

Oct. 23 2006

Lecture 13: Differential Operations on Vectors

Reading:

Kreyszig Sections: 9.8, 9.9 (pages 410–413, 414–416)

Generalizing the Derivative

The number of different ideas, whether from physical science or other disciplines, that can be understood with reference to the “meaning” of a derivative from the calculus of scalar functions is very very large. Our ideas about many topics, such as price elasticity, strain, stability, and optimization, are connected to our understanding of a derivative.

In vector calculus, there are generalizations to the derivative from basic calculus that acts on a scalar and gives another scalar back:

gradient (∇): A derivative on a scalar that gives a vector.

curl ($\nabla \times$): A derivative on a vector that gives another vector.

divergence ($\nabla \cdot$): A derivative on a vector that gives scalar.

Each of these have “meanings” that can be applied to a broad class of problems.

The gradient operation on $f(\vec{x}) = f(x, y, z) = f(x_1, x_2, x_3)$,

$$\text{grad } f = \nabla f \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \right) = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} \right) f \quad (13-1)$$

has been discussed previously. The curl and divergence will be discussed below.

Lecture 13 MATHEMATICA® Example 1

Gradients and Laplacians on Scalar Potentials

Download notebooks, pdfs, or html from <http://pruffle.mit.edu/3.016-2006>.

An example of a scalar potential due three point charges in the plane is visualized. Methods for computing a gradient and the divergence of a gradient (Laplacian) are presented.

- 1: This is the 2D $1/r$ -potential; here *potential* takes four arguments: two for the location of the charge and two for the position where the “test” charge “feels” the potential.
- 4: This is the third of three fixed charge potentials, arranged at the vertices of an equilateral triangle.
- 5: *gradfield* is an example of a function that takes a scalar function of x and y and returns a vector with component derivatives...
- 6: However, the previous example only works for functions of x and y explicitly. This expands *gradfield* to other cartesian coordinates other than x and y .
- 8: *Plot3D* is used to visualize the superposition of the three charge potentials defined as *ThreeHolePotential*.
- 9: *ContourPlot* is an alternative method to visualize this scalar field. The option *ColorFunction* points to an example of a *Pure Function*—a method of making functions that do not operate with the usual “square brackets.” Pure functions are indicated with the & at the end; the # is a place-holder for the pure function’s argument.
- 12: *PlotVectorField* is in the *Graphics‘PlotField‘* package. Because a gradient produces a vector field from a scalar potential, arrows are used at discrete points to visualize it.
- 14: The divergence operates on a vector and produces a scalar. Therefore, taking the divergence of the gradient of a scalar field returns a scalar field that is naturally associated with the original—its physical interpretation is (minus) the rate at which gradient vectors “diverge” from a point.

```

1 potential[x_, y_, xo_, yo_]:= -1/Sqrt[(x-xo)^2+(y-yo)^2]
2 HoleSouth[x_, y_]:= potential[x, y, Cos[3 Pi/2], Sin[3 Pi/2]]
3 HoleNorthWest[x_, y_]:= potential[x, y, Cos[Pi/6], Sin[Pi/6]]
4 HoleNorthEast[x_, y_]:= potential[x, y, Cos[5 Pi/6], Sin[5 Pi/6]]
5 gradfield[scalarfunction_]:= (D[scalarfunction[x, y], x]//Simplify,
                                D[scalarfunction[x, y], y]//Simplify)
6 gradfield[scalarfunction_, x_, y_]:= (D[scalarfunction[x, y], x]//Simplify,
                                         D[scalarfunction[x, y], y]//Simplify)
7 ThreeHolePotential[x_, y_]:= HoleSouth[x, y] + HoleNorthWest[x, y] + HoleNorthEast[x, y]
8 Plot3D[ThreeHolePotential[x, y], {x, -2, 2}, {y, -2, 2}]
9 ContourPlot[ThreeHolePotential[x, y], {x, -2, 2}, {y, -2, 2},
              PlotPoints -> 40, ColorFunction -> {Hue[1 - # + 0.661 &]}]
10 gradthreehole = gradfield[ThreeHolePotential]
11 << Graphics‘PlotField‘
12 PlotVectorField[gradthreehole,
                  {x, -2, 2}, {y, -2, 2}, ScaleFactor -> 0.2,
                  ColorFunction -> {Hue[1 - # + 0.661 &], PlotPoints -> 21}]
13 divergence[{xcomp_, ycomp_}]:= Simplify[D[xcomp, x] + D[ycomp, y]]
14 divgradthreehole = divergence[gradfield[ThreeHolePotential]]//Simplify
15 Plot3D[divgradthreehole,
          {x, -2, 2}, {y, -2, 2}, PlotPoints -> 60]

