Lecture 17: Function Representation by Fourier Series

Reading:
Kreyszig Sections: 11.1, 11.2, 11.3 (pages478-485, 487-489, 490-495)

Periodic Functions

Periodic functions should be familiar to everyone. The keeping of time, the ebb and flow of tides, the
patterns and textures of our buildings, decorations, and vestments invoke repetition and periodicity
that seem to be inseparable from the elements of human cognition.” Although other species utilize
music for purposes that we can only imagine—we seem to derive emotion and enjoyment from making
and experience of music.

°T hope you enjoy the lyrical quality of the prose. While I wonder again if anyone is reading these notes, my wistfulness
is taking a poetic turn:

They repeat themselves

What is here, will be there

It wills, willing, to be again

spring; neap, ebb and flow, wane; wax
sow; reap, warp and woof, motif; melody.
The changed changes. We remain
Perpetually, Immutably, Endlessly.
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Lecture 17 MATHEMATICA® Example 1

Playing with Audible Periodic Phenomena

notebook (non-evaluated)

pdf (evaluated)

html (evaluated)

Several example of creating sounds using mathematical functions are illustrated for education and amusement.

1:

10:

The seven musical notes around middle C indexed here with integers and
then their frequencies (in hertz) are defined with a freq. The function
Note takes one of the seven indexed notes and creates a wave-form for
that note. The function Play takes the waveform and produces audio
output.

To superimpose notes together to make a chord, it would be convenient
to Map the function Note over a list. ..

The easiest way to exend a function so that it executes over a list is to
use SetAttributes and declare the function to be Listable.

Like the function Plot, Play will frequently need Evaluate called on
nontrivial arguments.

Chord make an ascending list of every second note and then uses Mod to
map those notes onto the primary domain (0,1,. . .,6).

If different notes are wanted at different times, an If statement can be
used.

This is the sequence of notes associated with the displayed musical score.
Beats is a function that takes a list of notes and arranges them into a
list where each member is an If statement stating when and for what
duration it should play. In addition to the sequence of notes, the function

takes two arguments, cadence and duration | which specifiy how quickly
and how long to sustain the notes.

This is musical score with notes played every 0.75 seconds and held for

0.5 second. Joy.
This is random “music.”

Oh boy.

This is noise generated from a function. Enjoy.

=0;d=1;e=2;f=3;
freqlcl =261.6; freqld] =293.7; freqlel
q freqlfl = 349.2; freq(g] = 392.0;
freqlal = 440.0; freqlbl = 493.9;
Note[note_| := Sin[ 2 Pifreqlnotel t];
Play[Notelcl, {t, 0, 2}]

g=4;a=5b=6;
=329.6;

2| Notel{c, e}]

3| SetAttributes[Note, Listable] 3.016 Home

L

4| Play[{Notelc], Notelel}, {t, 0, 2}]

6| Chord[note_] := Table[Note[Mod[note + i, 611, i, 0, 4, 2}]

7| Play[EvaluatelChordlell, {t, 0, 2}]

l
l
l
5[ Play|Evaluate[Notel(c, e}l], t, 0, 2]
l
l
l

8| Playl[lf[t > 0.25 && t < 1.25, Notelal, Notelcl], {t, 0, 1.5}]

“ <> |>>
Let's see if we can play this:
éﬂ; sl

* . e 4 4
s 45 f et tre

9[ twoframes = {e, e, f, g, 9,f, e,d, c,c,d, e}

Beats|list_, duration_, cadence_] := Table[Iff
10 t= (i—1)«cadence & t < (i—1)«cadence + duration,|

Evaluateliistl[illl, 0], {i, 1, Lengthllist]}] Full Screen

11[ Play|Evaluate[Beats[Noteltwoframes], 0.5, 0.751], {t, 0, 12}]

randomnotes =

12 Map[Note, Table[Random(Integer, {0, 6}], {24}]]

Play[Sin[1000 x Sin[Explx/3] + Sinlx]/x]] +

Explx/10] Sinlx] Sin[1500 ], {x, —20, 10}]

13[ Play[Evaluate[Beats[randomnotes, 0.5, 0.5]], {t, 0, 12}] [
14 ‘
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A function that is periodic in a single variable can be expressed as:

fl@+A) = f(z)
fE+7)=f®)

The first form is a suggestion of a spatially periodic function with wavelength A and the second form
suggests a function that is periodic in time with period 7. Of course, both forms are identical and
express that the function has the same value at an infinite number of points ( = n\ in space or t = nr
in time where n is an integer.)

