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Nov. 3 2006

Lecture 18: The Fourier Transform and its Interpretations

Reading:
Kreyszig Sections: 11.4, 11.7, 11.8, 11.9 (pages496–498, 506–512 513–517, 518–523)

Fourier Transforms

Expansion of a function in terms of Fourier Series proved to be an effective way to represent functions
that were periodic in an interval x ∈ (−λ/2,−λ/2). Useful insights into “what makes up a function” are
obtained by considering the amplitudes of the harmonics (i.e., each of the sub-periodic trigonometric
or complex oscillatory functions) that compose the Fourier series. That is, the component harmonics
can be quantified by inspecting their amplitudes. For instance, one could quantitatively compare the
same note generated from a Stradivarius to an ordinary violin by comparing the amplitudes of the
Fourier components of the notes component frequencies.

However there are many physical examples of phenomena that involve nearly, but not completely,
periodic phenomena—and of course, quantum mechanics provides many examples of isolated events
that are composed of wave-like functions.

It proves to be very useful to extend the Fourier analysis to functions that are not periodic. Not
only are the same interpretations of contributions of the elementary functions that compose a more
complicated object available, but there are many others to be obtained.

For example:

momentum/position The wavenumber kn = 2πn/λ turns out to be proportional to the momentum
in quantum mechanics. The position of a function, f(x), can be expanded in terms of a series
of wave-like functions with amplitudes that depend on each component momentum—this is the
essence of the Heisenberg uncertainty principle.

diffraction Bragg’s law, which formulates the conditions of constructive and destructive interference
of photons diffracting off of a set of atoms, is much easier to derive using a Fourier representation
of the atom positions and photons.

To extend Fourier series to non-periodic functions, the domain of periodicity will extended to
infinity, that is the limit of λ→∞ will be considered. This extension will be worked out in a heuristic
manner in this lecture—the formulas will be correct, but the rigorous details are left for the math
textbooks.

Recall that the complex form of the Fourier series was written as:

f(x) =
∞∑

n=−∞
Akne

ıknx where kn ≡
2πn
λ

Akn =
1
λ

∫ λ/2

−λ/2
f(x)e−ıknxdx

(18-1)

whereAkn is the complex amplitude associated with the kn = 2πn/λ reciprocal wavelength or wavenum-
ber.
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This can be written in a more symmetric form by scaling the amplitudes with λ—let Akn =√
2πCkn/λ, then

f(x) =
∞∑

n=−∞

√
2πCkn

λ
eıknx where kn ≡

2πn
λ

Ckn =
1√
2π

∫ λ/2

−λ/2
f(x)e−ıknxdx

(18-2)

Considering the first sum, note that the difference in wave-numbers can be written as:

∆k = kn+1 − kn =
2π
λ

(18-3)

which will become infinitesimal in the limit as λ→∞. Substituting ∆k/(2π) for 1/λ in the sum, the
more “symmetric result” appears,

f(x) =
1√
2π

∞∑
n=−∞

Ckne
ıknx∆k where kn ≡

2πn
λ

Ckn =
1√
2π

∫ λ/2

−λ/2
f(x)e−ıknxdx

(18-4)

Now, the limit λ → ∞ can be obtained an the summation becomes an integral over a continuous
spectrum of wave-numbers; the amplitudes become a continuous function of wave-numbers, Ckn → g(k):

f(x) =
1√
2π

∫ ∞

−∞
g(k)eıkxdk

g(k) =
1√
2π

∫ ∞

−∞
f(x)e−ıkxdx

(18-5)

The function g(k = 2π/λ) represents the density of the amplitudes of the periodic functions that make
up f(x). The function g(k) is called the Fourier Transform of f(x). The function f(x) is called the
Inverse Fourier Transform of g(k), and f(x) and g(k) are a the Fourier Transform Pair.

Higher Dimensional Fourier Transforms

Of course, many interesting periodic phenomena occur in two dimensions (e.g., two spatial dimensions,
or one spatial plus one temporal), three dimensions (e.g., three spatial dimensions or two spatial plus
one temporal), or more.

