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Nov. 1 2006

Lecture 17: Function Representation by Fourier Series

Reading:
Kreyszig Sections: 11.1, 11.2, 11.3 (pages478–485, 487–489, 490–495)

Periodic Functions

Periodic functions should be familiar to everyone. The keeping of time, the ebb and flow of tides, the
patterns and textures of our buildings, decorations, and vestments invoke repetition and periodicity
that seem to be inseparable from the elements of human cognition.9 Although other species utilize
music for purposes that we can only imagine—we seem to derive emotion and enjoyment from making
and experience of music.

9I hope you enjoy the lyrical quality of the prose. While I wonder again if anyone is reading these notes, my wistfulness
is taking a poetic turn:

They repeat themselves
What is here, will be there
It wills, willing, to be again
spring; neap, ebb and flow, wane; wax
sow; reap, warp and woof, motif; melody.
The changed changes. We remain
Perpetually, Immutably, Endlessly.



140 MIT 3.016 Fall 2006 c© W.C Carter Lecture 17

Lecture 17 Mathematica R© Example 1

Playing with Audible Periodic Phenomena

Download notebooks, pdfs, or html from http://pruffle.mit.edu/3.016-2006.

Several example of creating sounds using mathematical functions are illustrated for education and amusement.

1: The seven musical notes around middle C indexed here with integers and
then their frequencies (in hertz) are defined with a freq. The function
Note takes one of the seven indexed notes and creates a wave-form for
that note. The function Play takes the waveform and produces audio
output.

2: To superimpose notes together to make a chord, it would be convenient
to Map the function Note over a list. . .

3: The easiest way to exend a function so that it executes over a list is to
use SetAttributes and declare the function to be Listable.

5: Like the function Plot, Play will frequently need Evaluate called on
nontrivial arguments.

6: Chord make an ascending list of every second note and then uses Mod to
map those notes onto the primary domain (0,1,. . .,6).

8: If different notes are wanted at different times, an If statement can be
used.

9: This is the sequence of notes associated with the displayed musical score.
10: Beats is a function that takes a list of notes and arranges them into a

list where each member is an If statement stating when and for what
duration it should play. In addition to the sequence of notes, the function
takes two arguments, cadence and duration ¡ which specifiy how quickly
and how long to sustain the notes.

11: This is musical score with notes played every 0.75 seconds and held for
0.5 second. Joy.

12: This is random “music.” Oh boy.
13: This is noise generated from a function. Enjoy.

1

c = 0; d = 1; e = 2; f = 3; g = 4; a = 5; b = 6;
freq@cD = 261.6; freq@dD = 293.7; freq@eD = 329.6;
freq@fD = 349.2; freq@gD = 392.0;
freq@aD = 440.0; freq@bD = 493.9;
Note@note_D := Sin@ 2 Pi freq@noteD tD;
Play@Note@cD, 8t, 0, 2<D

2 Note@8c, e<D
3 SetAttributes@Note, ListableD
4 Play@8Note@cD, Note@eD<, 8t, 0, 2<D
5 Play@Evaluate@Note@8c, e<DD, 8t, 0, 2<D
6 Chord@note_D := Table@Note@Mod@note + i, 6DD, 8i, 0, 4, 2<D
7 Play@Evaluate@Chord@eDD, 8t, 0, 2<D
8 Play@If@t > 0.25 && t < 1.25, Note@aD, Note@cDD, 8t, 0, 1.5<D

Let's see if we can play this: 

9 twoframes = 8e, e, f, g, g, f, e, d, c, c, d, e<

10
Beats@list_, duration_, cadence_D := Table@If@

t ¥ Hi - 1L * cadence && t § Hi - 1L * cadence + duration,
Evaluate@list@@iDDD, 0D, 8i, 1, Length@listD<D

11 Play@Evaluate@Beats@Note@twoframesD, 0.5, 0.75DD, 8t, 0, 12<D

12 randomnotes =
Map@Note, Table@Random@Integer, 80, 6<D, 824<DD

13 Play@Evaluate@Beats@randomnotes, 0.5, 0.5DD, 8t, 0, 12<D

14 Play@Sin@1000 x Sin@Exp@x ê3D + Sin@xD êxDD +
Exp@x ê10D Sin@xDSin@1500 xD, 8x, -20, 10<D

A function that is periodic in a single variable can be expressed as:

f(x + λ) = f(x)
f(t + τ) = f(t)

(17-1)

The first form is a suggestion of a spatially periodic function with wavelength λ and the second form
suggests a function that is periodic in time with period τ . Of course, both forms are identical and
express that the function has the same value at an infinite number of points ( x = nλ in space or t = nτ
in time where n is an integer.)

