

Lecture 14: Integrals along a Path

Reading:

Kreyszig Sections: 10.1, 10.2, 10.3 (pages 420–425, 426–432, 433–439)

Integrals along a Curve

Consider the type of integral that everyone learns initially:

$$E(b) - E(a) = \int_a^b f(x) dx \quad (14-1)$$

The equation implies that f is integrable and

$$dE = f dx = \frac{dE}{dx} dx \quad (14-2)$$

so that the integral can be written in the following way:

$$E(b) - E(a) = \int_a^b dE \quad (14-3)$$

where a and b represent “points” on some *line* where E is to be evaluated.

Of course, there is no reason to restrict integration to a straight line—the generalization is the integration along a curve (or a path) $\vec{x}(t) = (x_1(t), x_2(t), \dots, x_n(t))$.

$$E(b) - E(a) = \int_{\vec{x}(a)}^{\vec{x}(b)} \vec{f}(\vec{x}) \cdot d\vec{x} = \int_a^b g(x(\vec{t})) dt = \int_a^b \nabla E \cdot \frac{d\vec{x}}{dt} dt = \int_a^b dE \quad (14-4)$$

This last set of equations assumes that the gradient exists—i.e., there is some function E that has the gradient $\nabla E = \vec{f}$.

[3.016 Home](#)

[Full Screen](#)

[Close](#)

[Quit](#)

Path-Independence and Path-Integration

If the function being integrated along a simply-connected path (Eq. 14-4) is a gradient of some scalar potential, then the path between two integration points does not need to be specified: the integral is independent of path. It also follows that for closed paths, the integral of the gradient of a scalar potential is zero.⁶ A simply-connected path is one that does not self-intersect or can be shrunk to a point without leaving its domain.

There are familiar examples from classical thermodynamics of simple one-component fluids that satisfy this property:

$$\oint dU = \oint \nabla_{\vec{S}} U \cdot d\vec{S} = 0 \quad \oint dS = \oint \nabla_{\vec{S}} S \cdot d\vec{S} = 0 \quad \oint dG = \oint \nabla_{\vec{S}} G \cdot d\vec{S} = 0 \quad (14-5)$$

$$\oint dP = \oint \nabla_{\vec{S}} P \cdot d\vec{S} = 0 \quad \oint dT = \oint \nabla_{\vec{S}} T \cdot d\vec{S} = 0 \quad \oint dV = \oint \nabla_{\vec{S}} V \cdot d\vec{S} = 0 \quad (14-6)$$

Where \vec{S} is any other set of variables that sufficiently describe the equilibrium state of the system (i.e., $U(S, V)$, $U(S, P)$, $U(T, V)$, $U(T, P)$ for U describing a simple one-component fluid).

The relation $\text{curl grad } f = \nabla \times \nabla f = 0$ provides method for testing whether some *general* $\vec{F}(\vec{x})$ is independent of path. If

$$\vec{0} = \nabla \times \vec{F} \quad (14-7)$$

or equivalently,

$$0 = \frac{\partial F_j}{\partial x_i} - \frac{\partial F_i}{\partial x_j} \quad (14-8)$$

for all variable pairs x_i, x_j , then $\vec{F}(\vec{x})$ is independent of path. These are the Maxwell relations of classical thermodynamics.

⁶In fact, there are some extra requirements on the domain (i.e., the space of all paths that are supposed to be path-independent) where such paths are defined: the scalar potential must have continuous second partial derivatives everywhere in the domain.

[3.016 Home](#)[Full Screen](#)[Close](#)[Quit](#)

Path Dependence of Integration of Vector Function: Non-Conservative Example

notebook (non-evaluated)

pdf (evaluated)

html (evaluated)

The path dependence of a vector field with a non-vanishing curl ($\vec{v}(\vec{x}) = xyz(\hat{i} + \hat{k} + \hat{z})$) is demonstrated with a family of closed curves.

