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Lecture 16: Integral Theorems

Reading:
Kreyszig Sections: 10.8, 10.9 (pages463–467, 468–473)

Higher-dimensional Integrals

The fundamental theorem of calculus was generalized in a previous lecture from an integral over a single
variable to an integration over a region in the plane. Specifically, for generalizing to Green’s theorem
in the plane, a vector derivative of a function integrated over a line and evaluated at its endpoints was
generalized to a vector derivative of a function integrated over the plane.
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y
z

Figure 16-14: Illustrating how Green’s theorem in the plane works. If a known vector function
is integrated over a region in the plane then that integral should only depend on the bounding
curve of that region.
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Figure 16-15: Illustration of a generalization to the Green’s theorem in the plane: Suppose
there is a bowl of a known shape submerged in a fluid with a trapped bubble. The bubble is
bounded by two different surfaces, the bowl down to z = 0 and the planar liquid surface at that
height. Integrating the function

∫
VB

dV over the bubble gives its volume. The volume must

also be equal to an integral
∫ ∫

∂VB
zdxdy over the (oriented) surface of the liquid. However,

the volume of bubble can be determined from only the curve defined by the intersection of the
bowl and the planar liquid surface; so the volume must also be equal to

∮
C(some function)ds.

The Divergence Theorem

Suppose there is “stuff” flowing from place to place in three dimensions.
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Figure 16-16: Illustration of a vector “flow field” ~J near a point in three dimensional space.
If each vector represents the rate of “stuff” flowing per unit area of a plane that is normal to
the direction of flow, then the dot product of the flow field integrated over a planar oriented
area ~A is the rate of “stuff” flowing through that plane. For example, consider the two areas
indicated with purple (or dashed) lines. The rate of “stuff” flowing through those regions is
~J · ~AB = ~J · k̂AB and ~J · ~AL = ~J · k̂AL.

If there are no sources or sinks that create or destroy stuff inside a small box surrounding a point,
then the change in the amount of stuff in the volume of the box must be related to some integral over
the box’s surface:

d

dt
(amount of stuff in box) =

d

dt

∫
box

(
amount of stuff

volume
)dV

=
∫
box

d

dt
(
amount of stuff

volume
)dV

=
∫
box

(some scalar function related to ~J)dV

=
∫

box
surface

~J · d ~A

(16-1)
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J3( x=0; y=0; z=∆z
2 )

J3( x=0; y=0; z=−∆z
2 )

J2( x=0; y=−
∆y
2 ; z=0)

J2( x=0; y=
∆y
2 ; z=0)

J1( x=−∆x
2 ; y=0; z=0)

J1( x=∆x
2 ; y=0; z=0)

Figure 16-17: Integration of a vector function near a point and its relation to the change in
that vector function. The rate of change of stuff is the integral of flux over the outside—and
in the limit as the box size goes to zero, the rate of change of the amount of stuff is related to
the sum of derivatives of the flux components at that point.

To relate the rate at which “stuff M” is flowing into a small box of volume δV = dxdydz located
at (x, y, z) due to a flux ~J , note that the amount that M changes in a time ∆t is:

∆M(δV ) = (M flowing out of δV )− (M flowing in δV )

= ~J(x− dx
2 )̂idydz− ~J(x + dx

2 ) · îdydz

+ ~J(y − dy
2 )ĵdzdx− ~J(y + dy

2 ) · ĵdzdx

+ ~J(z − dz
2 )k̂dxdy− ~J(z + dz

2 ) · k̂dxdy

∆t

= −(
∂Jx

∂x
+

∂Jy

∂y
+

∂Jz

∂z
)δV ∆t +O(dx4)

(16-2)

If C(x, y, z) = M(δV )/δV is the concentration (i.e., stuff per volume) at (x, y, z), then in the limit of
small volumes and short times:

