
0=1.

The asymptotic behavior can be further visualized by plotting a first-
order difference representation of how the solution is changing in time,
i.e, (dr,d®) = dr (1,%42) This can be obtained with PlotVectorField
from the PlotField package. Here the magnitude of the arrows is scaled
by setting dr = 1.

dy

dt
the behavior can be inferred whether the derivative lies above or below

the zero-plane (i.e., the sign of the derivative).

A more complex case = ysin (ﬁ) can be visualized as well and

PlotVectorField provides another method to follow a solution trajecto-
ries.

Newton's law of cooling %: -k(T - T,) can be written in the
non-dimensional form (:T@: 1-0
T

In the general case, d—‘: will depend on both ® and t, i.e., (:T(: =
de
dr
shown in the following plot (in this specific case there is no t
dependence):

(®,1). This the equation of a surface in three dimensions, as

BN

3.016 Home

ZeroPlane[xmin_, xmax_, ymin_, ymax_] :=
{Graphics3D[SurfaceColor[GrayLevell0.61]],
Plot3D[0, {tau, xmin, xmax}, {©, ymin, ymax]},
PlotPoints —> 4, DisplayFunction —> Identity]};

Show[PlotSDP -0, {tau, -1,1}, {©, -2, 3},
cesLabel - (', 0, 20+
T
ZeroPlane[-1, 1, -2, 3], DisplayFunction —>
$DisplayFunction, ViewPoint —> {17.830, 10.191, 4.064)]

}, DisplayFunction —> IdemityJ,

PRI

3[ << Graphics PlotField"

|

PlotVectorField[{1, 1 - ©}, {tau, 0, 4},

8 {®, -2, 4}, Axes - True, AxesLabel - {"7", "@"}]

|

Full Screen

Slightly more complicated example: dl: y sin(i—-),
; dt 1+t+y
o

dt,dy) = dt(1,ysi
(dt,dy) (,ysmHHy

yt
m], {t, 0, 10}, {y, 0, 10},

Show[PlotSDly Sin[
d
AxesLabel - {"t", "y", "—y”}, PlotPoints - 40,
DisplayFunction —> Idemily], ZeroPlane|0, 10, 0, 10],

DisplayFunction —> $DisplayFunction,
ViewPoint —> {14.795, 5.556, 13.731 )]

Close

. . yt
. PIotVectorFleId“1, y Sln[ Tonl I8 {t, 0, 10},

{y, 0, 10}, Axes — True, AxesLabel - {"t", "y")]

Quit
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Separable Equations

If a first-order ordinary differential equation F'(y,y,z) = 0 can be rearranged so that only one variable,
for instance y, appears on the left-hand-side multiplying its derivative and the other, x, appears only
on the right-hand-side, then the equation is said to be ‘separated.”

dy
g(y)% = f(z) (19-8)

9(y)dy = f(z)dx

Each side of such an equation can be integrated with respect to the variable that appears on that side:
Y T

[ atman= [ s (199
y(xo) To

if the initial value, y(z,) is known. If not, the equation can be solved with an integration constant Cp,

/ o(y)dy = / f(@)dz + Co (19-10)

where Cj is determined from initial conditions. or

x

/ L e (19-11)
Yinit

Zinit

where the initial conditions appear explicitely.
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Lecture 19 MATHEMATICA® Example 5

Using MATHEMATICA®) ’s Built-in Ordinary Differential Equation Solver

notebook (non-evaluated) pdf (evaluated)

html (evaluated)

MATHEMATICA® has built-in exact and numerical differential equations solvers. DSolve takes a representation

of a differential equation with initial and boundary conditions and returns a solution if it can find one. If

insufficient initial or boundary conditions are specified, then “integration constants” are added to the solution.

1:

10:

DSolve operates like Solve . It takes a list of equations containing
symbolic derivatives, the function to be solved for, and the dependent
variable. In this case, the general solution of d%—(;) = —zy(z) is returned
as a list of rules. The solutions are be obtained by applying the rules (i.e.,
y[x]/.dsol).

The solution will depend on an integration constant(s) in general. If ad-
ditional If more constraints (i.e., equations) are provided, then (provided
a solution exists) the integration constant is determined as well.

The solution is plotted by turning the “solution rule” into a single list
with Flatten. The plot is stored as a graphics object exactplot .

To see how finite differencing compares to the exact solution, the method
from an earlier example is used. Here, a the forward differencing function
is defined for the solution that was just obtained.

The previously defined forward differencing method is compared to the
exact solution.

Here, the method is generalized to take an argument for the size At.
NestWhileList is used with a pure function (where one arguments is
fixed by passing through res ). A pure function is also defined for the
test of when to stop building the list—in this case, it stops when the first
element in the list (accumulated time) exceeds 10.

An animation which will visualize the effect of time-step on accuracy of
the Euler method is created. Show repeatedly called on ezactplot (the
exact solution) and a graphics object created from calling ListPlot on
res with different time-steps.

1[ dsol = DSolve[ y'lx] +x «ylx] =0, ylx], x] [

Note that the solution is given as a rule, just like for the function
Solve. Because no initial condition was specified, the solution
involves an unknown constant, C[1].

2[ dsol = DSolve[ {y'[x] + Sinlx] xylx] =0, yl0o] =1}, ylx], x] [

In this case an initial condition was specified for the differential
equation, so there is no undetermined constant in the solution.
The next statement extracts y(x) for plotting...

3[ exactplot = Plot[ylx] /. Flattenldsoll, {x, 0, 10}]

4[ ExampleFun[x_, y_] := —Sinlxly

StepOnce[{x_, y_}, AFunctionXY_, delta_] :=

e {x + delta, y + delta AFunctionXY[x, y]}

[

StepOncel{x, y}, ExampleFun, 0.01]

7[ result = NestList[OurStepOnce, (0, 1}, 1000];

|
|
|
OurStepOncel[{x_, y_}] = ‘
|
|

B[ forwarddifferenceplot = ListPlot[result, PlotStyle — {Huel11}]

Now we superpose the exact solution with that obtained by the
forward-differencing approximation.

9[ Show([forwarddifferenceplot, exactplot] [

Generalize to see how the step-size on the forward differencing
scheme affects result

res[delta_] :=
NestWhileList[(StepOncel[#, ExampleFun, delta]) &,
{0, 1), @M1l < 10 &]

=)

Table[
Show[exactplot, ListPlot[resldell,
1 PlotStyle —> {Huel0.75 dell, Thickness[0.011},
PlotJoined —> True, DisplayFunction —> Identity],
PlotRange —> {{0, 10}, {0, 1}}], {del, 0.01, 1, 0.02}]
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While the accuracy of the first-order differencing scheme can be determined by comparison to an
exact solution, the question remains of how to establish accuracy and convergence with the step-size &
for an arbitrary ODE. This is a question of primary importance and studied by Numerical Analysis.
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