Specification of a periodic function, f(x), within one period x ∈ (xo, xo + λ) defines the function
everywhere. The most familiar periodic functions are the trigonometric functions:

sin(x) = sin(x + 2π) and cos(x) = cos(x + 2π) (17-2)

However, any function can be turned into a periodic function.

http://pruffle.mit.edu/3.016-2006/Notebooks/L17/Lecture-17.nb
http://pruffle.mit.edu/3.016-2006/pdf/L17/Lecture-17-1.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-17/HTMLLinks/index_1.html
http://pruffle.mit.edu/3.016-2006
http://pruffle.mit.edu/3.016-2006/html/Lecture-17/HTMLLinks/index_1.html
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Lecture 17 Mathematica R© Example 2

Using “Mod” to Create Periodic Functions

Download notebooks, pdfs, or html from http://pruffle.mit.edu/3.016-2006.

Periodic functions are often associated with the “modulus” operation. Mod[x, λ] is the remainder of the result
of recursively dividing x by λ until the result lies in the domain 0 ≤ Mod[x, λ] < λ). Another way to think of
modulus is to find the “point” where are periodic function should be evaluated if its primary domain is x ∈ (0, λ).

1: Boomerang uses Mod on the argument of any function f of a single
argument to map the argument into the domain (0, λ). Therefore, calling
Boomerang on any function will create a infinitely periodic repetition of
the function in the domain (0, λ).

3: Plot called on the periodic extension of wavelength λ = 6 of a function
illustrates the effect of Boomerang . a periodic function with a specified
period.

Boomerang uses Mod to force a function, f, with a single 
argument, x, to be periodic with wavelength l

1 Boomerang@f_ , x_ , l_ D := f@Mod@x, lDD
2 AFunction@x_ D := HH3- xL^3L ê27

The following step uses Boomerang to produce a periodic 
repetition of AFunction over the range 0 < x < 6:

3 Plot@Boomerang@AFunction, x, 6D,
8x, -12, 12<, PlotRange Ø AllD

Odd and Even Functions

The trigonometric functions have the additional properties of being an odd function about the point
x = 0: fodd : fodd(x) = −fodd(−x) in the case of the sine, and an even function in the case of the
cosine: feven : feven(x) = feven(−x).

This can generalized to say that a function is even or odd about a point λ/2: foddλ
2

: foddλ
2
(λ/2+x) =

−foddλ
2
(λ/2− x) and fevenλ

2
: fevenλ

2
(λ/2 + x) = fevenλ

2
(λ/2− x).

Any function can be decomposed into an odd and even sum:

g(x) = geven + godd (17-3)

http://pruffle.mit.edu/3.016-2006/Notebooks/L17/Lecture-17.nb
http://pruffle.mit.edu/3.016-2006/pdf/L17/Lecture-17-2.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-17/HTMLLinks/index_2.html
http://pruffle.mit.edu/3.016-2006
http://pruffle.mit.edu/3.016-2006/html/Lecture-17/HTMLLinks/index_2.html
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The sine and cosine functions can be considered the odd and even parts of the generalized trigono-
metric function:

eix = cos(x) + ı sin(x) (17-4)

with period 2π.

