Lecture 18: The Fourier Transform and its Interpretations

Reading:
Kreyszig Sections: 11.4, 11.7, 11.8, 11.9 (pages496—-498, 506-512 513-517, 518-523)

Fourier Transforms

Expansion of a function in terms of Fourier Series proved to be an effective way to represent functions
that were periodic in an interval x € (—A/2, —\/2). Useful insights into “what makes up a function” are
obtained by considering the amplitudes of the harmonics (i.e., each of the sub-periodic trigonometric
or complex oscillatory functions) that compose the Fourier series. That is, the component harmonics
can be quantified by inspecting their amplitudes. For instance, one could quantitatively compare the
same note generated from a Stradivarius to an ordinary violin by comparing the amplitudes of the
Fourier components of the notes component frequencies.

However there are many physical examples of phenomena that involve nearly, but not completely,
periodic phenomena—and of course, quantum mechanics provides many examples of isolated events
that are composed of wave-like functions.

It proves to be very useful to extend the Fourier analysis to functions that are not periodic. Not
only are the same interpretations of contributions of the elementary functions that compose a more
complicated object available, but there are many others to be obtained.

For example:

momentum/position The wavenumber k,, = 27n /A turns out to be proportional to the momentum
in quantum mechanics. The position of a function, f(x), can be expanded in terms of a series
of wave-like functions with amplitudes that depend on each component momentum—this is the
essence of the Heisenberg uncertainty principle.
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diffraction Bragg’s law, which formulates the conditions of constructive and destructive interference
of photons diffracting off of a set of atoms, is much easier to derive using a Fourier representation
of the atom positions and photons.

To extend Fourier series to non-periodic functions, the domain of periodicity will extended to
infinity, that is the limit of A — oo will be considered. This extension will be worked out in a heuristic
manner in this lecture—the formulas will be correct, but the rigorous details are left for the math
textbooks.

Recall that the complex form of the Fourier series was written as:

— 2mn
1knT - |
- n here ky, = —
f(z) n;oo Ag, e where k 5y
o i (18-1)
Ak, :/ f(z)e *n%dg
AJ a2

where Ay, is the complex amplitude associated with the k,, = 27n /A reciprocal wavelength or wavenum-
ber.
This can be written in a more symmetric form by scaling the amplitudes with A—let A, =

V27C,, /A, then

=~ V2 2
f(x) :n:z_:oo %em"r where k, = %
) e i (18-2)
& :/ hEYe %" do
=,
Considering the first sum, note that the difference in wave-numbers can be written as:
2
Ak = kpi1 — kn = 7” (18-3)

which will become infinitesimal in the limit as A — co. Substituting Ak/(27) for 1/ in the sum, the
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more “symmetric result” appears,

1 = 2mn
T) =—— Ci. e Ak here k,, = —
= (18-4)

1 A2 1
n :E /)\/2 i

Now, the limit A — oo can be obtained an the summation becomes an integral over a continuous
spectrum of wave-numbers; the amplitudes become a continuous function of wave-numbers, C,, — g(k):

1 R IRT
f(z) :E /_Oog(k)ek dk
i W H o z)e ey
o) === [ flajea

The function g(k = 27/\) represents the density of the amplitudes of the periodic functions that make
up f(z). The function g(k) is called the Fourier Transform of f(x). The function f(z) is called the
Inverse Fourier Transform of g(k), and f(x) and g(k) are a the Fourier Transform Pair.

Cr

(18-5)

Higher Dimensional Fourier Transforms

Of course, many interesting periodic phenomena occur in two dimensions (e.g., two spatial dimensions,
or one spatial plus one temporal), three dimensions (e.g., three spatial dimensions or two spatial plus
one temporal), or more.

