Lecture 14: Integrals along a Path

Reading:
Kreyszig Sections: 10.1, 10.2, 10.3 (pages420-425, 426-432, 433-439)

Integrals along a Curve

3.016 Home

Consider the type of integral that everyone learns initially:

b
E(b) — E(a) = / f(z)dx (14-1)
: PRNN

The equation implies that f is integrable and

dE
E = fdz = -—d 14-2
dE = fdv = ——dz (14-2)

Full Screen
so that the integral can be written in the following way: ik

b
E(b) — E(a) = / dE (14-3)
a
Close
where a and b represent “points” on some line where E is to be evaluated.
Of course, there is no reason to restrict integration to a straight line—the generalization is the
integration along a curve (or a path) Z(t) = (z1(¢), x2(t), ..., x,(1)).

o

#0) E .
E(b)—E(a):[( : f(j’)-da}’:/bg(x(f))dt:/bVE.ngt:/de (14-4) Quit

This last set of equations assumes that the gradient exists—i.e., there is some function F that has the
gradient VE = f. ©W. Craig Carter
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Path-Independence and Path-Integration

If the function being integrated along a simply-connected path (Eq. 14-4) is a gradient of some scalar
potential, then the path between two integration points does not need to be specified: the integral
is independent of path. It also follows that for closed paths, the integral of the gradient of a scalar
potential is zero.® A simply-connected path is one that does not self-intersect or can be shrunk to a
point without leaving its domain.

There are familiar examples from classical thermodynamics of simple one-component fluids that
satisfy this property:

%mjzfvgjdgzo de:ngSdgzo fﬁG:ngGdgzo (14-5)
fdp:fﬁgpdgzo fdf:fﬁgT@gzo de:fk@Vd§=o (14-6)

Where S is any other set of variables that sufficiently describe the equilibrium state of the system (i.e,
U(s,v),U(s,P), U(T,V), U(T, P) for U describing a simple one-component fluid).

The relation curl grad f =V x Vf = 0 provides method for testing whether some general ﬁ(a‘:’) is
independent of path. If

0=V xF (14-7)
or equivalently,
oF; — OF;
= A 14-8

for all variable pairs x;, x;, then ﬁ(f) is independent of path. These are the Maxwell relations of
classical thermodynamics.

In fact, there are some extra requirements on the domain (i.e., the space of all paths that are supposed to be
path-independent) where such paths are defined: the scalar potential must have continuous second partial derivatives
everywhere in the domain.
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Lecture 14 MATHEMATICA®) Example 1 I

Path Dependence of Integration of Vector Function: Non-Conservative Example

notebook (non-evaluated) pdf (evaluated) html (evaluated)
The path dependence of a vector field with a non-vanishing curl () = zyz(i + k + 2)) is demonstrated with a
family of closed curves.

<< Calculus' VectorAnalysis®
VectorFunction = {xyz, xyz, yxz}

. 1 i
. g CurlVectorFunction =
1 . VeCtOTFunCtZOn (Z‘yz, $y37 l’yz) 1S an example VeCtOI" ﬁeld that has a Lérimgﬁfg;'cm‘[:\;ggwﬁuncnon, Cartesian([x, y, z]]]

non-vanishing curl. The curl is computed with Curl which is in the 2|Condmonsof29,ocu,,: |
. 8 g Table[0 == CurlVectorFunctionl[ill, (i,
Calculus ‘VectorAnalysis‘ package. Here, the particular coordinate bleld == Curvectorfuncton ™, 1. 90 3.016 Home
. . . . 3| FindInstance[ConditionsOfZeroCurl, {x, y, z}] |
system is specified with Cartesian argument to Curl.
For the integral of the vector potential (§V -ds ) any curve

3: The curl vanishes only at the origin—this is shown with FindInstance  iawraps around a cylinder of radius R with an axis that
. . . . . . incid ith the z-axi b itized
called with a list of equations corresponding to the vanishing curl e
4: This is the integrand ¢ - ds computed as indicated in the figure. P(6)

i ~ Z
represents any periodic function, but (z,y) = R(cos 8, sin ) representing J ﬂﬂﬁﬂ

] (x(1), y(), z(t)) = (R cos(t), R sin(t), A P> (1))
paths that wrap around cylinders. GO A (e AR

Therefore

5: PathDeplnt is an integral for ¢ represented by VectorFunction an arbi- — ds=(Rsing). R cos(), Plx(t) dt= (y(). x(t) APy (0) ot
trary path wrapping around the cylinder. vi =

4| VectorFunction.{-y, x, Amp D[PIt], 1]} /. {x » Radius Coslt,
y - Radius Sinlt], z » Amp Pltl} // Simplify

7: This is the second example of a computation by using a replacement for

{Cosltl, Sinltl, Cosltl}}, it, 0, 2 Pi}]