```

Divergence and Its Interpretation

The divergence operates on a vector field that is a function of position, $\vec{v}(x, y, z) = \vec{v}(\vec{x}) = (v_1(\vec{x}), v_2(\vec{x}), v_3(\vec{x}))$, and returns a scalar that is a function of position. The scalar field is often called the divergence field of \vec{v} or simply the divergence of \vec{v} .

$$\operatorname{div} \vec{v}(\vec{x}) = \nabla \cdot \vec{v} = \frac{\partial v_1}{\partial x} + \frac{\partial v_2}{\partial y} + \frac{\partial v_3}{\partial z} = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} \right) \cdot (v_1, v_2, v_3) = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} \right) \cdot \vec{v} \quad (13-2)$$

Think about what the divergence means,

Coordinate Systems

The above definitions are for a Cartesian (x, y, z) system. Sometimes it is more convenient to work in other (spherical, cylindrical, etc) coordinate systems. In other coordinate systems, the derivative operations ∇ , $\nabla \cdot$, and $\nabla \times$ have different forms. These other forms can be derived, or looked up in a mathematical handbook, or specified by using the **MATHEMATICA®** package “`VectorAnalysis`.”

Lecture 13 MATHEMATICA® Example 2

Coordinate Transformations

Download notebooks, pdfs, or html from <http://pruffle.mit.edu/3.016-2006>.

Examples of *Coordinate Transformations* obtained from the `Calculus`VectorAnalysis`` package. An frivolous example of computing distances from Boston to Paris along different routes using data from the `Miscellaneous`CityData`` package.

- 2: `CoordinatesFromCartesian` from the `Calculus`VectorAnalysis`` package transforms three cartesian coordinates, named in the first argument-list into one of many coordinate systems named by the second argument.
- 3: `CoordinatesFromCartesian` transforms one of many different coordinate systems, named in the second argument into three cartesian coordinates, named in the first argument-list.
- 7: `CityData` in the `Calculus`VectorAnalysis`` package can give the latitude and longitude of cities in the database—in this case Boston and Paris.
- 8: *SphericalCoordinatesofCity* takes the string-argument of a city name and uses `CityData` to compute its spherical coordinates (i.e., $(r_{\text{earth}}, \theta, \phi)$ are same as (average earth radius = 6378.1 km, latitude, longitude)). `ToDegrees` is from the `Miscellaneous`Geodesy`` package and converts a (degree, minutes, seconds)-structure to degrees.
- 10: *CartesianCoordinatesofCity* uses a coordinate transform and *SphericalCoordinatesofCity* to compute cartesian coordinates.
- 12: Imagining that a tunnel could be constructed between two cities, this function would calculate the minimum distance between cities.
- 14: Comparing the great circle route using `SphericalDistance` to the euclidian distance is a result that surprises me. It would save only about 55 kilometers to dig a tunnel to Paris—sigh.
- 15: `SpheroidalDistance` accounts for the earth's extra waistline for computing minimum distances.

```

1 << Calculus`VectorAnalysis`
Converting between coordinate systems
2 CoordinatesFromCartesian[{x, y, z}, Spherical[r, theta, phi]]
3 CoordinatesToCartesian[{r, theta, phi}, Spherical[r, theta, phi]]
4 Simplify[CoordinatesFromCartesian[
  {a, b, c}, Spherical[r, theta, phi]], t > 0]
An example of calculating the positions of cities in cartesian
and spherical coordinates.
5 << Miscellaneous`CityData`
6 boston = CityData["Boston", CityPosition]
7 paris = CityData["Paris", CityPosition]
8 SphericalCoordinatesofCity[cityname_String] :=
  {6378.1,
   2 Pi
   360 ToDegrees[CityData[cityname, CityPosition][[1]],
   2 Pi
   360 ToDegrees[CityData[cityname, CityPosition][[2]]]
  }
9 SphericalCoordinatesofCity["Boston"]
CartesianCoordinatesofCity[cityname_String] :=
10 CoordinatesToCartesian[SphericalCoordinatesofCity[
  cityname], Spherical[r, theta, phi]]
11 CartesianCoordinatesofCity["Paris"]
12 MinimumTunnel[city1_String, city2_String] :=
  Norm[CartesianCoordinatesofCity[city1] -
  CartesianCoordinatesofCity[city2]]
13 MinimumTunnel["Boston", "Paris"]
14 SphericalDistance[boston, paris] // N
15 SpheroidalDistance[boston, paris] // N

```

Lecture 13 MATHEMATICA® Example 3

Gradient and Divergence Operations in Other Coordinate Systems

Download notebooks, pdfs, or html from <http://pruffle.mit.edu/3.016-2006>.