The Fourier transform that integrates dx√
2π

over all x can be extended straightforwardly to a two

dimensional integral of a function f(~r) = f(x, y) by dxdy
2π over all x and y—or to a three-dimensional

integral of f(~r) dxdydz√
(2π)3

over an infinite three-dimensional volume.
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A wavenumber appears for each new spatial direction and they represent the periodicities in the
x-, y-, and z-directions. It is natural to turn the wave-numbers into a wave-vector

~k = (kx, ky, kz) = (
2π
λx
,
2π
λy
,
2π
λy

) (18-6)

where λi is the wavelength of the wave-function in the ith direction.
The three dimensional Fourier transform pair takes the form:

f(~x) =
1√

(2π)3

∫∫∫ ∞

−∞
g(~k)eı~k·~xdkxdkydkz

g(~k) =
1√

(2π)3

∫∫∫ ∞

−∞
f(~x)e−ı~k·~xdxdydz

(18-7)

Properties of Fourier Transforms

Dirac Delta Functions

Because the inverse transform of a transform returns the original function, this allows a definition of an
interesting function called the Dirac delta function δ(x−xo). Combining the two equations in Eq. 18-5
into a single equation, and then interchanging the order of integration:

f(x) =
1
2π

∫ ∞

−∞

{∫ ∞

−∞
f(ξ)e−ıkξdξ

}
eıkxdk

f(x) =
∫ ∞

−∞
f(ξ)

{
1
2π

∫ ∞

−∞
eık(x−ξ)dk

}
dξ

(18-8)

Apparently, a function can be defined

δ(x− xo) =
1
2π

∫ ∞

−∞
eık(x−ξ)dk (18-9)

that has the property

f(xo) =
∫ ∞

−∞
δ(x− xo)f(x)dx (18-10)

in other words, δ picks out the value at x = xo and returns it outside of the integration.
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Parseval’s Theorem

The delta function can be used to derive an important conservation theorem.
If f(x) represents the density of some function (i.e., a wave-function like ψ(x)), the square-magnitude

of f integrated over all of space should be the total amount of material in space.∫ ∞

−∞
f(x)f̄(x)dx =

∫ ∞

−∞

{(
1√
2π
g(k)e−ıkxdk

) (
1√
2π
ḡ(κ)e−ıκxdκ

)}
dx (18-11)

where the complex-conjugate is indicated by the over-bar. This exponentials can be collected together
and the definition of the δ-function can be applied and the following simple result can is obtained∫ ∞

−∞
f(x)f̄(x)dx =

∫ ∞

−∞
g(k)ḡ(k)dk = (18-12)

which is Parseval’s theorem. It says, that the magnitude of the wave-function, whether it is summed
over real space or over momentum space must be the same.

Convolution Theorem

The convolution of two functions is given by

F (x) = p1(x) ? p2(x) =
1√
2π

∫ ∞

−∞
p1(η)p2(x− η)dη (18-13)

If p1 and p2 can be interpreted as densities in probability, then this convolution quantity can be
interpreted as “the total joint probability due to two probability distributions whose arguments add
up to x.”10

The proof is straightforward that the convolution of two functions, p1(x) and p2(x), is a Fourier
integral over the product of their Fourier transforms, ψ1(k) and ψ2(k):

p1(x) ? p2(x) =
1√
2π

∫ ∞

−∞
p1(η)p2(x− η)dη =

1√
2π

∫ ∞

−∞
ψ1(k)ψ2(k)eıkxdk (18-14)

This implies that Fourier transform of a convolution is a direct product of the Fourier transforms
ψ1(k)ψ2(k).

Another way to think of this is that “the net effect on the spatial function due two interfering waves
is contained by product the fourier transforms.” Practically, if the effect of an aperture (i.e., a sample
of only a finite part of real space) on a wave-function is desired, then it can be obtained by multiplying
the Fourier transform of the aperture and the Fourier transform of the entire wave-function.

10 To think this through with a simple example, consider the probability that two dice sum up 10. It is the sum of
p1(n)p2(10− n) over all possible values of n.
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Lecture 18 Mathematica R© Example 1

Creating Images of Lattices for Subsequent Fourier Transform

Download notebooks, pdfs, or html from http://pruffle.mit.edu/3.016-2006.

A very large matrix of ones (white) and zeroes (black) is created as a set of “pixels” for imaging. The white
regions arranged as 8 × 8 squares in a rectangular patterns. A diffraction pattern from a group of scattering
centers such atoms is related to the Fourier transform of the “atom” positions.

1: Table is used to created “submatrices” of 8×8 ones or zeroes. Join will
combine the rows of matrices and creates a “tall skinny” matrix from of
three square ones. “pixel images” of lattices by placing ones (white) and
zeroes (black) in a rectangular grid.

2: latcell will be a 32× 32 black region with an 16× 8 white rectangle near
the center. The Transpose of four Join-ed squares will be a short-fat
matrix. Joining four of the resulting Transpose operations produces the
square matrix.

3: ListDensityPlot produces a grayscale image from an array of “pixel
values” between 0 (black) and 1 (white).

4: ColumnDuplicateNsq takes a matrix as an argument and then recursively
duplicates its rows into a matrix that has the same number of columns
as the original. It makes at copy of all the rows at the first iteration,
doubling the number of rows—at the second iteration it copies all the
rows of the previous result quadrupling the number of rows, and so on.
ColumnDuplicateNsq uses Nest with a pure function.