Specification of a periodic function, f(x), within one period = € (x,, 2, + A) defines the function
everywhere. The most familiar periodic functions are the trigonometric functions:

(17-1)

sin(z) = sin(xz + 27) and cos(x) = cos(z + 27) (17-2)

However, any function can be turned into a periodic function.
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Lecture 17 MATHEMATICA® Example 2 I

Using “Mod” to Create Periodic Functions

notebook (non-evaluated) pdf (evaluated) html (evaluated)
Periodic functions are often associated with the “modulus” operation. Mod[z, )] is the remainder of the result
of recursively dividing x by A until the result lies in the domain 0 < Mod[z, A] < \). Another way to think of
modulus is to find the “point” where are periodic function should be evaluated if its primary domain is z € (0, \).

Boomerang uses Mod to force a function, f, with a single
argument, x, to be periodic with wavelength A

1: Boomerang uses Mod on the argument of any function f of a single

argument to map the argument into the domain (0, A). Therefore, calling 1[soomerangii_, x_, _1 = fivodlx, Al | 3.016 Home
Boomerang on any function will create a infinitely periodic repetition of 2[Afunctonix | = (3-r8)/27 |
the funCtiOn n the domain (0, )\) The following step uses Boomerang to produce a periodic

repetition of AFunction over the range 0 < x < 6:

3: Plot called on the periodic extension of wavelength A = 6 of a function
illustrates the effect of Boomerang . a periodic function with a specified 2|5 =52 55 Horamger Aif "

b, {x, -12, 12], PlotRange - Al ‘ ﬂﬂﬁﬂ
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Odd and Even Functions

The trigonometric functions have the additional properties of being an odd function about the point
x =0: fodd : fodd(®) = —foad(—z) in the case of the sine, and an even function in the case of the

cosine: feven : feven(x) — feven(_x)~
This can generalized to say that a function is even or odd about a point A/2: f, a1 fogqa (A/2+x) =
2 2

_fodd% ()\/2 1 (L’) and feven% : feven% ()\/2 + CE) = feven%(A/2 = ‘T)
Any function can be decomposed into an odd and even sum:

g(x) = Feven T Jodd (17—3)

The sine and cosine functions can be considered the odd and even parts of the generalized trigono-

metric function: '
e' = cos(z) + vsin(x) (17-4)

with period 2.

Representing a particular function with a sum of other functions

A Taylor expansion approximates the behavior of a suitably defined function, f(x) in the neighborhood
of a point, x,, with a bunch of functions, p;(z), defined by the set of powers:

e D 1

pi=p=(="at,..., 20, ..) (17-5)

The polynomial that approximates the function is given by:

fla)=A4-§ (17-6)
where the vector of coefficients is defined by:
e e 1 df 1 dif
Az:A—(O!f(ﬂfo), TS il ) (17-7)

The idea of a vector of infinite length has not been formally introduced, but the idea that as the
number of terms in the sum in Eq. 17-6 gets larger and larger, the approximation should converge to
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the function. In the limit of an infinite number of terms in the sum (or the vectors of infinite length)
the series expansion will converge to f(x) if it satisfies some technical continuity constraints.

However, for periodic functions, the domain over which the approximation is required is only one
period of the periodic function—the rest of the function is taken care of by the definition of periodicity
in the function.

Because the function is periodic, it makes sense to use functions that have the same period to
approximate it. The simplest periodic functions are the trigonometric functions. If the period is A, any
other periodic function with periods A/2, A/3, A/N, will also have period A. Using these ”sub-periodic”
trigonometric functions is the idea behind Fourier Series.

Fourier Series

The functions cos(2rz/A) and sin(27z/\) each have period A. That is, they each take on the same
value at x and = + .