Representing a particular function with a sum of other functions

A Taylor expansion approximates the behavior of a suitably defined function, f(x) in the neighborhood
of a point, xo, with a bunch of functions, pi(x), defined by the set of powers:

pi ≡ ~p = (x0, x1, . . . , xj , . . .) (17-5)

The polynomial that approximates the function is given by:

f(x) = ~A · ~p (17-6)

where the vector of coefficients is defined by:

Ai ≡ ~A = (
1
0!

f(xo),
1
1!

df

dx

∣∣∣∣
xo

, . . . ,
1
j!

djf

dxj

∣∣∣∣
xo

, . . .) (17-7)

The idea of a vector of infinite length has not been formally introduced, but the idea that as the
number of terms in the sum in Eq. 17-6 gets larger and larger, the approximation should converge to
the function. In the limit of an infinite number of terms in the sum (or the vectors of infinite length)
the series expansion will converge to f(x) if it satisfies some technical continuity constraints.

However, for periodic functions, the domain over which the approximation is required is only one
period of the periodic function—the rest of the function is taken care of by the definition of periodicity
in the function.

Because the function is periodic, it makes sense to use functions that have the same period to
approximate it. The simplest periodic functions are the trigonometric functions. If the period is λ, any
other periodic function with periods λ/2, λ/3, λ/N , will also have period λ. Using these ”sub-periodic”
trigonometric functions is the idea behind Fourier Series.
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Fourier Series

The functions cos(2πx/λ) and sin(2πx/λ) each have period λ. That is, they each take on the same
value at x and x + λ.

There are an infinite number of other simple trigonometric functions that are periodic in λ; they
are cos[2πx/(λ/2))] and sin[2πx/(λ/2))] and which cycle two times within each λ, cos[2πx/(λ/3))]
and sin[2πx/(λ/3))] and which cycle three times within each λ, and, in general, cos[2πx/(λ/n))] and
sin[2πx/(λ/n))] and which cycle n times within each λ.

The constant function, a0(x) = const, also satisfies the periodicity requirement.
The superposition of multiples of any number of periodic function must also be a periodic function,

therefore any function f(x) that satisfies:

f(x) = E0 +
∞∑

n=1

En cos
(

2πn

λ
x

)
+
∞∑

n=1

On sin
(

2πn

λ
x

)

= Ek0 +
∞∑

n=1

Ekn cos(knx) +
∞∑

n=1

Okn sin(knx)

(17-8)

where the ki are the wave-numbers or reciprocal wavelengths defined by kj ≡ 2πj/λ. The k’s represent
inverse wavelengths—large values of k represent short-period or high-frequency terms.

If any periodic function f(x) could be represented by the series in in Eq. 17-8 by a suitable choice
of coefficients, then an alternative representation of the periodic function could be obtained in terms
of the simple trigonometric functions and their amplitudes.

The “inverse question” remains: “How are the amplitudes Ekn (the even trigonometric terms) and
Okn (the odd trigonometric terms) determined for a given f(x)?”

The method follows from what appears to be a “trick.” The following three integrals have simple
forms for integers M and N :∫ x0+λ

x0

sin
(

2πM

λ
x

)
sin
(

2πN

λ
x

)
dx =

{
λ
2 if M = N
0 if M 6= N∫ x0+λ

x0

cos
(

2πM

λ
x

)
cos
(

2πN

λ
x

)
dx =

{
λ
2 if M = N
0 if M 6= N∫ x0+λ

x0

cos
(

2πM

λ
x

)
sin
(

2πN

λ
x

)
dx = 0 for any integers M,N

(17-9)

The following shows a demonstration of this orthogonality relation for the trignometric functions.
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Lecture 17 Mathematica R© Example 3

Orthogonality of Trignometric Functions

Download notebooks, pdfs, or html from http://pruffle.mit.edu/3.016-2006.

Demonstrating that the relations in Eq. 17-9 are true.

1: Using Integrate for cos(2πMx/λ) cos(2πNx/λ) over a definite interval
of a single wavelength, does not produce a result that obviously vanishes
for M 6= N .

2: However, replacing any of the symbolic integers with actual integers re-
sults in a zero. So, one the orthogonality relation is plausible.

3: Using Assuming and Limit, one can show that the relation ship vanishes
for N = M . Although, it is a bit odd to be thinking about continuous
limits with integers.

5: Similarly for
∫

cos(2πMx/λ) sin(2πNx/λ)dx.
9: and for

∫
sin(2πMx/λ) sin(2πNx/λ)dx.