8: The result of calling RowDuplicateNsq and ColumnDuplicateNsq with
“recursion” arguments of 3, creates an 83×83 matrix with a square lattice
of white rectangles.

9: DisplayLater and DisplayNow are examples of rule definitions that can
be passed to Show to delay display or to show a delayed display.

12: XtalImage will be used for the Fourier transfrom “diffraction” simulations
in the following example.

1
WhiteSquare = Table@1, 8i, 8<, 8j, 8<D;
BlackSquare = Table@0, 8i, 8<, 8j, 8<D;
Join@WhiteSquare, BlackSquare, BlackSquareD êê
MatrixForm

2

latcell = Join@
Transpose@Join@BlackSquare,

BlackSquare, BlackSquare, BlackSquareDD,
Transpose@Join@BlackSquare, BlackSquare,

WhiteSquare, BlackSquareDD,
Transpose@Join@BlackSquare, BlackSquare,

WhiteSquare, BlackSquareDD,
Transpose@Join@BlackSquare, BlackSquare,

BlackSquare, BlackSquareDD
D;

3 ListDensityPlot@latcell, MeshStyleØ 8Hue@1D<D;

4 ColumnDuplicateNsq@matrix_ , nlog2_D :=
Nest@Join@#, #D &, matrix, nlog2D

5 ListDensityPlot@ColumnDuplicateNsq@latcell, 2D,
MeshStyleØ 8Hue@1D<D

6 RowDuplicateNsq@matrix_ , nlog2_D :=
Transpose@ColumnDuplicateNsq@matrix, nlog2DD

7 ListDensityPlot@RowDuplicateNsq@latcell, 2D,
MeshStyleØ 8Hue@1D<D

8 XtalData = Transpose@
ColumnDuplicateNsq@RowDuplicateNsq@latcell, 3D, 3DD;

9 DisplayLater = DisplayFunctionØ Identity;
DisplayNow = DisplayFunctionØ $DisplayFunction;

10 ImagePlot@data_ D := ListDensityPlot@data,
Mesh -> False, ImageSizeØ 144, DisplayLaterD

11 XtalImage = ImagePlot@XtalDataD
12 Show@XtalImage, DisplayNow, ImageSizeØ 400D

Fast Fourier Transforms and Simulated Diffaction

The fast fourier transform (FFT) is a very fast algorithim for compute discrete Fourier transforms
(DFT) (i.e., the Fourier transform of a data set) and is widely used in the physical sciences. For image
data, the Fourier transform is the diffraction pattern (i.e., the intensity of reflected waves from a set
of objects, the pattern results from positive or negative reinforcement or coherence).

However, for FFT simulations of the diffraction pattern from an image, the question arises on what
to do with the rest of space which is not the original image. In other words, the Fourier transform is
taken over all space, but the image is finite. In the examples that follow, the rest of space is occupied
by periodic duplications of the original image. Thus, because the original image is rectangular, there
will always be an additional rectangular symmetry in the diffraction pattern due to scattering from the
duplicate features in the neighboring images.

The result of a discrete Fourier transform is a also a discrete set. There are a finite number of pixels
in the data, the same finite number of subperiodic wavenumbers. In other words, the Discrete Fourier

http://pruffle.mit.edu/3.016-2006/Notebooks/L18/Lecture-18.nb
http://pruffle.mit.edu/3.016-2006/pdf/L18/Lecture-18-1.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-18/HTMLLinks/index_1.html
http://pruffle.mit.edu/3.016-2006
http://pruffle.mit.edu/3.016-2006/html/Lecture-18/HTMLLinks/index_1.html
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Transform of a N ×M image will be a data set of N ×M wavenumbers:

Discrete FT Data = 2π(
1

Npixels
,

2
Npixels

, . . . ,
N

Npixels
)

×2π(
1

Mpixels
,

2
Mpixels

, . . . ,
M

Mpixels
)

(18-15)

representing the amplitudes of the indicated periodicities.

Lecture 18 Mathematica R© Example 2

Discrete Fourier Transforms

Download notebooks, pdfs, or html from http://pruffle.mit.edu/3.016-2006.

Example of taking the DFT of the perfect lattice created above and visualizing the diffraction pattern.

1: FourierData is the DFT (obtained with Fourier) of XtalImage .
2: FourierColor is a special ColorFunction for visualizing diffraction pat-

terns. If the intensity is very low (¡0.1), the result will be black; otherwise
it will scale from blue at low intensities to red at the highest intensity.
FourierImage is a function to display the result of a DFT, it uses Abs
to get the magnitudes of the imaginary data set created by Fourier.