. . . . . 5| PathDeplnt = Integrate[Vf, {t, 0, 2Pi}] | (Full) Siarazty
a periodic P(0) (i.e., each of the P() begin and end at the same point, [Faoa 75 ]
. . = O[T P Eh

but the path between differs). That the two results differ shows that ¥

| ‘W = 7[ PathDepint /. {Pltl > t @t~ 2Pi), P'ltl - DitGt-2Pi, 1) |
is path-dependent—this is a general result for non-vanishing curl vector o pagen = PaihDepin /P - Cosln . P10~ DiCoan 1.1 |
funCthnS. 9| Simplify[pdigen, n € Integers] |

40/ thecurves = ParametricPlot3DI{{Coslt, Sinltl, Cos[3tl}, | Close

Show[(GraphlcsSD[Thlckness[O o1ll,
Graphics3D[Hue[0.25, 0.5, 0.5]], thecurves}]

Quit
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Lecture 14 MATHEMATICA®) Example 2

Examples of Path-Independence of Curl-Free Vector Fields and Curl-Free Subspaces

notebook (non-evaluated) pdf (evaluated) html (evaluated)
A curl-free vector field can be generated from any scalar potential, in this case W = Ve®¥% = (%) = e*¥*(yz1 +
zxk + xyz). To find a function that is curl-free on a restricted subpace (for example, the vector function

—

(%) = (22 + y? — R?)2 vanishes on the surface of a cylinder) one needs to find a 7 such that V x m = @ (for

this case A A
1
m = 3 (yR2 [1—:82—%} &+ —zR? {1—y2—g] g)

is one of an infinite number of such vector functions.)

Start with a scalar potential to ensure that we can generate a
curl-free vector field

1: To ensure that we will have a zero-curl, a vector field is generated from a

1| temp = Grad[Exp[x y z], Cartesian[x, Y, z]]
gradient of a scalar potential. The curl vanishes because V x V f = 0.

xyz xyz z

AnotherVFunction = (X% yz, ¢*¥% xz, *¥* xy}
Simplify[Curl[AnotherVFunction, Cartesian[x, y, z]]]

2: This is a demonstration that the curl does indeed vanish.
8]

{x - Radius Coslt], y » Radius Sinltl, z - Pltl} // Simplify

3: Here is the integrand for § ¢ d3 for the family of paths that wrap around

5 5 . . 4| PathDeplnt = Integrate[anothervf, t]
a cylinder for the particular case of this conservative fields. l

anothervf = AnotherVFunction.{—y, x, D[PIt], t]} /. |

5[ (PathDeplnt /.t - 2 Pi) ~ (PathDepint /.t - 0)

4: This is the general result for the family of curves indicated by P () ...  Nowwe generate an example of a vectorvalued fumction thatis

not curl-free in general, but is path independent in a restricted

5: This demonstrates that the path integral closes for any perioidic P(f)—  subspace where the our vanishes.

which is the same as the condition that the curve is closed. 6[ VanishonCyinder = x2 + y*2 - Radius"2
7| CurlOfOneStooge = {0, 0, VanishOnCylinder}

8: This demonstrates the method used to find the vector function which has

. i Stooge = {-1/2 Integrate[VanishOnCylinder, y],
a curl that vanishes on a cylinder.

g 1/2 Integrate[VanishOnCylinder, x], 0}

9| Simplify[Curl[Stooge, Cartesian[x, y, z]]]

11: This will demonstrate that the integral of the generally non-zero curl
vector function is path independent as long as the path lies on a surface
where the curl of the vector function vanishes. 11[ IntegratelWhylOughta, t, 0, 2P}

WhylOughta = Stooge.{-y, x, D[PIt], t]} /.

1°| (x - Radius Coslt], y - Radius Sinlt]} // Expand

o
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Multidimensional Integrals

Perhaps the most straightforward of the higher-dimensional integrations (e.g., vector function along
a curve, vector function on a surface) is a scalar function over a domain such as, a rectangular block
in two dimensions, or a block in three dimensions. In each case, the integration over a dimension is
uncoupled from the others and the problem reduces to pedestrian integration along a coordinate axis.

Sometimes difficulty arises when the domain of integration is not so easily described; in these cases,
the limits of integration become functions of another integration variable. While specifying the limits
of integration requires a bit of attention, the only thing that makes these cases difficult is that the
integrals become tedious and lengthy. MATHEMATICA®) removes some of this burden.