The Fourier transform that integrates % over all  can be extended straightforwardly to a two

dxdy
2m

integral of f(7) j}‘%’%@ over an infinite three-dimensional volume.
U

A wavenumber appears for each new spatial direction and they represent the periodicities in the
x-, y-, and z-directions. It is natural to turn the wave-numbers into a wave-vector

dimensional integral of a function f(7) = f(x,y) by over all z and y—or to a three-dimensional

= (kxakwkz) =\Gm; T, T (18-6)
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where )\; is the wavelength of the wave-function in the i** direction.
The three dimensional Fourier transform pair takes the form:

) _\/(;TP / / / Z g(B)e T dhydi, dk,
) —\/(;7)3 ///Z f(f)e*“z'fdmdydz

Properties of Fourier Transforms

8

I

Syl

g(

Dirac Delta Functions

(18-7)

Because the inverse transform of a transform returns the original function, this allows a definition of an
interesting function called the Dirac delta function §(x — z,). Combining the two equations in Eq. 18-5

into a single equation, and then interchanging the order of integration:

f@) =5 [ { /- f(é“)e‘““fdf} e+

r@= [ 105 [ ereoahae

Apparently, a function can be defined

oz — o) = 2177/ e @=E) g,

that has the property
fe) = [ ba—-ao)f@)do

in other words, d picks out the value at x = z, and returns it outside of the integration.

(18-8)

(18-9)

(18-10)
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Parseval’s Theorem

The delta function can be used to derive an important conservation theorem.
If f(z) represents the density of some function (i.e., a wave-function like ¢(z)), the square-magnitude
of f integrated over all of space should be the total amount of material in space.

/ f(@)f(z)dz = /_Z { <\/127Tg(k)e"k”dk> <\/127r§(/£)e_““d/@> } dz (18-11)

where the complex-conjugate is indicated by the over-bar. This exponentials can be collected together
and the definition of the d-function can be applied and the following simple result can is obtained

o
/ f(z)f(x)dx —/ g(k)g(k)dk = (18-12)
—00

which is Parseval’s theorem. It says, that the magnitude of the wave-function, whether it is summed
over real space or over momentum space must be the same.

Convolution Theorem

The convolution of two functions is given by

F(z) = p1(z) x p2(= \ﬁ/ p1(n)p2(z — n)dn (18-13)

If p1 and ps can be interpreted as densities in probability, then this convolution quantity can be
interpreted as “the total joint probability due to two probability distributions whose arguments add
upite .28

The proof is straightforward that the convolution of two functions, p;(z) and ps(x), is a Fourier
integral over the product of their Fourier transforms, 11 (k) and 5 (k):

p1(z) * pa(z m/ p1(n)p2(z —n)dn = \/12?/_(: V1 (K)o (k)er dk (18-14)

10 To think this through with a simple example, consider the probability that two dice sum up 10. It is the sum of
p1(n)p2(10 — n) over all possible values of n.
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This implies that Fourier transform of a convolution is a direct product of the Fourier transforms
V1(k)pa(k).

Another way to think of this is that “the net effect on the spatial function due two interfering waves
is contained by product the fourier transforms.” Practically, if the effect of an aperture (i.e., a sample
of only a finite part of real space) on a wave-function is desired, then it can be obtained by multiplying
the Fourier transform of the aperture and the Fourier transform of the entire wave-function.
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Lecture 18 MATHEMATICA®) Example 1

Creating Images of Lattices for Subsequent Fourier Transform

notebook (non-evaluated) pdf (evaluated) html (evaluated)
A very large matrix of ones (white) and zeroes (black) is created as a set of “pixels” for imaging. The white
regions arranged as 8 X 8 squares in a rectangular patterns. A diffraction pattern from a group of scattering
centers such atoms is related to the Fourier transform of the “atom” positions.

WhiteSquare = Table[1, {i, 8}, {j, 8}];
BlackSquare = Table[0, {i, 8}, {j, 8}];
Join[WhiteSquare, BlackSquare, BlackSquare] //

1: Table is used to created “submatrices” of 8 x 8 ones or zeroes. Join will

MatrixForm
combine the rows of matrices and creates a “tall skinny” matrix from of [ -sn 3.016 Home
o c . . . T [Join[BlackS: b
three square ones. “pixel images” of lattices by placing ones (white) and " BiackSquare, BlackSquare, BlackSquarel],
c o Transpose[Join[BlackSquare, BlackSquare,
ZEeroes (black) 1mn a rectangular grld. 2 WhiteSquare, BlackSquare]],

Transpose[Join[BlackSquare, BlackSquare,

4 o o o WhiteS , BlackS 3
2: latcell will be a 32 x 32 black region with an 16 x 8 white rectangle near T e .
8 . BlackSquare, BlackSquare]|
the center. The Transpose of four Join-ed squares will be a short-fat I

matrix. Joining four of the resulting Transpose operations produces the 3[LiswensityPiotiatcel, MeshStyle - (Huel11l; | «I 4 | » | »l
Square matriX, ColumnDuplicateNsq[matrix_, nlog2_] := ‘

S

Nest[Join[#, #] &, matrix, nlog2]

3: ListDensityPlot produces a grayscale image from an array of “pixel |
values” between 0 (black) and 1 (white).