A $1/r^n$ -potential is used to demonstrate how to obtain gradients and divergences in other coordinate systems.

- 1: *SimplePot* is an example function—a $1/r^n$ potential in cartesian coordinates.
- 2: *Grad* is defined in the *Calculus`VectorAnalysis`*: in this form it takes a scalar function and returns its gradient in the coordinate system defined by the second argument.
- 3: An alternate form of *SimplePot* is defined here in spherical coordinates.
- 4: Here, the gradient of $1/r$ is obtained in spherical coordinates.
- 5: Here, the gradient of $1/r$ is obtained in cylindrical coordinates.
- 6: Here, the gradient of $1/r$ is obtained in prolate spheriodal coordinates.
- 8: The laplacian ($\nabla^2(1/r^n)$) has a particularly simple form...
- 9: By inspection of $\nabla^2(1/r^n)$ or by direct calculation, it follows that $\nabla^2(1/r)$ vanishes identically.

```

1 SimplePot[x_, y_, z_, n_] := 1/(x^2 + y^2 + z^2)^(n/2)
2 gradsp = Grad[SimplePot[x, y, z, 1], Cartesian[x, y, z]]
3 SimplePot[r_, n_] := 1/r^n
4 gradsphere = Grad[SimplePot[r, 1], Spherical[r, \[Theta], \[Phi]]]
5 Grad[SimplePot[r, 1], Cylindrical[r, \[Theta], z]]
6 Grad[SimplePot[r, 1], ProlateSpheroidal[r, \[Theta], \[Phi]]]
7 GradSimplePot[x_, y_, z_, n_] := Evaluate[Grad[SimplePot[x, y, z, n], Cartesian[x, y, z]]]
8 Div[GradSimplePot[x, y, z, n], Cartesian[x, y, z]] // Simplify
9 Div[GradSimplePot[x, y, z, 1], Cartesian[x, y, z]] // Simplify

```

Curl and Its Interpretation

The curl is the vector valued derivative of a vector function. As illustrated below, its operation can be geometrically interpreted as the rotation of a field about a point.

For a vector-valued function of (x, y, z) :

$$\vec{v}(x, y, z) = \vec{v}(\vec{x}) = (v_1(\vec{x}), v_2(\vec{x}), v_3(\vec{x})) = v_1(x, y, z)\hat{i} + v_2(x, y, z)\hat{j} + v_3(x, y, z)\hat{k} \quad (13-3)$$

the curl derivative operation is another vector defined by:

$$\text{curl } \vec{v} = \nabla \times \vec{v} = \left(\left(\frac{\partial v_3}{\partial y} - \frac{\partial v_2}{\partial z} \right), \left(\frac{\partial v_1}{\partial z} - \frac{\partial v_3}{\partial x} \right), \left(\frac{\partial v_2}{\partial x} - \frac{\partial v_1}{\partial y} \right) \right) \quad (13-4)$$

or with the memory-device:

$$\text{curl } \vec{v} = \nabla \times \vec{v} = \det \begin{pmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ v_1 & v_2 & v_3 \end{pmatrix} \quad (13-5)$$

For an example, consider the vector function that is often used in Brakke's Surface Evolver program:

$$\vec{w} = \frac{z^n}{(x^2 + y^2)(x^2 + y^2 + z^2)^{\frac{n}{2}}} (y\hat{i} - x\hat{j}) \quad (13-6)$$

This will be shown below, in a MATHEMATICA® example, to have the property:

$$\nabla \times \vec{w} = \frac{nz^{n-1}}{(x^2 + y^2 + z^2)^{1+\frac{n}{2}}} (x\hat{i} + y\hat{j} + z\hat{k}) \quad (13-7)$$

which is spherically symmetric for $n = 1$ and convenient for turning surface integrals over a portion of a sphere into a path-integral over a curve on a sphere.

Lecture 13 MATHEMATICA® Example 4

Computing and Visualizing Curl Fields

Download notebooks, pdfs, or html from <http://pruffle.mit.edu/3.016-2006>.

Examples of curls are computing for a particular family of vector fields. Visualization is produced with the `PlotVectorField3D` function from the `Graphics`PlotField3D``.