∂C

∂t
= −(

∂Jx

∂x
+

∂Jy

∂y
+

∂Jz

∂z
) = −∇ · ~J = −div ~J (16-3)
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For an arbitrary closed volume V bounded by an oriented surface ∂V :

dM

dt
=

d

dt

∫
V

CdV =
∫

V

∂C

∂t
dV = −

∫
V
∇ · ~JdV = −

∫
∂V

~J · d ~A (16-4)

The last equality ∫
V
∇ · ~JdV =

∫
∂V

~J · d ~A (16-5)

is called the Gauss or the divergence theorem.
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Lecture 16 Mathematica R© Example 1

London Dispersion Interaction between a point and Closed Volume

notebook (non-evaluated) pdf (evaluated) html (evaluated)
If the London interaction (i.e., energy between two induced dipoles) can be treated as a 1/r6 potential, then

the potential due to a volume is an integration over each point in the volume and and arbitrary point in space.
This calculation will be made much more efficient by turning the volume integral into a surface integral by using
the divergence theorem.

1: To find a vector potential, ~F which has a divergence that is equal to
∇ · ~F = −1/‖~r − ~x‖6, FVecLondon is a ‘guess.’

3: Using Div in the Calculus‘VectorAnalysis‘ package, this will show
that the guess FVecLondon is a correct vector function for the 1/r6

potential.
6: This will be the multiplier elemental area for a parameterized cylindrical

surface |d~r/dθ × d~r/dz|.
7: CylinderIntegrandθζ is the integrand which would apply on a cylindrical

surface.
8: This attempt to integrate CylinderIntegrandθζ over θ does not result in

a closed form.
9: However, integrating CylinderIntegrandθζ over z does produce a closed

form that could be subsequently integrated over θ numerically.

Find F
Ø

 such that div F
Ø

 is -1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
I rØ - x

ØM6
   where r

Ø
 = (x,h,z) is a 

position in the cylinder and x
Ø

=(x,y,z) is a general position in 
space

The following is a ``guess'' at the vector potential; it will be 
verified as the correct one by checking its divergence.

1
FVecLondon =

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
3 HHx - xL2 + Hh - yL2 + Hz - zL2 L3  8x - x, h - y, z - z<

2 << Calculus`VectorAnalysis`

3 FullSimplify@Div@FVecLondon, Cartesian@x, h, zDDD
Cylinder Surface normals and differential quantities

4 CylSurf = 8R Cos@tD, R Sin@tD, z<

5
CylSurfRt = D@CylSurf, tD
CylSurfRz = D@CylSurf, zD

6 NormalVecCylSurf = Cross@CylSurfRt, CylSurfRzD

7
CylinderIntegrandqz =

FullSimplify@HFVecLondon ê. 8x Ø R Cos@tD, h Ø R Sin@tD<L.
NormalVecCylSurfD

8
Integrate@CylinderIntegrandqz, t,

Assumptions -> R > 0 && z œ Reals &&
x œ Reals && y œ Reals && z œ RealsD

9
CylinderIntegrandqIndz = Integrate@CylinderIntegrandqz, z ,

Assumptions -> R > 0 && L > 0 && x œ Reals &&
y œ Reals && z œ Reals && t œ RealsD

http://pruffle.mit.edu/3.016-2006/
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Efficiency and Speed Issues: When to Evaluate the Right-Hand-Side of a Function
in Mathematica R© .

The standard practice is to define functions in mathematica with :=. However, sometimes it makes
sense to evaluate the right-hand-side when the function definition is made. These are the cases where
the right hand side would take a long time to evaluate—each time the function is called, the evaluation
would be needed again and again. The following example illustrates a case where it makes sense to use
Evaluate in a function definition (or, equivalently defining the function with immediate assignment
=).

http://pruffle.mit.edu/3.016-2006/
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Lecture 16 Mathematica R© Example 2

To Evaluate or Not to Evaluate when Defining Functions

notebook (non-evaluated) pdf (evaluated) html (evaluated)
This example illustrates a case in which immediate evaluation = would be preferable to delayed evaluation :=

1: When a non-trivial integral is done for the first time, Mathematica loads
various libraries. Notice the difference in timing between this first com-
putatation of

∫
exp[tan(x)]dx and the following one.