1
coscos = IntegrateACosA 2 pMinteger xÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

l
ECosA 2 pNinteger xÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

l
E ,

8x, xo, xo + l<, AssumptionsØ 8Minteger e Integers,
Ninteger œ Integers, xo œ Reals, l > 0<E

2 Simplify@coscos ê. 8MintegerØ 4 , NintegerØ 34<D

3
Assuming@Minteger e Integers &&

Ninteger œ Integers && xo œ Reals && l œ Reals,
Limit@coscos, MintegerØ NintegerDD

4
cossin = IntegrateACosA 2 pMinteger xÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

l
ESinA 2 pNinteger xÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

l
E ,

8x, xo, xo + l<, AssumptionsØ 8Minteger e Integers,
Ninteger œ Integers, xo œ Reals, l > 0<E

5 Simplify@cossin ê. 8MintegerØ -7 , NintegerØ 35<D

6
Assuming@Minteger e Integers &&

Ninteger œ Integers && xo œ Reals && l œ Reals,
Limit@cossin, MintegerØ NintegerDD

7
sinsin = IntegrateASinA 2 pMinteger xÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

l
ESinA 2 pNinteger xÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

l
E ,

8x, xo, xo + l<, AssumptionsØ 8Minteger e Integers,
Ninteger œ Integers, xo œ Reals, l > 0<E

8 Simplify@sinsin ê. 8MintegerØ 10 , NintegerØ 9<D

9
Assuming@Minteger e Integers &&

Ninteger œ Integers && xo œ Reals && l œ Reals,
Limit@sinsin, MintegerØ NintegerDD

Using this orthogonality trick, any amplitude can be determined by multiplying both sides of Eq. 17-
8 by its conjugate trigonometric function and integrating over the domain. (Here we pick the domain
to start at zero, x ∈ (0, λ), but any other starting point would work fine.)

cos(kMx)f(x) = cos(kMx)

(
Ek0 +

∞∑
n=1

Ekn cos(knx) +
∞∑

n=1

Okn sin(knx)

)
∫ λ

0
cos(kMx)f(x)dx =

∫ λ

0
cos(kMx)

(
Ek0 +

∞∑
n=1

Ekn cos(knx) +
∞∑

n=1

Okn sin(knx)

)
dx

∫ λ

0
cos(kMx)f(x)dx =

λ

2
EkM

(17-10)

This provides a formula to calculate the even coefficients (amplitudes) and multiplying by a sin function
provides a way to calculate the odd coefficients (amplitudes) for f(x) periodic in the fundamental

http://pruffle.mit.edu/3.016-2006/Notebooks/L17/Lecture-17.nb
http://pruffle.mit.edu/3.016-2006/pdf/L17/Lecture-17-3.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-17/HTMLLinks/index_3.html
http://pruffle.mit.edu/3.016-2006
http://pruffle.mit.edu/3.016-2006/html/Lecture-17/HTMLLinks/index_3.html
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domain x ∈ (0, λ).

Ek0 =
1
λ

∫ λ

0
f(x)dx

EkN
=

2
λ

∫ λ

0
f(x) cos(kNx)dx kN ≡ 2πN

λ

OkN
=

2
λ

∫ λ

0
f(x) sin(kNx)dx kN ≡ 2πN

λ

(17-11)

The constant term has an extra factor of two because
∫ λ
0 Ek0dx = λEk0 instead of the λ/2 found in

Eq. 17-9.

Other forms of the Fourier coefficients

Sometimes the primary domain is defined with a different starting point and different symbols, for
instance Kreyszig uses a centered domain by using −L as the starting point and 2L as the period,
and in these cases the forms for the Fourier coefficients look a bit different. One needs to look at the
domain in order to determine which form of the formulas to use.

Extra Information and Notes
Potentially interesting but currently unnecessary

The “trick” of multiplying both sides of Eq. 17-8 by a function and integrating comes from
the fact that the trigonometric functions form an orthogonal basis for functions with inner
product defined by

f(x) · g(x) =
∫ λ

0
f(x)g(x)dx

Considering the trigonometric functions as components of a vector:

~e0(x) =(1, 0, 0, . . . , )
~e1(x) =(0, cos(k1x), 0, . . . , )
~e2(x) =(0, 0, sin(k1x), . . . , )

. . . =
...