- 1: *VectorFunction* (xyz, xyz, xyz) is an example vector field that has a *non-vanishing curl*. The curl is computed with *Curl* which is in the *Calculus`VectorAnalysis`* package. Here, the particular coordinate system is specified with *Cartesian* argument to *Curl*.
- 3: The curl vanishes only at the origin—this is shown with *FindInstance* called with a list of equations corresponding to the vanishing curl.
- 4: This is the integrand $\vec{v} \cdot d\vec{s}$ computed as indicated in the figure. $P(\theta)$ represents any periodic function, but $(x, y) = R(\cos \theta, \sin \theta)$ representing paths that wrap around cylinders.
- 5: *PathDepInt* is an integral for \vec{v} represented by *VectorFunction* an arbitrary path wrapping around the cylinder.
- 7: This is the second example of a computation by using a replacement for a periodic $P(\theta)$ (i.e., each of the $P(\theta)$ begin and end at the same point, but the path between differs). That the two results differ shows that \vec{v} is path-dependent—this is a general result for non-vanishing curl vector functions.

```

1 << Calculus`VectorAnalysis`
VectorFunction = {x y z, x y z, y x z}
Curl[VectorFunction, Cartesian[x, y, z]]]

2 ConditionsOfZeroCurl =
Table[0 == Curl[VectorFunction[[i]], {i, 3}]]

3 FindInstance[ConditionsOfZeroCurl, {x, y, z}]

For the integral of the vector potential ( $\oint \vec{v} \cdot d\vec{s}$ ) any curve that wraps around a cylinder of radius  $R$  with an axis that coincides with the  $z$ -axis can be parametrized as

(x(t), y(t), z(t)) = (R cos(t), R sin(t), A P_{2,z}(t))
where  $P_{2,z}(t) = P_{2,z}(t + 2\pi)$  and  $P_{2,z}(0) = P_{2,z}(2\pi)$ .
Therefore
d\vec{s} = (-R sin(t), R cos(t), A P'_{2,z}(t)) dt = (-y(t), x(t), A P'_{2,z}(t)) dt

4 vF =
VectorFunction.(-y, x, A m D[P[t], t]) /.
{x -> Radius Cos[t],
y -> Radius Sin[t], z -> A m P[t]] // Simplify

5 PathDepInt = Integrate[vF, {t, 0, 2 Pi}]

6 PathDepInt /. P -> Sin

7 PathDepInt /. (P[t] -> t (t - 2 Pi), P'[t] -> D[t (t - 2 Pi), t])

8 pdigen = PathDepInt /. (P[t] -> Cos[t], P'[t] -> D[Cos[t], t])

9 Simplify[pdigen, n \in Integers]

10 thecurves = ParametricPlot3D[{Cos[t], Sin[t], Cos[3 t]},
{Cos[t], Sin[t], Cos[3 t]}, {t, 0, 2 Pi}]

11 Show[{Graphics3D[Thickness[0.01]],
Graphics3D[Hue[0.25, 0.5, 0.5]], thecurves}]

```

3.016 Home

Full Screen

Close

Quit

Examples of Path-Independence of Curl-Free Vector Fields and Curl-Free Subspaces

notebook (non-evaluated)

pdf (evaluated)

html (evaluated)

A curl-free vector field can be generated from any scalar potential, in this case $\vec{w} = \nabla e^{xyz} = \vec{w}(\vec{x}) = e^{xyz}(y\hat{z} + zx\hat{k} + xy\hat{z})$. To find a function that is curl-free on a restricted subspace (for example, the vector function $\vec{v}(\vec{x}) = (x^2 + y^2 - R^2)\hat{z}$ vanishes on the surface of a cylinder) one needs to find a \vec{m} such that $\nabla \times \vec{m} = \vec{v}$ (for this case

$$\vec{m} = \frac{1}{2} \left(yR^2 \left[1 - x^2 - \frac{y^2}{3} \right] \hat{x} + -xR^2 \left[1 - y^2 - \frac{x^2}{3} \right] \hat{y} \right)$$

is one of an infinite number of such vector functions.)

- 1: To ensure that we will have a zero-curl, a vector field is generated from a gradient of a scalar potential. The curl vanishes because $\nabla \times \nabla f = 0$.
- 2: This is a demonstration that the curl does indeed vanish.
- 3: Here is the integrand for $\oint \vec{v} \cdot d\vec{s}$ for the family of paths that wrap around a cylinder for the particular case of this conservative fields.
- 4: This is the general result for the family of curves indicated by $P(\theta) \dots$
- 5: This demonstrates that the path integral closes for any periodic $P(\theta)$ — which is the same as the condition that the curve is closed.
- 6: This demonstrates the method used to find the vector function which has a curl that vanishes on a cylinder.
- 11: This will demonstrate that the integral of the generally non-zero curl vector function is path independent *as long as the path lies on a surface where the curl of the vector function vanishes*.