4: Notice that the DFT has very sharp features, this is because the underly-
ing lattice is perfect. Each feature represents a different periodic function
in the direction ~k = (kx, ky).

1 FourierData = Fourier@XtalDataD;

2

FourierColor := ColorFunctionØ HIf@# < .1, Hue@1, 0, 0D,
Hue@.66 * H1- #L, 1, 0.5 + 0.5 #DD &L;

FourierImagePlot@data_ D := ListDensityPlot@Abs@dataD,
Mesh -> False, ImageSizeØ 144,
FourierColor, DisplayLaterD

3 FourierImage = FourierImagePlot@FourierDataD

4
Show@GraphicsArray@8XtalImage, FourierImage,

ImagePlot@Chop@InverseFourier@FourierDataDDD<D,
ImageSizeØ 1000, DisplayNowD

http://pruffle.mit.edu/3.016-2006/Notebooks/L18/Lecture-18.nb
http://pruffle.mit.edu/3.016-2006/pdf/L18/Lecture-18-2.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-18/HTMLLinks/index_2.html
http://pruffle.mit.edu/3.016-2006
http://pruffle.mit.edu/3.016-2006/html/Lecture-18/HTMLLinks/index_2.html
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Lecture 18 Mathematica R© Example 3

Visualizing Diffraction Patterns

Download notebooks, pdfs, or html from http://pruffle.mit.edu/3.016-2006.

Visualization examples are created and a function is constructed to move the longest wavelength (i.e., ~k ≈ 0
periodicities to the center of the resulting pattern.

1: Using GraphicsArray, the original image, its diffraction image, and the
inverse Fourier transform of the diffraction image are viewed side-by-side.

2: Diffraction images are usually observed with the long wavelength features
at the center of the image, instead of at the corners. KZeroAtCenter
divides the original matrix data into four approximately equal-sized parts,
and then exchanges the data from the northwest and southeast parts of
the original matrix and exchanges the northeast and southwest data. The
result is an image with ~k ≈ 0 at the center.

3: FourierImagePlot takes input Fourier-transformed data, rearranges the
diffraction image and produces an image with ~k ≈ 0 at the center.

5: This will be a row similar to (1) above, but with the diffraction pattern
adjusted.

1
Show@GraphicsArray@8XtalImage, FourierImage,

ImagePlot@Chop@InverseFourier@FourierDataDDD<D,
ImageSize Ø 1000, DisplayNowD

Microscopists are used to seeing the "k=0" point in the center of 
the fourier image (i.e., the periodic information at the center). We 
can write a function that translates the k=0 point to the center of 
the image and redisplay the result:

2

KZeroAtCenter@matdat_D := Block@
8rows = Dimensions@matdatD@@1DD,

cols = Dimensions@matdatD@@2DD,
halfcol, halfrow, colrem, rowrem<,

halfcol = Round@cols ê2D; halfrow = Round@rows ê2D;
colrem = cols - halfcol; rowrem = rows- halfrow;
Return@

BlockMatrix@
8
8Take@matdat, -rowrem, -colremD,

Take@matdat, -rowrem, halfcolD<,
8Take@matdat, halfrow, -colremD,

Take@matdat, halfrow, halfcolD<
<

D
D

D

3
FourierImagePlot@data_ D :=

ListDensityPlot@KZeroAtCenter@Abs@dataDD, Mesh -> False,
ImageSize Ø 144, FourierColor, DisplayLaterD

4 FourierImage = FourierImagePlot@FourierDataD

5
Show@GraphicsArray@8XtalImage, FourierImage,

ImagePlot@Chop@InverseFourier@FourierDataDDD<D,
ImageSize Ø 1000, DisplayNowD

http://pruffle.mit.edu/3.016-2006/Notebooks/L18/Lecture-18.nb
http://pruffle.mit.edu/3.016-2006/pdf/L18/Lecture-18-3.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-18/HTMLLinks/index_3.html
http://pruffle.mit.edu/3.016-2006
http://pruffle.mit.edu/3.016-2006/html/Lecture-18/HTMLLinks/index_3.html
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Lecture 18 Mathematica R© Example 4

Diffraction Patterns of Defective Lattices

Download notebooks, pdfs, or html from http://pruffle.mit.edu/3.016-2006.

Data from the perfect lattice is used to create a defect by scalar multiplying with another matrix with a small
hole created with zeroes.

1: HoleFunc uses the size of the data to create a matrix of ones with a
rectangular region of zeroes at a specified position and size.

3: A 12× 12 hole is created at position 28, 28.
4: The hole is multiplied by the original perfect crystal to create a defect

and the diffraction pattern is obtained.
5: The defect gives rises to “diffuse” scattering near ~k = 0.