A short review of various ways in which a function’s variable can appear in an integral follows:

3.016 Home

The Integral Its Derivative
dp ag da
Function B(z) L f(ﬁ(x))@ i (04(33))@
of po) = [ fe)as
limi a(zx)
1mits
d b dg(¢,
Function b dfq — / g(;x)dﬁ
of alz) = [ (6,2 v Jo0x
integrand i
Function B(z) dr dg da
of rie)= [ (e ade & = BN G ~ fe@)g
a(z)
both B(x)
a(r) Ox
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Using Jacobians to Change Variables in Thermodynamic Calculations I I u I-

Changing of variables is a topic in multivariable calculus that often causes difficulty in classical ther-

modynamics.

This is an extract of my notes on thermodynamics: http://pruffle.mit.edu/3.00/
Alternative forms of differential relations can be derived by changing variables.
To change variables, a useful scheme using Jacobians can be employed:

O(u,v) % ]

3 = det & %

(:B, y) or Oy
_udv oudw
0z dy Oyox

(), (&), (@),

r du(z,y) dv(z,y)  Ou(z,y) Ov(z,y)

ox oy oy
O(u,v) I _0(v,u i (v, u)
Nz,y)  O(z,y) O(yz)
d(u,v) _ (Ou
O(z,v) ] (8x>v

(14-9)

(14-10)
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For example, the heat capacity at constant volume is:

o= (%), 1587
Fritl e R R GO LB e B B
—T—T( 7)., (o), (37),

)0
Using the Maxwell relation, (8P)T ( ) )

_ A0(S,V
_TmTP

Cp—Cy = —T[(giTi (14-12)

which demonstrates that Cp > Cy because, for any stable substance, the volume is a decreasing
function of pressure at constant temperature.

. Example of a Multiple Integral: Electrostatic Potential above a Charged Region

This will be an example calculation of the spatially-dependent energy of a unit point charge in the
vicinity of a charged planar region having the shape of an equilateral triangle. The calculation super-
imposes the charges from each infinitessimal area by integrating a 1/r potential from each point in
space to each infinitessimal patch in the equilateral triangle The energy of a point charge |e| due to a
surface patch on the plane z = 0 of size d€dn with surface charge density o(z,y) is:

le|a (€, n)dEdn

(14-13)

for a patch with uniform charge,

lelod&dn

dE(z,y,2,&,m) = \/(a: — 62+ (y—n)2 + 22

(14-14)
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d III-

For an equilateral triangle with sides of length one and center at the origin, the vertices can be locate

at (0,v/3/2) and (£1/2, —/3/6).
The integration becomes
V3/2 V3/2—n d¢
E(z,y,2) / / dn
—v3/6 \Jn—vB2 /(z— €2+ (y —n)? + 22
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Lecture 14 MATHEMATICA® Example 3

Potential near a Charged and Shaped Surface Patch: Brute Force

notebook (non-evaluated) pdf (evaluated) html (evaluated)
A example of a multiple integral and its numerical evaluation for the triangular charged patch.

Uniformly charged surface patch

2: Integrate’s syntax is to integrate over the last integration iterator first, _
and the first iterator last. \ N

3: This will show that the closed form of the above integral appears to be =3t ﬁ‘d:mﬂ
unknown to MATHEMATICAG) ... I 3.016 Home

4: However, the energy can be integrated numerically. Here is a function
that calls NIntegrate for a location given by its arguments.

Integrate[Exp[3x], {y, 0, 1}, {x, 0, y}]
(Integrate[Expl3 x], {x, 0, y}])
Integrate[(Integrate[Expl3 x], {x, 0, y}]), {y, 0, 1}]

6: This will be a very slow calculation on most computers, but it will Show [LeoaeEaBa w0y .01

how the potential changes along a line segment of length 2 that runs 2[imegmer oo bnas v o0 11 woy ﬂ ﬂ ﬁ ﬂ
through the origin at 45°.

n

TrianglePotentialDirect = Integraw[ —_——,
o o o X—E2+(y—n? +22
7: Even slower, ContourPlot is used at sequential heights for use as an !

animation.

V3 n 11
3 :n,o,—},:,&—_——,———_},

2 V3 2°2 43
Assumptions - {x € Reals, y € Reals, z > 0}|

TrianglePotentialNi i 0 Y 2 =
rianglePotential umer|c1|x, y., z_] Full Screen

Nintegrate] —————,
o= (X=§P +(y-n?+2°

5| TrianglePotentialNumeric[1, 3, .01] |

6| Plot[ TrianglePotentialNumericlx, x, 1/40], {x, -1, 1}] |

Table[ContourPlot[TrianglePotentialNumeric[x, y, h], {x, =1, 1}, Close
{y, —=0.5, 1.5}, Contours - Tablelyv, {v, .25, 2, .25}],
ColorFunction - (Huel1 —0.66«#/2] &),
ColorFunctionScaling —> False], {h, .025, .5, .025}]

Quit
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conditions for, 115
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VectorFunction, 116
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