4: ColumnDuplicateNsq takes a matrix as an argument and then recursively
duplicates its rows into a matrix that has the same number of columns
as the original. It makes at copy of all the rows at the first iteration, ,
doubling the number of rows—at the second iteration it copies all the
rows of the previous result quadrupling the number of rows, and so on.
ColumnDuplicateNsq uses Nest with a pure function. 10

ListDensityPlot[ColumnDuplicateNsq[latcell, 2],
MeshStyle - {Huel11}]

=)

RowDuplicateNsq[matrix_, nlog2_] :=
Transpose[ColumnDuplicateNsqg[matrix, nlog2]]

ListDensityPlot{RowDuplicateNsq(latcell, 2], Full Screen

MeshStyle - {Huel11}]

=

XtalData = Transpose[
ColumnDuplicateNsq[RowDuplicateNsq[latcell, 3], 3]];

9

DisplayNow = DisplayFunction — $DisplayFunction;

ImagePlot[data_] := ListDensityPlot[data,
Mesh —> False, ImageSize — 144, DisplayLater]

Close

8: The result of calling RowDuplicateNsq and ColumnDuplicateNsq with 11[Xwlimage = imagePiorlxtaiDatal
“recursion” arguments of 3, creates an 82 x 8% matrix with a square lattice 12[ ShowiXtallmage, DisplayNow, ImageSize - 400]
of white rectangles.

DisplayLater = DisplayFunction - Identity; ‘

9: DisplayLater and DisplayNow are examples of rule definitions that can
be passed to Show to delay display or to show a delayed display. Quit

o

12: Xtallmage will be used for the Fourier transfrom “diffraction” simulations
in the following example.
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Fast Fourier Transforms and Simulated Diffaction

The fast fourier transform (FFT) is a very fast algorithim for compute discrete Fourier transforms
(DFT) (i.e., the Fourier transform of a data set) and is widely used in the physical sciences. For image
data, the Fourier transform is the diffraction pattern (i.e., the intensity of reflected waves from a set
of objects, the pattern results from positive or negative reinforcement or coherence).

However, for FF'T simulations of the diffraction pattern from an image, the question arises on what
to do with the rest of space which is not the original image. In other words, the Fourier transform is
taken over all space, but the image is finite. In the examples that follow, the rest of space is occupied
by periodic duplications of the original image. Thus, because the original image is rectangular, there
will always be an additional rectangular symmetry in the diffraction pattern due to scattering from the
duplicate features in the neighboring images.

The result of a discrete Fourier transform is a also a discrete set. There are a finite number of pixels
in the data, the same finite number of subperiodic wavenumbers. In other words, the Discrete Fourier
Transform of a N x M image will be a data set of N x M wavenumbers:

1 2 2
Discrete FT Data = 2
iscrete ata 7( Npixels’ Npixels’ =~ N pixels) (18-15)
1 2 i :

x 27 (

)

Mpixels’ Mpixels’ " Mpixels

representing the amplitudes of the indicated periodicities.
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Lecture 18 MATHEMATICA® Example 2

Discrete Fourier Transforms

notebook (non-evaluated) pdf (evaluated) html (evaluated)
Example of taking the DFT of the perfect lattice created above and visualizing the diffraction pattern.