1

HoleFunc@data_ , xc_ , yc_, twicew_, twiceh_D :=
Module@8nrows, ncols<, nrows = Dimensions@dataD@@1DD;
ncols = Dimensions@dataD@@2DD; Table@
If@And@Abs@j - xcD <= twicew, Abs@i - ycD <= twicehD,
0, 1D, 8i, nrows<, 8j, ncols<DD;

2 XtalData = Transpose@
ColumnDuplicateNsq@RowDuplicateNsq@latcell, 3D, 3DD;

3 hole = HoleFunc@XtalData, 28, 28, 6, 6D;

4

XtalData = Transpose@
ColumnDuplicateNsq@RowDuplicateNsq@latcell, 3D, 3DD;

XtalData = hole*XtalData;
XtalImage = ImagePlot@XtalDataD;
FourierData = Fourier@XtalDataD;
FourierImage = FourierImagePlot@FourierDataD;

5
Show@GraphicsArray@8XtalImage, FourierImage,

ImagePlot@Chop@InverseFourier@FourierDataDDD<D,
ImageSizeØ 1000, DisplayNowD

http://pruffle.mit.edu/3.016-2006/Notebooks/L18/Lecture-18.nb
http://pruffle.mit.edu/3.016-2006/pdf/L18/Lecture-18-4.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-18/HTMLLinks/index_4.html
http://pruffle.mit.edu/3.016-2006
http://pruffle.mit.edu/3.016-2006/html/Lecture-18/HTMLLinks/index_4.html
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Lecture 18 Mathematica R© Example 5

Diffraction Patterns from Lattices with Thermal ‘Noise’

Download notebooks, pdfs, or html from http://pruffle.mit.edu/3.016-2006.

Functions to create a larger family of two-dimensional lattices are developed with a variable that simulates
random deviation from a perfect position.

1: MakeLattice takes input for the width and height of the resulting lattice
image, structures for the lattice vectors and the number of repeats to
produce, a size for the ‘atom,’ and a random amplitude from which to
simulate noise. This function is not very well-constructed and doesn’t
always work perfectly. I’ll improve it someday.

3: This will display the original ‘perfect’ lattice, its resulting diffraction pat-
tern, and the inverse fourier image of the diffraction pattern.

5: This will illustrate the effect of adding thermal noise: a diffuse ring will
be superimposed on the original diffraction pattern.

1

MakeLattice@W_, H_, latvecA_,
latvecB_, size_ , randrange_D :=

Module@8result = Table@0, 8i, H<, 8j, W<D, lata = -1, latb = -1,
xpos, ypos, untouched = Table@True, 8i, H<, 8j, W<D<,

For@lata = 0, lata § latvecA@@3DD,
For@latb = 0, latb § latvecB@@3DD, xpos =

Mod@lata* latvecA@@1DD + latb * latvecB@@1DD, H, 1D ;
ypos = Mod@lata * latvecA@@2DD + latb* latvecB@@2DD,

W, 1D ; If@untouched@@ypos, xposDD,
untouched@@ypos, xposDD = False;
xpos += Random@Integer, randrangeD;
ypos += Random@Integer, randrangeD;
For@j = 1 , j § size, For@i = 1, i § size,

result@@Mod@ypos + j, H, 1D,
Mod@xpos + i, W, 1DDD = 1; i++D; j++DD;

latb++D;
lata++D; result

D

2 latdata = MakeLattice@400, 400, 80, 20, 40<,
816, 4, 25<, 4, 80, 0<D; fourlat = Fourier@latdataD;

3
Show@GraphicsArray@

8ImagePlot@latdataD, FourierImagePlot@fourlatD,
ImagePlot@Chop@InverseFourier@fourlatDDD<D,

ImageSize Ø 1000, DisplayNowD
The noise is simulated by making small random displacements 
of each "atom" about its site in the perfect crystal, then 
computing the Fourier transform of the resulting somewhat 
imperfect crystal...

4
thermallatdata =

MakeLattice@400, 400, 80, 20, 40<, 816, 4, 25<, 4, 8-2, 2<D;
thermalfourlat = Fourier@thermallatdataD;

5
Show@GraphicsArray@8ImagePlot@thermallatdataD,

FourierImagePlot@thermalfourlatD,
ImagePlot@Chop@InverseFourier@thermalfourlatDDD<D,

ImageSize Ø 1000, DisplayNowD

http://pruffle.mit.edu/3.016-2006/Notebooks/L18/Lecture-18.nb
http://pruffle.mit.edu/3.016-2006/pdf/L18/Lecture-18-5.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-18/HTMLLinks/index_5.html
http://pruffle.mit.edu/3.016-2006
http://pruffle.mit.edu/3.016-2006/html/Lecture-18/HTMLLinks/index_5.html
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Lecture 18 Mathematica R© Example 6

Using an Aperature to Select Particular Perioidicities in a Diffraction Pattern

Download notebooks, pdfs, or html from http://pruffle.mit.edu/3.016-2006.