There are an infinite number of other simple trigonometric functions that are periodic in A; they
are cos[2mxz/(N\/2))] and sin[27z/(A/2))] and which cycle two times within each A, cos[27z/(\/3))]
and sin[27z/(A/3))] and which cycle three times within each A, and, in general, cos[27z/(A/n))] and
sin[27rz/(A\/n))] and which cycle n times within each A.

The constant function, ag(z) = const, also satisfies the periodicity requirement.

The superposition of multiples of any number of periodic function must also be a periodic function,
therefore any function f(x) that satisfies:

= 2mn s . 2mn
f(z) =& + nZ::l &, cos <)\x> + ; O,, sin </\x>

= Eky + Z Ek,, cos(kpx) + Z O, sin(knx)

n=1 n=1

(17-8)

where the k; are the wave-numbers or reciprocal wavelengths defined by k; = 2mj/A. The k’s represent
inverse wavelengths—Ilarge values of k represent short-period or high-frequency terms.

If any periodic function f(z) could be represented by the series in in Eq. 17-8 by a suitable choice
of coefficients, then an alternative representation of the periodic function could be obtained in terms
of the simple trigonometric functions and their amplitudes.
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The “inverse question” remains: “How are the amplitudes &, (the even trigonometric terms) and

Oy, (the odd trigonometric terms) determined for a given f(z)?”
The method follows from what appears to be a “trick.” The following three integrals have simple

forms for integers M and N:

F0 Tl 2 VAL O N go = [ aif M =N
- Sin X Z | sin 7)\ T T = 0if M 7& N
2ifM=N (17-9)

T 2 M 2N N o _ {3
o COS i X | COS 7)\ T T = 0if M ?é N

otk 2 M 2rN
/ cos ( i :1:> sin (Z\x) dx = 0 for any integers M, N
o

The following shows a demonstration of this orthogonality relation for the trignometric functions.

PRI

Full Screen

Bt
Close
e

Quit

©W. Craig Carter


http://pruffle.mit.edu/3.016-2006/

Lecture 17 MATHEMATICA® Example 3

Orthogonality of Trignometric Functions

notebook (non-evaluated) pdf (evaluated)
Demonstrating that the relations in Eq. 17-9 are true.

1:

Using Integrate for cos(2rMa/\) cos(2r Nz /) over a definite interval
of a single wavelength, does not produce a result that obviously vanishes
for M # N.

However, replacing any of the symbolic integers with actual integers re-
sults in a zero. So, one the orthogonality relation is plausible.

Using Assuming and Limit, one can show that the relation ship vanishes
for N = M. Although, it is a bit odd to be thinking about continuous
limits with integers.

Similarly for [ cos(2nMz/A)sin(2rNxz/\)dz.

and for [sin(2rMz/\)sin(2rNz/\)dx.

html (evaluated)

27 Minteger x
€oscos = Integrate[Cos[ 7 Vintegef

2 rNinteger x

| Cos|

{x, X0, x0 + A}, Assumptions — {Minteger e Integérs,
Ninteger € Integers, xo € Reals, A > 0)]

1

2| Simplify[coscos /. {Minteger - 4, Ninteger - 34}]

Assuming[Minteger e Integers &&
Ninteger € Integers &&xo € Reals & A € Reals,
Limit[coscos, Minteger - Ninteger]]

(%)

3.016 Home

cossin = Integrate[Cos[

| sin
{x, x0, xo + A}, Assumptions - {Minteger € Integers,
Ninteger € Integers, xo € Reals, A > 0}]

2 Minteger x
A

27 Ninteger x
A

s

5| Simplify[cossin /. {Minteger - -7, Ninteger - 35}]

Assuming[Minteger e Integers &&
6 Ninteger € Integers && xo € Reals & A € Reals,
Limit[cossin, Minteger — Ninteger]]

«| «|» ||

sinsin = Imegrate[Sin[

| Sin| 3
{x, x0, xo + A}, Assumptions - {Minteger € Integers,
Ninteger € Integers, xo € Reals, A > 0)]

27 Minteger x 2 Ninteger x
A

]

8| Simplify[sinsin /. {Minteger - 10, Ninteger — 9}]