1| FourierData = Fourier[XtalDatal; |

. . . S c g FourierColor := ColorFunction - (If[# < .1, Hue[1, 0, 01,
1: FourierData is the DFT (obtained with Fourier) of Xtallmage . R S

d a o . o o o o a 2| FourierimagePlotldata_] := ListDensityPlot[Absldatal,
FourierColor is a special ColorFunction for visualizing diffraction pat- Mesh —> Fasa,InageSiza - 14,
. . . . . ourierColor, DisplayLater]
terns. If the intensity is very low (j0.1), the result will be black; otherwise : : :
) N ; - ] . . 3| Fourierlmage = FourierimagePlotlFourierDatal | 3.016 H
it will scale from blue at low intensities to red at the highest intensity. o . . : ome
ow[GraphicsArray[{Xtallmage, Fourierimage,

FourierImage is a function to display the result of a DFT, it uses Abs *| | masePlotChonioverselouieriFourierbatalll
to get the magnitudes of the imaginary data set created by Fourier.

4: Notice that the DFT has very sharp features, this is because the underly-

ing lattice is perfect. Each feature represents a different periodic function
in the direction k = (kz, ky). ﬂﬂﬁﬂ
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Lecture 18 MATHEMATICA®) Example 3

Visualizing Diffraction Patterns

notebook (non-evaluated) pdf (evaluated) html (evaluated)
Visualization examples are created and a function is constructed to move the longest wavelength (i.e., E~0
periodicities to the center of the resulting pattern.

Show|GraphicsArray[{Xtallmage, Fourierimage,
1 ImagePlot[ChoplinverseFourierlFourierDatall1}],

1: Using GraphicsArray, the original image, its diffraction image, and the | mageSize~ 1000, DisplayNow]
. . . . . . 3 c Microscopists are used to seeing the "k=0" point in the center of
inverse Fourier transform of the diffraction image are viewed side-by-side. 5 ouior mass o, the periodic nformation at the onter), We

. . . o can write a function that translates the k=0 point to the center of
2: Diffraction images are usually observed with the long wavelength features  ine mage and redisplay the resu: 3.016 Home

at the center of the image, instead of at the corners. KZeroAtCenter  [KzeroGentermatdat ] = Biooki

{rows = Dimensionsimatdatl[[11],

divides the original matrix data into four approximately equal-sized parts, cole = Dimensionsimacatl2ll,
alfcol, halfrow, colrem, rowrem},
and then exchanges the data from the northwest and southeast parts of halfcol = Roundlcols/2]; halfrow = Roundirows /2];
N : colrem = cols — halfcol; rowrem = rows — halfrow;
the original matrix and exchanges the northeast and southwest data. The o -
) ) W 2 [ |
result is an image with k =~ 0 at the center. e ey~ « > [»
. . ) Take[matdat, —rowrem, halfcoll},
3:  FourierImagePlot takes input Fourier-transformed data, rearranges the akelnaiebihaiionicolionl
ake[matdat, halfrow, halfcol]}

diffraction image and produces an image with k ~ 0 at the center. 7!
]
5: This will be a row similar to (1) above, but with the diffraction pattern |

2 FourierlmagePlot[data_] :=
a“d.] USted' 3| ListDensityPlot[KZeroAtCenterlAbs[datall, Mesh —> False,

ImageSize — 144, FourierColor, DisplayLater]

Full Screen

4| Fourierimage = FourierimagePlotlFourierDatal

Show|[GraphicsArray[{Xtallmage, Fourierlmage,
5 ImagePlot[ChoplinverseFourier[FourierDatall}],
ImageSize - 1000, DisplayNow]

Close

Quit

b
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Lecture 18 MATHEMATICA®) Example 4

Diffraction Patterns of Defective Lattices

notebook (non-evaluated) pdf (evaluated)

html (evaluated)

Data from the perfect lattice is used to create a defect by scalar multiplying with another matrix with a small

hole created with zeroes.

1: HoleFunc uses the size of the data to create a matrix of ones with a !
rectangular region of zeroes at a specified position and size.

3: A 12 x 12 hole is created at position 28, 28. :

4: The hole is multiplied by the original perfect crystal to create a defect
and the diffraction pattern is obtained.

IS

5: The defect gives rises to “diffuse” scattering near k=0.