~en(x) =(. . . . . . , sin(knx), . . . , )

then these “basis vectors” satisfy ~ei · ~ej = (λ/2)δij, where δij = 0 unless i = j. The trick is
just that, for an arbitrary function represented by the basis vectors, ~P (x) · ~ej(x) = (λ/2)Pj.
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Lecture 17 Mathematica R© Example 4

Calculating Fourier Series Amplitudes

Download notebooks, pdfs, or html from http://pruffle.mit.edu/3.016-2006.

Functions are developed which compute the even (cosine) amplitudes and odd (sine) amplitudes for an input
function of one variable. These functions are extended to produce the first N terms of a Fouriers series.

1: EvenTerms computes symbolic representations of the even (cosine) co-
efficients using the formulas in Eq. 17-11. The N = 0 term is computed
with a supplemental defintion because of its extra factor of 2. The domain
is chosen so that it begins at x = 0 and ends at x = λ.

2: OddTerms performs a similar computation for the sine-coefficients; the
N = 0 amplitude is set to zero explicitely. It will become convenient to
include the zeroth-order coefficient for the odd (sine) series which vanishes
by definition. The functions work by doing an integral for each term—this
is not very efficient. It would be more efficient to calculate the integral
symbolically once and then evaluate it once for each term.

4: efOddAmplitudeVector and EvenAmplitudeVectors create amplitude vec-
tors for the cosine and sine terms with specified lengths and domains.

5: This function, f(x) = x(1−x)2(2−x), will be used for particular examples
of Fourier series, note that it is an even function over 0 < x < 2. . .

7: The functions, OddBasisVector and EvenBasisVector , create vectors of
basis functions of specified lengths and perioidic domains.

8: The Fourier series up to a certain order can be defined as the sum of two
inner (dot) products: the inner product of the odd coefficient vector and
the sine basis vector, and the inner product of the even coefficient vector
and the cosine basis vector.

12: This will illustrate the approximation for a truncated (N = 6) Fourier
series

1

EvenTerms@0, function_ , l_D :=
1
ÅÅÅÅÅÅ
l

 Integrate@function@dummyD, 8dummy, 0, l<D
EvenTerms@SP_Integer, function_, l_D :=
2
ÅÅÅÅÅÅ
l

 Integrate@function@zD *Cos@H2 *SP*Pi*zL êlD, 8z, 0, l<D

2
OddTerms@0, function_ , wavelength_D := 0
OddTerms@SP_Integer, function_ , l_D :=
2
ÅÅÅÅÅÅ
l

 Integrate@function@zD*Sin@H2*SP *Pi*zL êlD, 8z, 0, l<D

3
OddAmplitudeVector@

NTerms_Integer, function_, wavelength_D :=
Table@OddTerms@i, function, wavelengthD, 8i, 0, NTerms<D

4
EvenAmplitudeVector@

NTerms_Integer, function_, wavelength_D :=
Table@EvenTerms@i, function, wavelengthD, 8i, 0, NTerms<D

5 myfunction@x_ D := Hx* H2- xL * H1 - xL^2L

6 OriginalPlot = Plot@myfunction@xD, 8x, 0, 2<,
PlotStyleØ 8Hue@1D, Thickness@0.015D<D

7
OddBasisVector@NTerms_Integer, var_, wavelength_D :=
TableASinA 2 p i var

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
wavelength E, 8i, 0, NTerms<E

8
EvenBasisVector@NTerms_Integer, var_, wavelength_D :=
TableACosA 2 p i var

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
wavelength E, 8i, 0, NTerms<E

9

FourierTruncSeries@n_, function_, var_ , wavelength_D :=
EvenAmplitudeVector@n, function, wavelengthD.