This is a function designed to select particular regions from fourier transforms of a perfect lattice and the
perturbation of a perfect lattice, and then display eight images in two columns. The left column of graphics
illustrates (from top to bottom) the ”clean” input image, the entire fourier transform with the rectangular
aperature illustrated, the ”reconstructed image” that derives from the fourier transform of the aperature region,
and finally a magnified image of the fourier transform within the aperature only.

A,B The adjusted (~k = 0 at center) input data from the Fourier transforms of
the reference lattice and one that will create a ‘diffuse’ pattern.

B,C The diffraction images of the data.
E,F Data from only a selected portion of values ∆~kx,∆~ky of the input data.

This data should only have the periodicities of the original lattice for these
selected values.

G–L The images associated with all the data and their reconstructions.
M Producing the array of graphics.

1

Compare@sharpdata_ , sharpfourierdata_ ,
diffusedata_, diffusefourierdata_, ApCenterx_ ,
ApCentery_, ApTwicewidth_ , ApTwiceheight_ D :=

H*Details left out of code in this displayed version,
full code in notebook, html, and pdf of results*L;

Module@8H*.. local variables..*L<,
H*A*L shiftedsharpfourier = KZeroAtCenter@sharpfourierdataD;
H*B*L shifteddiffusefourier = KZeroAtCenter@diffusefourierdataD;
H*C*L sharpfourimage = ListDensityPlot@Abs@shiftedsharpfourierDD;
H*D*L
diffusefourimage = ListDensityPlot@Abs@shifteddiffusefourierDD;
H*... Compute Aperature Function... *L;
H*E*Lsharpfourieraperature=
aperature*shiftedsharpfourier;

H*F*Ldiffusefourieraperature =

aperature *shifteddiffusefourier;
H*G*Lsharpapimage = Show@sharpfourimage, AperatureD;
H*H*Ldiffuseapimage =
Show@diffusefourimage, AperatureD;

H*I*Lsharpfourmagimage =
ListDensityPlot@Abs@shiftedsharpfourierDD;

H*J*Ldiffusefourmagimage =
ListDensityPlot@Abs@shifteddiffusefourierDD;

H*K*Lsharprevfourimage =
ListDensityPlot@Abs@Chop@InverseFourier@

KZeroAtCenter@sharpfourieraperatureDDDDD;
H*L*Ldiffuserevfourimage = ListDensityPlot@

Abs@Chop@InverseFourier@
KZeroAtCenter@diffusefourieraperatureDDDDD;

H*M*LShow@GraphicsArray@8
8ImagePlot@sharpdataD, ImagePlot@diffusedataD<,
8sharpapimage, diffuseapimage<,
8sharprevfourimage, diffuserevfourimage<,
8sharpfourmagimage, diffusefourmagimage<

<
E;

E
E

http://pruffle.mit.edu/3.016-2006/Notebooks/L18/Lecture-18.nb
http://pruffle.mit.edu/3.016-2006/pdf/L18/Lecture-18-6.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-18/HTMLLinks/index_6.html
http://pruffle.mit.edu/3.016-2006
http://pruffle.mit.edu/3.016-2006/html/Lecture-18/HTMLLinks/index_6.html
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Lecture 18 Mathematica R© Example 7

Visualizing Simulated Selected Area Diffraction

Download notebooks, pdfs, or html from http://pruffle.mit.edu/3.016-2006.

Examples of selecting particular periodicities from ideal input and ‘noisy’ input data.

1: An ideal lattice and its Fourier transform are computed.
2: A ‘thermal’ perturbation of the ideal lattice and its Fourier transform are

computed.
3: An example of selecting only those periodicities within 50 increments of

~k = 0.
9: Creating input data where the ‘phonon modes’ have anisotropic ampli-

tudes.
10: If the ‘thermal vibration’ appears only in the vertical direction, the re-

sulting diffraction pattern gets ‘streaked’ in the horizontal direction.