Start with a scalar potential to ensure that we can generate a curl-free vector field

```

1 temp = Grad[Exp[x y z], Cartesian[x, y, z]]
2 AnotherVFunction = {e^x y z, e^x y z x z, e^x y z x y}
Simplify[Curl[AnotherVFunction, Cartesian[x, y, z]]]
3 anotherrv = AnotherVFunction.(-y, x, D[P[t], t]/.
{x -> Radius Cos[t], y -> Radius Sin[t], z -> P[t]] // Simplify
4 PathDepInt = Integrate[anotherrv, t]
5 (PathDepInt /. t -> 2 Pi) - (PathDepInt /. t -> 0)

```

Now we generate an example of a vector-valued function that is not curl-free in general, but is path independent in a restricted subspace where the curl vanishes.

```

6 VanishOnCylinder = x^2 + y^2 - Radius^2
7 CurlOfOneStooge = {0, 0, VanishOnCylinder}
8 Stooge = (-1/2 Integrate[VanishOnCylinder, y],
1/2 Integrate[VanishOnCylinder, x], 0)
9 Simplify[Curl[Stooge, Cartesian[x, y, z]]]
10 WhyIoughta = Stooge.(-y, x, D[P[t], t]/.
{x -> Radius Cos[t], y -> Radius Sin[t]} // Expand
11 Integrate[WhyIoughta, {t, 0, 2 Pi}]

```

3.016 Home

Full Screen

Close

Quit

Multidimensional Integrals

Perhaps the most straightforward of the higher-dimensional integrations (e.g., vector function along a curve, vector function on a surface) is a scalar function over a domain such as, a rectangular block in two dimensions, or a block in three dimensions. In each case, the integration over a dimension is uncoupled from the others and the problem reduces to pedestrian integration along a coordinate axis.

Sometimes difficulty arises when the domain of integration is not so easily described; in these cases, the limits of integration become functions of another integration variable. While specifying the limits of integration requires a bit of attention, the only thing that makes these cases difficult is that the integrals become tedious and lengthy. MATHEMATICA® removes some of this burden.

A short review of various ways in which a function's variable can appear in an integral follows:

	The Integral	Its Derivative
Function of limits	$p(x) = \int_{\alpha(x)}^{\beta(x)} f(\xi) d\xi$	$\frac{dp}{dx} = f(\beta(x)) \frac{d\beta}{dx} - f(\alpha(x)) \frac{d\alpha}{dx}$
Function of integrand	$q(x) = \int_a^b g(\xi, x) d\xi$	$\frac{dq}{dx} = \int_a^b \frac{\partial g(\xi, x)}{\partial x} d\xi$
Function of both	$r(x) = \int_{\alpha(x)}^{\beta(x)} g(\xi, x) d\xi$	$\frac{dr}{dx} = f(\beta(x)) \frac{d\beta}{dx} - f(\alpha(x)) \frac{d\alpha}{dx} + \int_{\alpha(x)}^{\beta(x)} \frac{\partial g(\xi, x)}{\partial x} d\xi$

[3.016 Home](#)[Full Screen](#)[Close](#)[Quit](#)

Using Jacobians to Change Variables in Thermodynamic Calculations

Changing of variables is a topic in multivariable calculus that often causes difficulty in classical thermodynamics.

This is an extract of my notes on thermodynamics: <http://pruffle.mit.edu/3.00/>

Alternative forms of differential relations can be derived by changing variables.