Assuming[Minteger e Integers &&
9 Ninteger € Integers &&xo € Reals & A € Reals,
Limit[sinsin, Minteger - Ninteger]]
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Using this orthogonality trick, any amplitude can be determined by multiplying both sides of Eq. 17-
8 by its conjugate trigonometric function and integrating over the domain. (Here we pick the domain
to start at zero, z € (0, \), but any other starting point would work fine.)

cos(kyrz) f(x) = cos(kyrz) (é’ko = Z Ek,, cos(kpx) + Z Oy, sin(kna:)>

n=1 n=1

A A 0 ()
/0 cos(kyrx) f(x)dx :/0 cos(kpx) (Sko + Z E,, cos(knx) + Z Ok, Sin(knx)> dz (17-10)
=l

n=1

§ A
/ cos(kyrx) f(x)dx :gng
0

This provides a formula to calculate the even coefficients (amplitudes) and multiplying by a sin function

provides a way to calculate the odd coefficients (amplitudes) for f(x) periodic in the fundamental
domain z € (0, \).

A
=5 | f@)da

A
= / ool P o 2 (17-11)
ok 7
A
Oky —2/ f(z)sin(kyx)dz kn = i
i s )

The constant term has an extra factor of two because fOA Erydr = XEy, instead of the \/2 found in
Eq. 17-9.

Other forms of the Fourier coefficients

Sometimes the primary domain is defined with a different starting point and different symbols, for
instance Kreyszig uses a centered domain by using —L as the starting point and 2L as the period,
and in these cases the forms for the Fourier coefficients look a bit different. One needs to look at the
domain in order to determine which form of the formulas to use.
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Extra Information and Notes
Potentially interesting but currently unnecessary

The “trick” of multiplying both sides of Eq. 17-8 by a function and integrating comes from
the fact that the trigonometric functions form an orthogonal basis for functions with inner
product defined by

A
f@) - 9(0) = [ f@lg(o)dz
0
Considering the trigonometric functions as components of a vector:

éo(x) =(1,0,0,...,)
éi(z) =(0, cos(k12),0,...,)
és(z) =(0,0,sin(k1x),...,)

én(x)=(...... ,sin(kpx),...,)

then these “basis vectors” satisfy € - € = (N\/2)d;;, where 6;; = 0 unless i = j. The trick is
Just that, for an arbitrary function represented by the basis vectors, P(x) - €j(x) = (A/2)P;.
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Lecture 17 MATHEMATICA® Example 4

Calculating Fourier Series Amplitudes

notebook (non-evaluated)

pdf (evaluated)

html (evaluated)

Functions are developed which compute the even (cosine) amplitudes and odd (sine) amplitudes for an input

function of one variable. These functions are extended to produce the first IV terms of a Fouriers series.

1:

12:

EvenTerms computes symbolic representations of the even (cosine) co-
efficients using the formulas in Eq. 17-11. The N = 0 term is computed
with a supplemental defintion because of its extra factor of 2. The domain
is chosen so that it begins at * = 0 and ends at z = .

OddTerms performs a similar computation for the sine-coefficients; the
N = 0 amplitude is set to zero explicitely. It will become convenient to
include the zeroth-order coefficient for the odd (sine) series which vanishes
by definition. The functions work by doing an integral for each term—this
is not very efficient. It would be more efficient to calculate the integral
symbolically once and then evaluate it once for each term.

efOddAmplitudeVector and EvenAmplitude Vectors create amplitude vec-
tors for the cosine and sine terms with specified lengths and domains.

This function, f(z) = z(1—x)?(2—=x), will be used for particular examples
of Fourier series, note that it is an even function over 0 < z < 2. ..

The functions, OddBasisVector and EvenBasisVector , create vectors of
basis functions of specified lengths and perioidic domains.

The Fourier series up to a certain order can be defined as the sum of two
inner (dot) products: the inner product of the odd coefficient vector and
the sine basis vector, and the inner product of the even coefficient vector
and the cosine basis vector.