EvenBasisVector@n, var, wavelengthD +
OddAmplitudeVector@n, function, wavelengthD.
OddBasisVector@n, var, wavelengthD

10 FourierTruncSeries@6, myfunction, x, 2D

11 FourierPlot =
Plot@FourierTruncSeries@6, myfunction, x, 2D, 8x, -2, 4<D

12 Show@OriginalPlot, FourierPlotD

http://pruffle.mit.edu/3.016-2006/Notebooks/L17/Lecture-17.nb
http://pruffle.mit.edu/3.016-2006/pdf/L17/Lecture-17-4.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-17/HTMLLinks/index_4.html
http://pruffle.mit.edu/3.016-2006
http://pruffle.mit.edu/3.016-2006/html/Lecture-17/HTMLLinks/index_4.html
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Lecture 17 Mathematica R© Example 5

Using the Calculus‘FourierTransform‘ package

Download notebooks, pdfs, or html from http://pruffle.mit.edu/3.016-2006.

Fourier series expansions are a common and useful mathematical tool, and it is not surprising that
Mathematica R© would have a package to do this and replace the inefficient functions defined in the pre-
vious example.

1: The functions in Calculus‘FourierTransform‘ are designed to operate
on the unit period located at x ∈ (−1/2, 1/2). Therefore, the domains
of functions of interest must be mapped onto this domain by a change of
variables.

4: ReduceHalfHalf is an example of a function design to do the required
mapping. First the length of original domain is mapped to unity by
dividing through by λ and then the origin is shifted by mapping the x (that
the Mathematica R© functions will see) to (0, 1) with the transformation
x → x + 1

2 .
8: Particular amplitudes of the properly remapped function can

be obtained with the functions FourierCosCoefficient and
FourierSinCoefficient. In this example, a symbolic n is entered and a
symbolic representation of the nth amplitude is returned.

9: A truncated Fourier series can be obtained symbolically to any order with
FourierTrigSeries.

1 << Calculus`FourierTransform`

2 AFunction@x_D :=
Hx - 3L^3
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

27

3 Plot@AFunction@xD, 8x, 0, 6<D

Mathematica's Fourier Series functions are defined for 
function that are periodic in the domain x œ (-1/2,1/2).  So 
we need to map the periodic functions to this domain

4 ReduceHalfHalf@f_ , x_ , l_ D := f@Hx + 1 ê2L *l D

5 ReducedFunction =
ReduceHalfHalf@AFunction, x, 6D êê Simplify

6 Plot@ReducedFunction, 8x, -1 ê2, 1 ê2<, PlotRange Ø AllD
7 FourierCosCoefficient@ReducedFunction, x, nD
8 FourierSinCoefficient@ReducedFunction, x, nD
9 FourierTrigSeries@ReducedFunction, x, 5D

http://pruffle.mit.edu/3.016-2006/Notebooks/L17/Lecture-17.nb
http://pruffle.mit.edu/3.016-2006/pdf/L17/Lecture-17-5.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-17/HTMLLinks/index_5.html
http://pruffle.mit.edu/3.016-2006
http://pruffle.mit.edu/3.016-2006/html/Lecture-17/HTMLLinks/index_5.html
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Lecture 17 Mathematica R© Example 6

Visualizing Convergence of the Fourier Series: Gibbs Phenomenon

Download notebooks, pdfs, or html from http://pruffle.mit.edu/3.016-2006.

Functions that produce animations (each frame representing a different order of truncation of the Fourier series)
are developed. This example illustrates Gibbs phenomenon where the approximating function oscillates wildly
near discontinuities in the original function.

1: AnimateTruncatedFourierSeries is a simple example of an animation
function for the truncated Fourier series. It uses the Table func-
tion with three arguments in the iterator for the initial truncation
truncationstart, final truncation, and the number to skip in between.. . .

2: However, because the entire series is recomputed for each frame, the func-
tion above is not very efficient. In this second version, only two arguments
are supplied to the iterator. At each frame, the two N th Fourier terms
are added to the sum of terms computed previously.

3: Because ReducedFunction has a discontinuity (its end-value and intitial
value differ), this animation will show Gibbs phenomena near the edges
of the domain.

5: FourierCosCoefficient will show a frequently observed feature in the
amplitudes of Fourier coefficients. The amplitude’s magnitude becomes
smaller and smaller with larger n, and the sign of the terms tend to
oscillate between positive and negative values.