2: The second evaluation is faster. Now, a baseline time has been established
for evaluating this integral symbolically.

3: Here, to make a function definition for the integral, the symbolic integral
is obtained and so the function definition takes longer.

4: Using an = is roughly equivalent to using Evaluate above and the time
to make the function assignment should be approximately the same.

5: Here, the symbolic integration is delayed until the function is called
(later). Therefore, the function assignment is very rapid.

6: The functions, where the right-hand-side was immediately evaluated, con-
tain the symbolic information. Therefore, when the function is called
later, the symbolic integration will not be needed.

8: The function with the completely delayed assignment does not have the
symbolic information.

10: The speed of the function is much faster in the case where the symbolic
integration is not needed.

11: The relatively slow speed of this function indicates that it would be a
poor choice when numerical efficiency is an issue.

1 Timing@Integrate@Exp@Tan@xDD, 8x, 0, c<DD
2 Timing@Integrate@Exp@Tan@xDD, 8x, 0, c<DD
3 Timing@f@c_D := Evaluate@Integrate@Exp@Tan@xDD, 8x, 0, c<DDD
4 Timing@h@c_D = Integrate@Exp@Tan@xDD, 8x, 0, c<DD
5 Timing@g@c_D := Integrate@Exp@Tan@xDD, 8x, 0, c<DD
6 ? f

7 ?h

8 ?g

9 Timing@f@0.5DD

10 Timing@h@0.5DD
11 Timing@g@0.5DD
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Lecture 16 Mathematica R© Example 3

London Dispersion Potential of a Finite Cylinder

notebook (non-evaluated) pdf (evaluated) html (evaluated)
The example of using the divergence theorem to compute a 1/r6 potential by pushing a volume integral onto its
bounding surface is continued for the particular case of a cylinder.

1: Here, Evaluate is used to store the result of the Simplify function
after the bounds of the integrated function are evaluated. The result is
the integrand for the cylindrical part.

2: NIntegrate is required to do the remaining calculation, but instead in-
tegrating over three variables, the cylinder’s contribution is reduced to a
single integration. Because of polar symmetry, the problem is simplified
by setting x to the total distance r and setting y = 0.

3: These are the surface differential quantities for the top surface of the
cylinder.

4: This is the integrand for the top surface.
5: The integral over θ does not return a closed form; so here the r-integral

is performed explicitely.
6: NIntegrate is used to do the θ-integral and here a function is defined to

give the contribution due to the top surface.
10: By direct analogy to the top surface, the contribution from the bottom

surface is defined as a function.
11: The total potential is obtained by adding the contribution from the cylin-

drical side to the top and bottom surfaces’ contributions.

1

CylinderIntegrandq@x_, y_, z_, CylRad_, CylLen_D :=
Evaluate@Simplify@HCylinderIntegrandqIndz ê. 8z -> CylLen ê2,

R -> CylRad<L - HCylinderIntegrandqIndz ê.
8z -> -CylLen ê2, R -> CylRad<L, Assumptions ->

CylRad > 0 && CylLen > 0 && x œ Reals &&
y œ Reals && z œ Reals && t œ RealsDD

2
CylinderContribution@dist_, z_, CylRad_ , CylLen_D :=
NIntegrate@Evaluate@CylinderIntegrandq@

dist, 0, z, CylRad, CylLenD, 8t, 0, 2 p<DD

3
TopSurf = 9r Cos@tD, r Sin@tD,

L
ÅÅÅÅÅÅ
2
=

TopSurfRt = D@TopSurf, tD; TopSurfRr = D@TopSurf, rD
NormalVecTopSurf = FullSimplify @Cross@TopSurfRr, TopSurfRt DD