HoleFunc[data_, xc_, yc_, twicew_, twiceh_] :=
Module[{nrows, ncols}, nrows = Dimensions[datall[11];
ncols = Dimensionsldatall[2]]; Table[
IffAnd[Abs[j — xc] <= twicew, Abs[i — yc] <= twiceh],
0, 1], {i, nrows}, {j, ncols}]];

XtalData = Transpose[
ColumnDuplicateNsq[RowDuplicateNsq[latcell, 3], 3]];

| 3.016 Home

3| hole = HoleFunc[XtalData, 28, 28, 6, 6];

XtalData = Transpose[
ColumnDuplicateNsq[RowDuplicateNsq(latcell, 3], 3]];

XtalData = hole = XtalData;

Xtallmage = ImagePlot[XtalDatal;

FourierData = Fourier[XtalDatal;

Fourierlmage = FourierimagePlot[FourierDatal;

Show[GraphicsArray[{Xtallmage, Fourierimage,
ImagePlot[ChoplinverseFourierlFourierDatall1}],
ImageSize - 1000, DisplayNow]
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Lecture 18 MATHEMATICA® Example 5

Diffraction Patterns from Lattices with Thermal ‘Noise’

notebook (non-evaluated) pdf (evaluated) html (evaluated)
Functions to create a larger family of two-dimensional lattices are developed with a variable that simulates
random deviation from a perfect position.

MakeLattice[W_, H_, latvecA_,

1: MakeLattice takes input for the width and height of the resulting lattice jatiecoRleize SYandtange ks

Module[{result = Table[0, {i, H}, {j, W}], lata= -1, latb = -1,

image, structures for the lattice vectors and the number of repeats to R A e (G Tk
. o . = < [[311 =
produce, a size for the ‘atom,” and a random amplitude from which to B P i A 3.016 Home
0 o . . o = * [[21] * [[2]],
simulate noise. This function is not very well-constructed and doesn’t ypos, = Modlatas atvecAlz] et -latvecBll2
5 o o untouched[[ypos, xpos]] = False;
always work perfectly. I'll improve it someday. %pos += RandomInteger, randrangel;

ypos += Random([Integer, randrange];

3: This will display the original ‘perfect’ lattice, its resulting diffraction pat- el e e 1= €
3 a a o o Mod i, W, 1111 = 1;i++];] H
tern, and the inverse fourier image of the diffraction pattern. gy e T
lata++]; result <<| ‘ | ’ | >’|

5: This will illustrate the effect of adding thermal noise: a diffuse ring will ]

. a0 . . latdata = MakeLattice[400, 400, {0, 20, 40},
be superimposed on the original diffraction pattern. 2 B oy 4. (6, ot et — Povreniatdetal |

Show[GraphicsArray[
{ImagePlotllatdatal, FourierlmagePlotlfourlat],
ImagePlot[ChoplInverseFourierlfourlatl]]}],
ImageSize - 1000, DisplayNow]

The noise is simulated by making small random displacements
of each "atom" about its site in the perfect crystal, then
computing the Fourier transform of the resulting somewhat
imperfect crystal...

Full Screen

thermallatdata =
4| MakeLattice[400, 400, {0, 20, 40}, {16, 4, 25}, 4, (-2, 2}];
thermalfourlat = Fourierlthermallatdatal;

Show[GraphicsArray[{ImagePlotlthermallatdatal,
FourierlmagePIot[thermalfourIaﬂ,
ImagePlot[ChoplinverseFourierlthermalfourlat!]]}], Close

ImageSize - 1000, DisplayNow]

o

Quit

o

©W. Craig Carter


http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2006/Notebooks/L18/Lecture-18.nb
http://pruffle.mit.edu/3.016-2006/pdf/L18/Lecture-18-5.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-18/HTMLLinks/index_5.html
http://pruffle.mit.edu/3.016-2006/html/Lecture-18/HTMLLinks/index_5.html

Lecture 18 MATHEMATICA®) Example 6

Using an Aperature to Select Particular Perioidicities in a Diffraction Pattern

notebook (non-evaluated) pdf (evaluated) html (evaluated)
This is a function designed to select particular regions from fourier transforms of a perfect lattice and the
perturbation of a perfect lattice, and then display eight images in two columns. The left column of graphics
illustrates (from top to bottom) the ”clean” input image, the entire fourier transform with the rectangular
aperature illustrated, the "reconstructed image” that derives from the fourier transform of the aperature region,

and finally a magnified image of the fourier transform within the aperature only.
Compare[sharpdata_, sharpfourierdata_, 3.016 Home
. — . X diffusedata_, d\ffusgfour_ierdata_, Ap_Ceme_rx_,