8: Plots of the magnitudes of the amplitudes are a “signature” of the original
function in a new space. Each term indicates what “amount” of each pe-
riodicity is present in the original function. The plot could be interpreted
as a “frequency” or “wavelength” representation of the original function.

1

AnimateTruncatedFourierSeries@function_,
8truncationstart_, truncationend_, truncjump_<D :=

Table@Plot@Evaluate@FourierTrigSeries@function, x, itruncDD,
8x, -1, 1<, PlotRange Ø 8-2, 2<D,

8itrunc, truncationstart, truncationend, truncjump<D;
The function is demonstrative, but is inefficient because 
coefficients are recalculated needlessly. A more efficient version 
appears below.

2

AnimateTruncatedFourierSeries@function_,
8truncationstart_, truncationend_<D :=

Module@8coscof, sincof, currentappx , n, TwoPi = 2 p<,
currentappx = FourierCosCoefficient@function, x, 0D;
coscof@n_D =

Simplify@FourierCosCoefficient@function, x, nDD;
sincof@n_D = Simplify@

FourierSinCoefficient@function, x, nDD;
Table@Plot@Evaluate@currentappx +=

coscof@itruncD*Cos@TwoPi itrunc xD +
sincof@itruncD*Sin@TwoPi itrunc xDD,

8x, -1, 1<, PlotRange Ø 8-2, 2<D,
8itrunc, truncationstart, truncationend<D;D

The following will demonstrate how convergence is difficult 
where the function changes rapidly---this is known as Gibbs' 
Phenomenon

3 AnimateTruncatedFourierSeries@ReducedFunction, 81, 60<D

4 ReducedMyFunction =
ReduceHalfHalf@myfunction, x, 2D êê Simplify

General form of the even amplitudes

5 myfunccos = FourierCosCoefficient@4 x2 - 16 x4, x, nD
6 FourierSinCoefficient@4 x2 - 16 x4 , x, nD
7 ListPlot@Table@myfunccos, 8n, 1, 50<DD

8 ListPlot@Table@myfunccos, 8n, 1, 10<D,
PlotJoined Ø True, PlotRange Ø AllD

Complex Form of the Fourier Series

The behavior of the Fourier coefficients for both the odd (sine) and for the even (cosine) terms was
illustrated above. Functions that are even about the center of the fundamental domain (reflection
symmetry) will have only even terms—all the sine terms will vanish. Functions that are odd about
the center of the fundamental domain (reflections across the center of the domain and then across the
x-axis.) will have only odd terms—all the cosine terms will vanish.

Functions with no odd or even symmetry will have both types of terms (odd and even) in its
expansion. This is a restatement of the fact that any function can be decomposed into odd and even
parts (see Eq. 17-3).

This suggests a short-hand in Eq. 17-4 can be used that combines both odd and even series into
one single form. However, because the odd terms will all be multiplied by the imaginary number ı, the
coefficients will generally be complex. Also because cos(nx) = (exp(inx) + exp(−inx))/2, writing the
sum in terms of exponential functions only will require that the sum must be over both positive and
negative integers.

http://pruffle.mit.edu/3.016-2006/Notebooks/L17/Lecture-17.nb
http://pruffle.mit.edu/3.016-2006/pdf/L17/Lecture-17-6.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-17/HTMLLinks/index_6.html
http://pruffle.mit.edu/3.016-2006
http://pruffle.mit.edu/3.016-2006/html/Lecture-17/HTMLLinks/index_6.html
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For a periodic domain x ∈ (0, λ), f(x) = f(x + λ), the complex form of the fourier series is given
by:

f(x) =
∞∑

n=−∞
Ckneıknx where kn ≡

2πn

λ

Ckn =
1
λ

∫ λ

0
f(x)e−ıknxdx

(17-12)

Because of the orthogonality of the basis functions exp(ıknx), the domain can be moved to any
wavelength, the following is also true:

f(x) =
∞∑

n=−∞
Ckneıknx where kn ≡

2πn

λ

Ckn =
1
λ

∫ λ/2

−λ/2
f(x)e−ıknxdx

(17-13)

although the coefficients may have a different form.
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