4
TopIntegrandqr =
FullSimplify@HFVecLondon ê. 8x Ø r Cos@tD, h Ø r Sin@tD, z Ø L ê2<L.

NormalVecTopSurfD

5 TopIntegrandqIndr = Integrate@TopIntegrandqr, r, Assumptions Ø
t ¥ 0 && L > 0 && x œ Reals && y œ Reals && z œ RealsD

6
TopIntegrandq@x_, y_, z_, CylRad_, CylLen_D := Evaluate@

Simplify@HTopIntegrandqIndr ê. 8r -> CylRad, L -> CylLen<L-
HTopIntegrandqIndr ê. 8r -> 0, L -> CylLen<LDD

7
TopContribution@dist_, zpos_, CylRad_ , CylLen_D :=
NIntegrate@Evaluate@

TopIntegrandq@dist, 0, zpos, CylRad, CylLenD, 8t, 0, 2 p<DD

8
BotSurf = 9r Cos@tD, r Sin@tD,

-L
ÅÅÅÅÅÅÅÅÅÅÅ
2

=
BotSurfRt = D@BotSurf, tD ; BotSurfRr = D@BotSurf, rD
NormalVecBotSurf = FullSimplify @Cross@BotSurfRt , BotSurfRrDD
BotIntegrandqr =
FullSimplify @HFVecLondon ê. 8x Ø r Cos@tD, h Ø r Sin@tD, z Ø -L ê 2<L.NormalVecBotSurf D

9 BotIntegrandqIndr = Integrate@BotIntegrandqr, r, Assumptions Ø
t ¥ 0 && L > 0 && x œ Reals && y œ Reals && z œ RealsD

10
BotContribution@dist_, zpos_, CylRad_ , CylLen_D :=
NIntegrate@Evaluate@

BotIntegrandq@dist, 0, zpos, CylRad, CylLenD, 8t, 0, 2 p<DD

11
LondonCylinderPotential@dist_, zpos_, CylRad_ , CylLen_D :=
CylinderContribution@dist, zpos, CylRad, CylLenD +
TopContribution@dist, zpos, CylRad, CylLenD +
BotContribution@dist, zpos, CylRad, CylLenD
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Lecture 16 Mathematica R© Example 4

Visualizing the London Potential of a Finite Cylinder

notebook (non-evaluated) pdf (evaluated) html (evaluated)
The example is finished off by visualizing the results. Some of the numerical integrations are still poorly behaved
in the vicinity of the cylinder’s sharp edge.

1: Demonstrating that the LondonCylinderPotential function, that was de-
fined above, gives a numerical result.

2: Here, the potential is visualized with Plot3D outside the radius from the
mid-plane to above the cylinder.

4: This is perhaps easier to interpret: the r-dependence is plotted at several
different midplanes.

6: The same as the above, but for midplanes above the top of the cylinder.
7: ContourPlot probably gives the easiest visualization to interpret in this

case.

1 LondonCylinderPotential@2, .5, 1, 3D

2 Plot3D@LondonCylinderPotential@dist, zpos, 1, 2D,
8dist, 1.1, 3<, 8zpos, 0, 3<D

3 << Graphics`Graphics`

Visualize result as a function of radial distance at different 
altitudes

4

LondonPlot = Plot@
8LondonCylinderPotential@dist, 0, 1, 4 ê3D,

LondonCylinderPotential@dist, 2 ê3, 1, 4 ê3D,
LondonCylinderPotential@dist, 4 ê3, 1, 4 ê3D,
LondonCylinderPotential@dist, 2, 1, 4 ê3D<,

8dist, 0.01, 3<, PlotStyle Ø
88Thickness@0.02D, RGBColor@1, 0, 0D<,
8Thickness@0.015D, RGBColor@0, 0.5, 0D<,
8Thickness@0.01D, RGBColor@0, 0, 1D<,
8Thickness@0.005D, RGBColor@1, 0, 1D<<D