A B The adjusted (k = 0 at center) input data from the Fourier transforms of P L R I T e LT

the reference lattice and one that will create a ‘diffuse’ pattern. e D T30l AT I 51 1

(+Ax) shiftedsharpfourier = KZeroAtCenter[sharpfourierdata]
B,C The diffraction images Of the data (»g*)shlﬂeddlffusefour\er = KZeroAtCenterldiffusefourierdatal
‘ (+Cx) sharpfourimage = ListDensityPlot[Abs[shiftedsharpfourier]];
. — - . Dy
E,F Data from only a selected portion of values Ak, Ak, of the input data. diffusefourimage = ListDensityPlotlAbsshifteddiffusefourier] «| <«|» | »»
) ] g . ) (+... Compute Aperature Function... »);
This data should only have the periodicities of the original lattice for these Evsharplourieraperature = _
aperature = shiftedsharpfourier;
Selected Values (+Fx)diffusefourieraperature -

aperature . shifteddiffusefourier;
L . R . o (+G=)sharpapimage = Show[sharpfourimage, Aperature];
G-L The images associated with all the data and their reconstructions. (+Hodiffuseapimage =
Show[diffusefourimage, Aperature];
o o (+lx)sharpfourmagimage =
M Producmg the array Of grapthS. ListDensityPlot[Abs[shiftedsharpfourier]];
(+Jx)diffusefourmagimage =
ListDensityPlotl Abslshifteddiffusefourier]]; Full Screen
(+K+)sharprevfourimage =
ListDensityPlot[Abs[ChoplInverseFourier|
KZeroAtCenter[sharpfourieraperature]]]]];
(+L+)diffuserevfourimage = ListDensityPlot[
Abs[Chop][InverseFourier|
KZeroAtCenter[diffusefourieraperature]]]]];
(+M=x)Show[GraphicsArray[{
{ImagePlot[sharpdata], ImagePlotldiffusedatal},
{sharpapimage, diffuseapimage},
{sharprevfourimage, diffuserevfourimage},
{sharpfourmagi , diffusefourr i

Close

}
I
I

Quit

o
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Lecture 18 MATHEMATICA® Example 7

Visualizing Simulated Selected Area Diffraction

notebook (non-evaluated) pdf (evaluated)
Examples of selecting particular periodicities from ideal input and ‘noisy’ input data.

1:

10:

An ideal lattice and its Fourier transform are computed.

A ‘thermal’ perturbation of the ideal lattice and its Fourier transform are
computed.

An example of selecting only those periodicities within 50 increments of
k=0.
Creating input data where the ‘phonon modes’ have anisotropic ampli-
tudes.

If the ‘thermal vibration’ appears only in the vertical direction, the re-
sulting diffraction pattern gets ‘streaked’ in the horizontal direction.

N

(%)

IS

o

[

=

©

10

html (evaluated)

latdata =
MakeLattice[400, 400, {0, 20, 40}, {16, 4, 25}, 4, {0, 0};
fourlat = Fourierllatdatal;

thermallatdata =
MakelLattice[400, 400, {0, 20, 40}, {16, 4, 25}, 4, (-1, 1}];

thermalfourlat = Fourierlthermallatdatal;

Comparellatdata, fourlat,
thermallatdata, thermalfourlat, 0, 0, 50, 50]

3.016 Home

Comparellatdata, fourlat, thermallatdata,
thermalfourlat, 100, 100, 25, 25]

thermallatdata, thermalfourlat, 20, 30, 15, 15]

Compare[latdata, fourlat,
thermallatdata, thermalfourlat, 30, 30, 15, 15]

Compare[latdata, fourlat,

Comparellatdata, fourlat, |
thermallatdata, thermalfourlat, 35, 25, 15, 15] |

Modify the function MakeLattice to make "noise" anisotropic

MakelLattice][W_, H_, latvecA_, latvecB_, size_,
Xrandrange_, Yrandrange_] := (xdetails in notebook:)