This will illustrate the approximation for a truncated (N = 6) Fourier

series

EvenTerms|0, function_, A_] :=
T Integrate[function[dummy], {dummy, 0, A}]

1 Ev}enTerms[SP,lnieger, function_, A_] :=

E\ Integrate[functionlz] « Cosl(2 « SP« Pi+2)/Al, {z, 0, A}]

N

OddTerms|0, function_, wavelength_] := 0

OddTerms[SP_Integer, function_, A_] :
% Integratelfunctionlz] « Sinl(2+ SP «Pix2)/Al, {z, 0, A}]

(%)

OddAmplitudeVector{
NTerms_Integer, function_, wavelength_] :=
Table[OddTerms]i, function, wavelength], {i, 0, NTerms}]

4

EvenAmplitudeVector|
NTerms_Integer, function_, wavelength_] :=
Table[EvenTermsi, function, wavelength], {i, 0, NTerms}]

3.016 Home
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9|

myfunctionlx_] := (xx (2 -x)x(1 —x)A2)

d

OriginalPlot = Plot[myfunctionlx], {x, 0, 2},
PlotStyle - {Huel1], Thickness[0.015]}]

7

OddBasisVedor[NvTermsflnteger, var_, wavelength_] =

. 27 ivar .
Tab\e[SmlWengm], {i, 0, NTerms)]

EvenBasisVemor[NTermsJmeger, var_, wavelength_] =
Tab\e[Cos[ﬂ], {i, 0, NTerms)]
wavelength

©

FourierTruncSeries[n_, function_, var_, wavelength_] :=
EvenAmplitudeVector[n, function, wavelength].
EvenBasisVector[n, var, wavelength] +
OddAmplitudeVector{n, function, wavelength].
OddBasisVector[n, var, wavelength]

10

11

12

[ FourierTruncSeries[6, myfunction, x, 2]

|

FourierPlot =
Plot[FourierTruncSeries[6, myfunction, x, 2], {x, -2, 4}]

|

[ Show[OriginalPlot, FourierPlot]

|
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Lecture 17 MATHEMATICA® Example 5

Using the Calculus‘FourierTransform‘ package

notebook (non-evaluated) pdf (evaluated) html (evaluated)
Fourier series expansions are a common and useful mathematical tool, and it is not surprising that
MATHEMATICA®) would have a package to do this and replace the inefficient functions defined in the pre-

vious example.

1 [ << Calculus’FourierTransform® [

1: The functions in Calculus‘FourierTransform‘ are designed to operate 2| aruncionix = % ‘
on the unit period located at © € (—=1/2,1/2). Therefore, the domains [FiotAFanstonld. . 0, 61 [ 3.016 Home
of functions of interest must be mapped onto this domain by a change of
R Mathematica's Fourier Series functions are defined for
Varlables. function that are periodic in the domain x e (-1/2,1/2). So

we need to map the periodic functions to this domain

4: ReduceHalfHalf is an example of a function design to do the required
mapping. First the length of original domain is mapped to unity by
dividing through by A and then the origin is shifted by mapping the x (that

the MATHEMATICA® functions will see) to (0, 1) with the transformation  [PotReducedFuncion, ix, —1/2,1/2}, PlotRange - Al
T — X _|_ % 7[ FourierCosCoefficient{ReducedFunction, x, n]

4[ ReduceHalfHalflf_, x_, A_] := flx+1/2a]

ReducedFunction =
ReduceHalfHalf[AFunction, x, 6] // Simplify

&)

«| «|»|m]

8| FourierSinCoefficient{ReducedFunction, x, n]

8: Particular amplitudes of the properly remapped function can
be obtained with the functions FourierCosCoefficient and
FourierSinCoefficient. In this example, a symbolic n is entered and a
symbolic representation of the nt* amplitude is returned.

9| FourierTrigSeries[ReducedFunction, x, 5]

Full Screen

9: A truncated Fourier series can be obtained symbolically to any order with
FourierTrigSeries.
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Lecture 17 MATHEMATICA® Example 6 I

Visualizing Convergence of the Fourier Series: Gibbs Phenomenon

notebook (non-evaluated) pdf (evaluated) html (evaluated)
Functions that produce animations (each frame representing a different order of truncation of the Fourier series)
are developed. This example illustrates Gibbs phenomenon where the approximating function oscillates wildly
near discontinuities in the original function.