To change variables, a useful scheme using Jacobians can be employed:

$$\begin{aligned}\frac{\partial(u, v)}{\partial(x, y)} &\equiv \det \begin{vmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{vmatrix} \\ &= \frac{\partial u}{\partial x} \frac{\partial v}{\partial y} - \frac{\partial u}{\partial y} \frac{\partial v}{\partial x} \\ &= \left(\frac{\partial u}{\partial x}\right)_y \left(\frac{\partial v}{\partial y}\right)_x - \left(\frac{\partial u}{\partial y}\right)_x \left(\frac{\partial v}{\partial x}\right)_y \\ &= \frac{\partial u(x, y)}{\partial x} \frac{\partial v(x, y)}{\partial y} - \frac{\partial u(x, y)}{\partial y} \frac{\partial v(x, y)}{\partial x}\end{aligned}\tag{14-9}$$

[3.016 Home](#)

◀ ▶ ▶▶

$$\begin{aligned}\frac{\partial(u, v)}{\partial(x, y)} &= -\frac{\partial(v, u)}{\partial(x, y)} = \frac{\partial(v, u)}{\partial(y, x)} \\ \frac{\partial(u, v)}{\partial(x, v)} &= \left(\frac{\partial u}{\partial x}\right)_v \\ \frac{\partial(u, v)}{\partial(x, y)} &= \frac{\partial(u, v)}{\partial(r, s)} \frac{\partial(r, s)}{\partial(x, y)}\end{aligned}\tag{14-10}$$

[Full Screen](#)

[Close](#)

[Quit](#)

For example, the heat capacity at constant volume is:

$$\begin{aligned}
 C_V &= T \left(\frac{\partial S}{\partial T} \right)_V = T \frac{\partial(S, V)}{\partial(T, V)} \\
 &= T \frac{\partial(S, V)}{\partial(T, P)} \frac{\partial(T, P)}{\partial(T, V)} = T \left[\left(\frac{\partial S}{\partial T} \right)_P \left(\frac{\partial V}{\partial P} \right)_T - \left(\frac{\partial S}{\partial P} \right)_T \left(\frac{\partial V}{\partial T} \right)_P \right] \left(\frac{\partial P}{\partial V} \right)_T \\
 &= T \frac{C_P}{T} - T \left(\frac{\partial P}{\partial V} \right)_T \left(\frac{\partial V}{\partial T} \right)_P \left(\frac{\partial S}{\partial P} \right)_T
 \end{aligned} \tag{14-11}$$

Using the Maxwell relation, $(\frac{\partial S}{\partial P})_T = -(\frac{\partial V}{\partial T})_P$,

$$C_P - C_V = -T \frac{[(\frac{\partial V}{\partial T})_P]^2}{(\frac{\partial V}{\partial P})_T} \tag{14-12}$$

which demonstrates that $C_P > C_V$ because, for any stable substance, the volume is a decreasing function of pressure at constant temperature.

[3.016 Home](#)

◀ ▶ ▶▶

[Full Screen](#)

[Close](#)

[Quit](#)

Example of a Multiple Integral: Electrostatic Potential above a Charged Region

This will be an example calculation of the spatially-dependent energy of a unit point charge in the vicinity of a charged planar region having the shape of an equilateral triangle. The calculation superimposes the charges from each infinitesimal area by integrating a $1/r$ potential from each point in space to each infinitesimal patch in the equilateral triangle. The energy of a point charge $|e|$ due to a surface patch on the plane $z = 0$ of size $d\xi d\eta$ with surface charge density $\sigma(x, y)$ is:

$$dE(x, y, z, \xi, \eta) = \frac{|e| \sigma(\xi, \eta) d\xi d\eta}{\vec{r}(x, y, z, \xi, \eta)} \tag{14-13}$$

for a patch with uniform charge,

$$dE(x, y, z, \xi, \eta) = \frac{|e| \sigma d\xi d\eta}{\sqrt{(x - \xi)^2 + (y - \eta)^2 + z^2}} \tag{14-14}$$

For an equilateral triangle with sides of length one and center at the origin, the vertices can be located at $(0, \sqrt{3}/2)$ and $(\pm 1/2, -\sqrt{3}/6)$.