The following data only has fluctuations in the vertical direction:

thermallatdata = MakeLattice[400, 400,
{0, 20, 40}, {16, 4, 25}, 4, {0, 0}, {-4, 4}];
thermalfourlat = Fourier[thermallatdatal;

The resulting Fourier transform gets "streaked" horizontally

Comparellatdata, fourlat,
thermallatdata, thermalfourlat, 0, 0, 200, 200]

PRI

Full Screen
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Quit
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Discrete Fourier Transforms of Real Images

notebook (non-evaluated) pdf (evaluated) html (evaluated)

A image in graphics format, such as a .png, contains intensity as a function of position. If the function is
gray-scale data, then each pixel typically takes on 28 discrete gray values between 0 and 255. This data can be
input into MATHEMATICA®) and then Fourier transformed. Images used here and below can be obtained from
http://pruffle.mit.edu/3.016 /Images.

Importing an image into Mathematica, .png is some of
1: An image in a number of different graphics formats can be imported into ™" gaphics data types that Mathematica can process. 3.016 Home
. (Note: all of the images below can be downloaded from
MATHEMATICA@ Wlth Import. http://pruffle.mit.edu/3.016/Images/

Anlmage = Import["/Users/ccarter/classes/

3: The image data is stored in a complicated format, but the gray values |,
3016/Images/fourier_xtal_data.png"];

(indexed as integers between 0 and 255) are stored as the first item in the !
ﬁrSt hSt' 3| ImageData = Anlmagel[1, 111/255; | ﬂﬂﬁﬂ

6: This illustrates the original image, its diffraction pattern, and recon- 4[pmensionsiimageDatal |

|

structed image. 5| FourierlmageData = Fourier[ImageDatal;

Show[GraphicsArray[{ImagePlot[ImageData],
FourierlmagePlot[FourierimageDatal,

2| Show[AnIimage, DisplayNow]

ImagePlot[Chop[InverseFourier[FourierimageDatal]]}],
ImageSize - 1000, DisplayNow]

Full Screen
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Quit

o

©W. Craig Carter


http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2006/Notebooks/L18/Lecture-18.nb
http://pruffle.mit.edu/3.016-2006/pdf/L18/Lecture-18-8.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-18/HTMLLinks/index_8.html
http://pruffle.mit.edu/3.016/Images
http://pruffle.mit.edu/3.016-2006/html/Lecture-18/HTMLLinks/index_8.html

N N
Lecture 18 MATHEMATICA®) Example 9 I

Selected Area Diffraction on Image Data

notebook (non-evaluated) pdf (evaluated) html (evaluated)
An function, ImageFourierAperature , that reads in the name of an image file and information about which

regions of g—space to select is developed.

ImageFourierAperature[imagefile_,
Apxmin_, Apxmax_, Apymin_, Apymax_] :=

d c . . 9 = ) Module[{theimage = Import[imagefile], dims,
A fourierdata is the shifted fourier transform of the image-file’s data. AN G o e
o 0 c B d = fourieraperature, apimage, fourmagimage,
C apemture is a matrix of zeroes and ones representlng the region in k—space [’;\Sf/)f%l:‘f:g:g;gi Ezfrz‘:‘fgyeﬂg[lh xur, yurj,
1 : Fourier[[thein:age[lt 111/255)]]; 3.016 Home
tO be retalned' (+B+)fourimage = ListDensityPlot[Abslfourierdatal,

Mesh —> False, ImageSize - 144,

H This will display four images. To the right of the orginal image will be the FourierColor, DisplayLater];
J o a H o 5 . dims = Dimensionslfourierdatal;
diffraction pattern with an indication of where the aperature is located. nrows = dimsl(11]; ncols — dimsl(21l;
. . o o R L R xIl = Round|ncols/2 + Apxminncols/2];
Below the diffraction image will be a magnification of the aperature region. yll= Roundintows /2 + Apymin »nrows /2
0 &g . o . . xur = Round[ncols/2 + Apxmax s ncols/2 J;
Below the original image will be the reconstructed image obtained from yur = Roundinrows/ 2 + Apymax s nrows/ 2]
. ' . N xll = If[xll <1, 1, xll]; xur = If[xur > ncols, ncols, xur]; << ‘ ’ >’
only those periodicities available in the aperature. Y= iy <. 1, il yur = fyur > o, rrows, yur