AnimateTruncatedFourierSeries[function_,
{truncationstart_, truncationend_, truncjump_}] :=

1:  AnimateTruncatedFourierSeries is a simple example of an animation 1| TeolPSiEvanaielFourerfrigSercstiunciion, x, el
function for the truncated Fourier series. It uses the Table func- ftrunc truncatonstart, truncationend, trunclump)l; 3.016 Home
The function is demonstrative, but is inefficient because

tion with three arguments in the iterator for the initial truncation coeficients are recaiculated nesdiessly. A more efficient version
. . . . below.
truncationstart, final truncation, and the number to skip in between.. .. =222

AnimateTruncatedFourierSeries[function_,

2: However, because the entire series is recomputed for each frame, the func- e e

Module[{coscof, sincof, currentappx, n, TwoPi= 27},

tion above is not very efficient. In this second version, only two arguments T = (RSOl e 5 0
. . . Simplify[FourierCosCoefficient[function, x, n]];
are supplied to the iterator. At each frame, the two N Fourier terms | sncoini- Smoint o “«W |»

FourierSinCoefficient(function, x, nl;

are added to the sum of terms computed previously.

Table[Plot[Evaluate[currentappx +=

. . . . . . g flitrunc] + Cos[TwoPiits ]
3: Because ReducedFunction has a discontinuity (its end-value and intitial O nooflitroncl SmTwoPitrune x1]
. . . . . . {x, =1, 1}, PlotR: - {-2,2}],
value differ), this animation will show Gibbs phenomena near the edges (e, inncationstart, runcationenc)1]
of the domain. The following will demonstrate how convergence is difficult
where the function changes rapidly---this is known as Gibbs' Full Screen

Phenomenon

5: FourierCosCoefficient will show a frequently observed feature in the
amplitudes of Fourier coefficients. The amplitude’s magnitude becomes
smaller and smaller with larger n, and the sign of the terms tend to
oscillate between positive and negative values. General form of the even amplitudes

5[ myfunccos = FourierCosCoefficient(4 x* — 16 x*, x, ]

3[ AnimateTruncatedFourierSeries|ReducedFunction, {1, 60}] [

ReducedMyFunction =
ReduceHalfHalf[myfunction, x, 2] // Simplify

8: Plots of the magnitudes of the amplitudes are a “signature” of the original
function in a new space. Each term indicates what “amount” of each pe-
riodicity is present in the original function. The plot could be interpreted
as a “frequency” or “wavelength” representation of the original function.

6[ FourierSinCoefficient(4 x* — 16x4, X, n]

7[ ListPlot[Table[myfunccos, {n, 1, 50}]]

ListPlot[Table[myfunccos, {n, 1, 10}],
PlotJoined — True, PlotRange — All]

8
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Complex Form of the Fourier Series

The behavior of the Fourier coefficients for both the odd (sine) and for the even (cosine) terms was
illustrated above. Functions that are even about the center of the fundamental domain (reflection
symmetry) will have only even terms—all the sine terms will vanish. Functions that are odd about
the center of the fundamental domain (reflections across the center of the domain and then across the
x-axis.) will have only odd terms—all the cosine terms will vanish.

Functions with no odd or even symmetry will have both types of terms (odd and even) in its
expansion. This is a restatement of the fact that any function can be decomposed into odd and even
parts (see Eq. 17-3).

This suggests a short-hand in Eq. 17-4 can be used that combines both odd and even series into
one single form. However, because the odd terms will all be multiplied by the imaginary number 2, the
coefficients will generally be complex. Also because cos(nz) = (exp(inx) + exp(—inx))/2, writing the
sum in terms of exponential functions only will require that the sum must be over both positive and
negative integers.

For a periodic domain x € (0, ), f(z) = f(z + \), the complezx form of the fourier series is given

by:

Jillz) = Z Cy,, €Fn® where k), =
n=—00 (17-12)

1 A
@5 :/ f(x)e %
A 0

2m™n
A

Because of the orthogonality of the basis functions exp(¢k,x), the domain can be moved to any
wavelength, the following is also true:

= 2mn
1knx —
= E B here k, = —
Al n:_oo(,'kne where 3
L A2 (17-13)
o / f(z)e*nmdy
AJ a2

although the coeflicients may have a different form.
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