5 Show@LondonPlot, PlotRange Ø 8-5, 3<D

6

TopOfCylinder = Plot@8LondonCylinderPotential@dist, 1.1, 1, 1D,
LondonCylinderPotential@dist, 1.2, 1, 1D,
LondonCylinderPotential@dist, 1.3, 1, 1D,
LondonCylinderPotential@dist, 1.4, 1, 1D<, 8dist, 0, 3<,

PlotStyle Ø 88Thickness@0.02D, RGBColor@1, 0, 0D<,
8Thickness@0.015D, RGBColor@0, 0.5, 0D<,
8Thickness@0.01D, RGBColor@0, 0, 1D<,
8Thickness@0.005D, RGBColor@1, 0, 1D<<D

The contour plot below would take an enormously long 
time to compute if we had not employed all of the ``integral 
tricks''

7
ContourPlot@LondonCylinderPotential@dist, height, 1, 0.25D,
8dist, 0.001, 2<, 8height, 0.001, 2<,
Contours -> 25, ColorFunction -> HHue@0.6 #D &LD

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2006/Notebooks/L16/Lecture-16.nb
http://pruffle.mit.edu/3.016-2006/pdf/L16/Lecture-16-4.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-16/HTMLLinks/index_4.html
http://pruffle.mit.edu/3.016-2006/html/Lecture-16/HTMLLinks/index_4.html


3.016 Home

JJ J I II

Full Screen

Close

Quit

c©W. Craig Carter

Stokes’ Theorem

The final generalization of the fundamental theorem of calculus is the relation between a vector function
integrated over an oriented surface and another vector function integrated over the closed curve that
bounds the surface.

A simplified version of Stokes’s theorem has already been discussed—Green’s theorem in the plane
can be written in full vector form:∫ ∫

R

(
∂F2

∂x
− ∂F1

∂y

)
dxdy =

∫
R
∇× ~F · d ~A

=
∮

∂R
(F1dx + F2dy) =

∮
∂R

~F · d~r

ds
ds

(16-6)

as long as the region R lies entirely in the z = constant plane.
In fact, Stokes’s theorem is the same as the full vector form in Eq. 16-6 with R generalized to an

oriented surface embedded in three-dimensional space:∫
R
∇× ~F · d ~A =

∮
∂R

~F · d~r

ds
ds (16-7)

Plausibility for the theorem can be obtained from Figures 16-14 and 16-15. The curl of the vector
field summed over a surface “spills out” from the surface by an amount equal to the vector field itself
integrated over the boundary of the surface. In other words, if a vector field can be specified everywhere
for a fixed surface, then its integral should only depend on some vector function integrated over the
boundary of the surface.

Maxwell’s equations

The divergence theorem and Stokes’s theorem are generalizations of integration that invoke the diver-
gence and curl operations on vectors. A familiar vector field is the electromagnetic field and Maxwell’s

http://pruffle.mit.edu/3.016-2006/
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equations depend on these vector derivatives as well:

∇ · ~B = 0 ∇× ~E =
∂ ~B

∂t

∇× ~H =
∂ ~D

∂t
+~j ∇ · ~D = ρ

(16-8)

in MKS units and the total electric displacement ~D is related to the total polarization ~P and the
electric field ~E through:

~D = ~P + εo
~E (16-9)

where εo is the dielectric permittivity of vacuum. The total magnetic induction ~B is related to the
induced magnetic field ~H and the material magnetization through

~B = µo( ~H + ~M) (16-10)

where µo is the magnetic permeability of vacuum.

Ampere’s Law

Ampere’s law that relates the magnetic field lines that surround a static current is a macroscopic
version of the (static) Maxwell equation ∇× ~H = ~j:

Gauss’ Law

Gauss’ law relates the electric field lines that exit a closed surface to the total charge contained within
the volume bounded by the surface. Gauss’ law is a macroscopic version of the Maxwell equation
∇ · ~D = ρ:

http://pruffle.mit.edu/3.016-2006/
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Simplify, 138
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volume of captured bubble in a fixed container, 130
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