Table(If[And[i = ylI, i = yur, j = xlI, j = xur], 1, 0],

1 i, nrows}, {j, ncols}J;

(+D=) fourieraperature = aperature « fourierdata;

(+Ex) apimage = Show[fourimage, Graphics|{

Huel.1667, 1, 1], Thickness[2/nrows!,
Line[{{xIl -1, yll -1},
{xur+1, yll—1}, {xur+1, yur+1},
{xl=1, yur+1}, {xll -1, yll= 1}}]}]];

If[xIl < 1, 1, xII]; xur = If[xur > nrows, nrows, xurl;

Iffyll < 1, 1, ylI]; yur = If[yur > ncols, ncols, yur];

(+F+) fourmagimage = ListDensityPlot[
Abslfourierdata[[Rangelyll, yur], Rangel[xll, xur]]]],
Mesh —> False, FourierColor, DisplayLater];

G=) revfourimage = ListDensityPlot[Abs[Chop[
InverseFourier[KZeroAtCenter([fourieraperature]]]],
Mesh - False, DisplayLater];
(+H=) Show|GraphicsArray][{
{theimage, apimage},
{revfourimage, fourmagimage}
)
1, ImageSize - 1000, Close
GraphicsSpacing - {.001, .0}, DisplayNow];

o Full Screen
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Visualizing Selected Area Diffraction on Image Data
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Examples and interpretations of using the function ImageFourierAperature on several input files. Images used
here and below can be obtained from http://pruffle.mit.edu/3.016/Images.

ImageFourierAperature[
1| "/Users/ccarter/classes/3016/Images/penrose.png",
1-4 Examples of selecting diffraction spots from an image of a penrose tiling. =hh=thil
The ‘streaks’ come from the lines between tiles. Picking out particular & | oo asess/3016/mages/penrose.png'.
. o . . . . . -0.1,0.1,-0.2,0.2
image lines of similar tilt in the reconstructed image. ] 3.016 Home |
ImageFourierAperature[
5: Picking out particular periodicities allows one to image a selected set of 3| 7ers/ccanerasses/2016/images/penrose.png”
oriented grains in a polycrystal. ImageFourierAperaturel
4| "/Users/ccarter/classes/3016/Images/penrose.png",
6: Of course, one is not limited to playing with images of crystals and %, 2 I £
tlhngs i) s IrrlageFourierAperature[ ,
'/Users/ccarter/classes/3016/Images/polycrystal.png",
i «| «|» ||
6 ImageFourierAperature[

"/Users/ccarter/classes/3016/Images/AB.gif", -1, 1, -1, 1]

ImageFourierAperature[
7| "/Users/ccarter/classes/3016/Images/AB.gif",
-0.5, 0.5, -0.05, 0.05]

ImageFourierAperature[
8| "/Users/ccarter/classes/3016/Images/AB.gif",
-0.05,0.05, 0.5, 0.5] Full Screen

Close
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DisplayLater, 156 FourierColor, 158
DisplayNow, 156 FourierData, 158
fourierdata, 165
FourierImage, 158
FourierImagePlot, 159

Example function
ColumnDuplicateNsq, 156
DisplayLater, 156
DisplayNow, 156
FourierColor, 158

Close

GraphicsArray, 159
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FourierImage, 158

HoleFunc, 160 ImageFourierAperature, 165, 166 ©W. Craig Carter
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Import, 164
Join, 156
KZeroAtCenter, 159

latcell, 156
ListDensityPlot, 156

MakeLattice, 161
Mathematica function
Abs, 158
ColorFunction, 158
Fourier, 158
GraphicsArray, 159
Import, 164
Join, 156
ListDensityPlot, 156
Nest, 156
Show, 156
Table, 156
Transpose, 156
momentum and wavenumber, 150

Nest, 156
noise and effect on Fourier transforms
visualizing, 163

Parseval’s theorem, 154
pure function, 156

RowDuplicateNsq, 156

Show, 156

Table, 156
Transpose, 156

wavenumber, 150
wavevector, 152

Xtallmage, 156, 158
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