1
latdata =

MakeLattice@400, 400, 80, 20, 40<, 816, 4, 25<, 4, 80, 0<D;
fourlat = Fourier@latdataD;

2
thermallatdata =

MakeLattice@400, 400, 80, 20, 40<, 816, 4, 25<, 4, 8-1, 1<D;
thermalfourlat = Fourier@thermallatdataD;

3 Compare@latdata, fourlat,
thermallatdata, thermalfourlat, 0, 0, 50, 50D

4 Compare@latdata, fourlat, thermallatdata,
thermalfourlat, 100, 100, 25, 25D

5 Compare@latdata, fourlat,
thermallatdata, thermalfourlat, 20, 30, 15, 15D

6 Compare@latdata, fourlat,
thermallatdata, thermalfourlat, 30, 30, 15, 15D

7 Compare@latdata, fourlat,
thermallatdata, thermalfourlat, 35, 25, 15, 15D

Modify the function MakeLattice to make "noise" anisotropic

8 MakeLattice@W_, H_, latvecA_, latvecB_, size_ ,
Xrandrange_, Yrandrange_D := H*details in notebook*L

The following data only has fluctuations in the vertical direction:

9
thermallatdata = MakeLattice@400, 400,

80, 20, 40<, 816, 4, 25<, 4, 80, 0<, 8-4, 4<D;
thermalfourlat = Fourier@thermallatdataD;
The resulting Fourier transform gets "streaked"  horizontally 

10 Compare@latdata, fourlat,
thermallatdata, thermalfourlat, 0, 0, 200, 200D

http://pruffle.mit.edu/3.016-2006/Notebooks/L18/Lecture-18.nb
http://pruffle.mit.edu/3.016-2006/pdf/L18/Lecture-18-7.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-18/HTMLLinks/index_7.html
http://pruffle.mit.edu/3.016-2006
http://pruffle.mit.edu/3.016-2006/html/Lecture-18/HTMLLinks/index_7.html
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Lecture 18 Mathematica R© Example 8

Discrete Fourier Transforms of Real Images

Download notebooks, pdfs, or html from http://pruffle.mit.edu/3.016-2006.

A image in graphics format, such as a .png, contains intensity as a function of position. If the function is
gray-scale data, then each pixel typically takes on 28 discrete gray values between 0 and 255. This data can be
input into Mathematica R© and then Fourier transformed. Images used here and below can be obtained from
http://pruffle.mit.edu/3.016/Images.

1: An image in a number of different graphics formats can be imported into
Mathematica R© with Import.

3: The image data is stored in a complicated format, but the gray values
(indexed as integers between 0 and 255) are stored as the first item in the
first list.

6: This illustrates the original image, its diffraction pattern, and recon-
structed image.

Importing an image into Mathematica, .png is some of 
many graphics data types that Mathematica can process.

(Note: all of the images below can be downloaded from 
http://pruffle.mit.edu/3.016/Images/

1 AnImage = Import@"êUsersêccarterêclassesê
3016êImagesêfourier_xtal_data.png"D;

2 Show@AnImage, DisplayNowD
3 ImageData = AnImage@@1, 1DD ê255;

4 Dimensions@ImageDataD
5 FourierImageData = Fourier@ImageDataD;

6
Show@GraphicsArray@8ImagePlot@ImageDataD,

FourierImagePlot@FourierImageDataD,
ImagePlot@Chop@InverseFourier@FourierImageDataDDD<D,

ImageSize Ø 1000, DisplayNowD

http://pruffle.mit.edu/3.016-2006/Notebooks/L18/Lecture-18.nb
http://pruffle.mit.edu/3.016-2006/pdf/L18/Lecture-18-8.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-18/HTMLLinks/index_8.html
http://pruffle.mit.edu/3.016-2006
http://pruffle.mit.edu/3.016/Images
http://pruffle.mit.edu/3.016-2006/html/Lecture-18/HTMLLinks/index_8.html
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Lecture 18 Mathematica R© Example 9

Selected Area Diffraction on Image Data

Download notebooks, pdfs, or html from http://pruffle.mit.edu/3.016-2006.

An function, ImageFourierAperature , that reads in the name of an image file and information about which
regions of ~k-space to select is developed.

A fourierdata is the shifted fourier transform of the image-file’s data.
C aperature is a matrix of zeroes and ones representing the region in ~k-space

to be retained.
H This will display four images. To the right of the orginal image will be the

diffraction pattern with an indication of where the aperature is located.
Below the diffraction image will be a magnification of the aperature region.
Below the original image will be the reconstructed image obtained from
only those periodicities available in the aperature.