The integration becomes

$$E(x, y, z) \propto \int_{-\sqrt{3}/6}^{\sqrt{3}/2} \left(\int_{\eta - \sqrt{3}/2}^{\sqrt{3}/2 - \eta} \frac{d\xi}{\sqrt{(x - \xi)^2 + (y - \eta)^2 + z^2}} \right) d\eta \quad (14-15)$$

[3.016 Home](#)

◀◀ ▶◀ ▶▶ ▶▶▶

[Full Screen](#)

[Close](#)

[Quit](#)

Potential near a Charged and Shaped Surface Patch: Brute Force

notebook (non-evaluated)

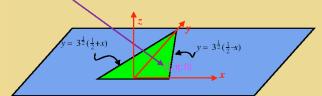
pdf (evaluated)

html (evaluated)

A example of a multiple integral and its numerical evaluation for the triangular charged patch.

- 2: Integrate's syntax is to integrate over the last integration iterator first, and the first iterator last.
- 3: This will show that the closed form of the above integral appears to be unknown to MATHEMATICA® ...
- 4: However, the energy can be integrated numerically. Here is a function that calls `NIntegrate` for a location given by its arguments.
- 6: This will be a very slow calculation on most computers, but it will show how the potential changes along a line segment of length 2 that runs through the origin at 45°.
- 7: Even slower, `ContourPlot` is used at sequential heights for use as an animation.

Uniformly charged surface patch



```

1 Integrate[Exp[3 x], {y, 0, 1}, {x, 0, y}]
1 (Integrate[Exp[3 x], {x, 0, y}])
Integrate[ (Integrate[Exp[3 x], {x, 0, y}]), {y, 0, 1}]

2 integrate[Exp[3 x], {x, 0, y}, {y, 0, 1}]
2 (Integrate[Exp[3 x], {y, 0, 1}])
Integrate[ (Integrate[Exp[3 x], {y, 0, 1}]), {x, 0, y}]

3 TrianglePotentialDirect = Integrate[ 1 / Sqrt[(x - \xi)^2 + (y - \eta)^2 + z^2],
3 { \eta, 0, \sqrt{3}/2 }, { \xi, \eta / \sqrt{3} - 1/2, 1/2 - \eta / \sqrt{3} } ]
Assumptions \rightarrow {x \in Reals, y \in Reals, z > 0}

4 TrianglePotentialNumeric[x_, y_, z_] :=
NIntegrate[ 1 / Sqrt[(x - \xi)^2 + (y - \eta)^2 + z^2],
{ \eta, 0, \sqrt{3}/2 }, { \xi, \eta / \sqrt{3} - 1/2, 1/2 - \eta / \sqrt{3} } ]

5 TrianglePotentialNumeric[1, 3, .01]

6 Plot[TrianglePotentialNumeric[x, x, t/40], {x, -1, 1}]

7 Table[ContourPlot[TrianglePotentialNumeric[x, y, h], {x, -1, 1},
{y, -0.5, 1.5}, Contours \rightarrow Table[v, {v, 25, 2, .25}],
ColorFunction \rightarrow (Hue[1 - 0.66 \# / 2] &),
ColorFunctionScaling \rightarrow False], {h, .025, .5, .025}]

```

3.016 Home

Full Screen

Close

Quit

Index

Calculus‘VectorAnalysis‘, 116

Cartesian, 116

changing variables

 jacobian, 119

ContourPlot, 122

Curl, 116

curl of a vector functions and path independence,
 115

derivatives of integrals, 118

electrostatic potential

 above a triangular patch of constant charge
 density, 122

Example function

 PathDepInt, 116

 VectorFunction, 116

FindInstance, 116

gradient of scalar function

 path independence, 115

heat capacity at constant volume

 example of changing variables, 120

Integrate, 122

integration along a path, 114

integration over irregularly shaped domain
 example, 122

jacobian, 119

Mathematica function

 Cartesian, 116

 ContourPlot, 122

 Curl, 116

 FindInstance, 116

 Integrate, 122

 NIntegrate, 122

Mathematica package

 Calculus‘VectorAnalysis‘, 116

Maxwell’s relations, 115

multidimensional integration, 118

NIntegrate, 122

non-vanishing curl, 116

path independence, 115

path independence on a restricted subspace, 117

path integrals

 examples, 116

path-dependence

 conditions for, 115

 example for non-conservative field, 116

path-independence

 examples of vector integrands, 117

PathDepInt, 116

simply-connected paths, 115

state function

[3.016 Home](#)

[Full Screen](#)

[Close](#)

[Quit](#)