1

ImageFourierAperature@imagefile_,
Apxmin_ , Apxmax_, Apymin_ , Apymax_ D :=

Module@8theimage = Import@imagefileD, dims ,
nrows, ncols, fourierdata, fourimage,
fourieraperature, apimage, fourmagimage,
revfourierimage, aperature, xll, yll, xur, yur<,

H*A*L fourierdata = KZeroAtCenter@
Fourier@Htheimage@@1, 1DD ê255LDD;

H*B*Lfourimage = ListDensityPlot@Abs@fourierdataD,
Mesh -> False, ImageSizeØ 144,
FourierColor, DisplayLaterD;

dims = Dimensions@fourierdataD;
nrows = dims@@1DD; ncols = dims@@2DD;
xll = Round@ncols ê2 + Apxmin*ncols ê2D;
yll = Round@nrows ê2 + Apymin*nrows ê2 D;
xur = Round@ncols ê2 + Apxmax *ncols ê2 D;
yur = Round@nrows ê2 + Apymax *nrows ê2D;
xll = If@xll < 1, 1, xllD; xur = If@xur > ncols, ncols, xurD;
yll = If@yll < 1, 1, yllD; yur = If@yur > nrows, nrows, yurD;
H*C*L aperature =
Table@If@And@i ¥ yll, i § yur, j ¥ xll, j § xurD , 1, 0D,
8i, nrows<, 8j, ncols<D;

H*D*L fourieraperature = aperature* fourierdata;
H*E*L apimage = Show@fourimage, Graphics@8

Hue@.1667, 1, 1D, Thickness@2 ênrowsD,
Line@88 xll - 1, yll- 1<,

8 xur+ 1, yll- 1<, 8 xur + 1, yur + 1<,
8 xll- 1, yur + 1<, 8 xll - 1, yll- 1<<D<DD;

xll = If@xll < 1, 1, xllD; xur = If@xur > nrows, nrows, xurD;
yll = If@yll < 1, 1, yllD; yur = If@yur > ncols, ncols, yurD;
H*F*L fourmagimage = ListDensityPlot@

Abs@fourierdata@@Range@yll, yurD, Range@xll, xurDDDD,
Mesh -> False, FourierColor, DisplayLaterD;

H*G*L revfourimage = ListDensityPlot@Abs@Chop@
InverseFourier@KZeroAtCenter@fourieraperatureDDDD,

MeshØ False, DisplayLaterD;
H*H*LShow@GraphicsArray@8

8theimage, apimage<,
8revfourimage, fourmagimage<

<
D, ImageSizeØ 1000,
GraphicsSpacingØ 8.001, .0<, DisplayNowD;

D

http://pruffle.mit.edu/3.016-2006/Notebooks/L18/Lecture-18.nb
http://pruffle.mit.edu/3.016-2006/pdf/L18/Lecture-18-9.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-18/HTMLLinks/index_9.html
http://pruffle.mit.edu/3.016-2006
http://pruffle.mit.edu/3.016-2006/html/Lecture-18/HTMLLinks/index_9.html
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Lecture 18 Mathematica R© Example 10

Visualizing Selected Area Diffraction on Image Data

Download notebooks, pdfs, or html from http://pruffle.mit.edu/3.016-2006.

Examples and interpretations of using the function ImageFourierAperature on several input files. Images used
here and below can be obtained from http://pruffle.mit.edu/3.016/Images.

1-4 Examples of selecting diffraction spots from an image of a penrose tiling.
The ‘streaks’ come from the lines between tiles. Picking out particular ~k
image lines of similar tilt in the reconstructed image.

5: Picking out particular periodicities allows one to image a selected set of
oriented grains in a polycrystal.

6: Of course, one is not limited to playing with images of crystals and
tilings. . .

1
ImageFourierAperature@
"êUsersêccarterêclassesê3016êImagesêpenrose.png",
-1, 1, -1, 1D

2
ImageFourierAperature@
"êUsersêccarterêclassesê3016êImagesêpenrose.png",
-0.1, 0.1, -0.2, 0.2D

3
ImageFourierAperature@
"êUsersêccarterêclassesê3016êImagesêpenrose.png",
.04, .14, .05, .15D

4
ImageFourierAperature@
"êUsersêccarterêclassesê3016êImagesêpenrose.png",
.14, .24, .11, .21D

5
ImageFourierAperature@
"êUsersêccarterêclassesê3016êImagesêpolycrystal.png",
.1, .3, .2, .4D

6 ImageFourierAperature@
"êUsersêccarterêclassesê3016êImagesêAB.gif", -1, 1, -1, 1D

7
ImageFourierAperature@
"êUsersêccarterêclassesê3016êImagesêAB.gif",
-0.5, 0.5, -0.05, 0.05D

8
ImageFourierAperature@
"êUsersêccarterêclassesê3016êImagesêAB.gif",
-0.05, 0.05, -0.5, 0.5D

http://pruffle.mit.edu/3.016-2006/Notebooks/L18/Lecture-18.nb
http://pruffle.mit.edu/3.016-2006/pdf/L18/Lecture-18-10.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-18/HTMLLinks/index_10.html
http://pruffle.mit.edu/3.016-2006
http://pruffle.mit.edu/3.016/Images
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