- 1: *LeavingKansas* is the family of vector fields indicated by 13-6.
- 4: The function will be singular for $n > 1$ along the $z-axis$, this singularity will be reported during the numerical evaluations for visualization.
- 5: Here, the singularity is removed by testing the value of the argument and returning a fixed value along the singular axis.
- 7: Alternatively, the singular axis can be avoided by explicitly removing it from the domain of plotting.
- 9: This demonstrates the assertion (13-7) about the cylindrical symmetry of this curl for $n = 1$.
- 10: Visualizing the curl for $n = 3$: note that the field is points up with large magnitude near the vortex at the origin.
- 11: Demonstrate that the divergence of the curl of \vec{w} vanishes for any n —this is true for any differentiable vector field.

```

1 LeavingKansas[x_,y_,z_,n_]:= z^n
2 (x^2+y^2)(x^2+y^2+z^2)^n/2 [y, -x, 0]
3 << Graphics`PlotField3D` 
4 PlotVectorField3D[LeavingKansas[x, y, z, 3], 
5 {x, -1, 1}, {y, -1, 1}, {z, -.5, .5}, VectorHeads -> True, 
6 ColorFunction -> ((Hue[#^3 /. 66]) &), 
7 PlotPoints -> 15, ScaleFactor -> 0.5]
8 LeavingKansasNice[x_,y_,z_,n_]:= Module[{CindRadsq = x^2+y^2},
9 CindRadsq = If[CindRadsq <= 10^-4, 10^-4, CindRadsq, CindRadsq];
10 CindRadsq (CindRadsq + z^2)^n/2 [y, -x, 0]]
11 PlotVectorField3D[LeavingKansasNice[x, y, z, 3], 
12 {x, -1, 1}, {y, -1, 1}, {z, -.5, .5}, VectorHeads -> True, 
13 ColorFunction -> ((Hue[#^3 /. 66]) &), 
14 PlotPoints -> 15, ScaleFactor -> 0.5]
15 PlotVectorField3D[LeavingKansas[x, y, z, 3], 
16 {x, .01, 1}, {y, .01, 1}, {z, .01, .5}, VectorHeads -> True, 
17 ColorFunction -> ((Hue[#^3 /. 66]) &), 
18 PlotPoints -> 15, ScaleFactor -> 0.5]
19 Curl[LeavingKansas[x, y, z, 3], Cartesian[x, y, z]] // Simplify
20 Glenda[x_,y_,z_,n_]:= Simplify[Curl[LeavingKansas[x, y, z, n], Cartesian[x, y, z]]]
21 Glenda[x, y, z, 1]
22 PlotVectorField3D[Evaluate[Glenda[x, y, z, 3]], 
23 {x, 0, .5}, {y, 0, .5}, {z, 0, 1}, VectorHeads -> True, 
24 ColorFunction -> ((Hue[#^3 /. 66]) &), PlotPoints -> 7]
25 DivCurl = Div[Glenda[x, y, z, n], Cartesian[x, y, z]]
26 Simplify[DivCurl]

```

One important result that has physical implications is that the curl of a gradient is always zero: $f(\vec{x}) = f(x, y, z)$:

$$\nabla \times (\nabla f) = 0 \quad (13-8)$$

Therefore *if some vector function $\vec{F}(x, y, z) = (F_x, F_y, F_z)$ can be derived from a scalar potential, $\nabla f = \vec{F}$, then the curl of \vec{F} must be zero.* This is the property of an exact differential $df = (\nabla f) \cdot$

$(dx, dy, dz) = \vec{F} \cdot (dx, dy, dz)$. Maxwell's relations follow from equation 13-8:

$$\begin{aligned} 0 &= \frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z} = \frac{\partial \frac{\partial f}{\partial z}}{\partial y} - \frac{\partial \frac{\partial f}{\partial y}}{\partial z} = \frac{\partial^2 f}{\partial z \partial y} - \frac{\partial^2 f}{\partial y \partial z} \\ 0 &= \frac{\partial F_x}{\partial z} - \frac{\partial F_z}{\partial x} = \frac{\partial \frac{\partial f}{\partial x}}{\partial z} - \frac{\partial \frac{\partial f}{\partial z}}{\partial x} = \frac{\partial^2 f}{\partial x \partial z} - \frac{\partial^2 f}{\partial z \partial x} \\ 0 &= \frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y} = \frac{\partial \frac{\partial f}{\partial y}}{\partial x} - \frac{\partial \frac{\partial f}{\partial x}}{\partial y} = \frac{\partial^2 f}{\partial y \partial x} - \frac{\partial^2 f}{\partial x \partial y} \end{aligned} \quad (13-9)$$

Another interpretation is that gradient fields are *curl free, irrotational, or conservative*.

The notion of conservative means that, if a vector function can be derived as the gradient of a scalar potential, then integrals of the vector function over any path is zero for a closed curve—meaning that there is no change in “state;” energy is a common state function.

Here is a picture that helps visualize why the curl invokes names associated with spinning, rotation, etc.

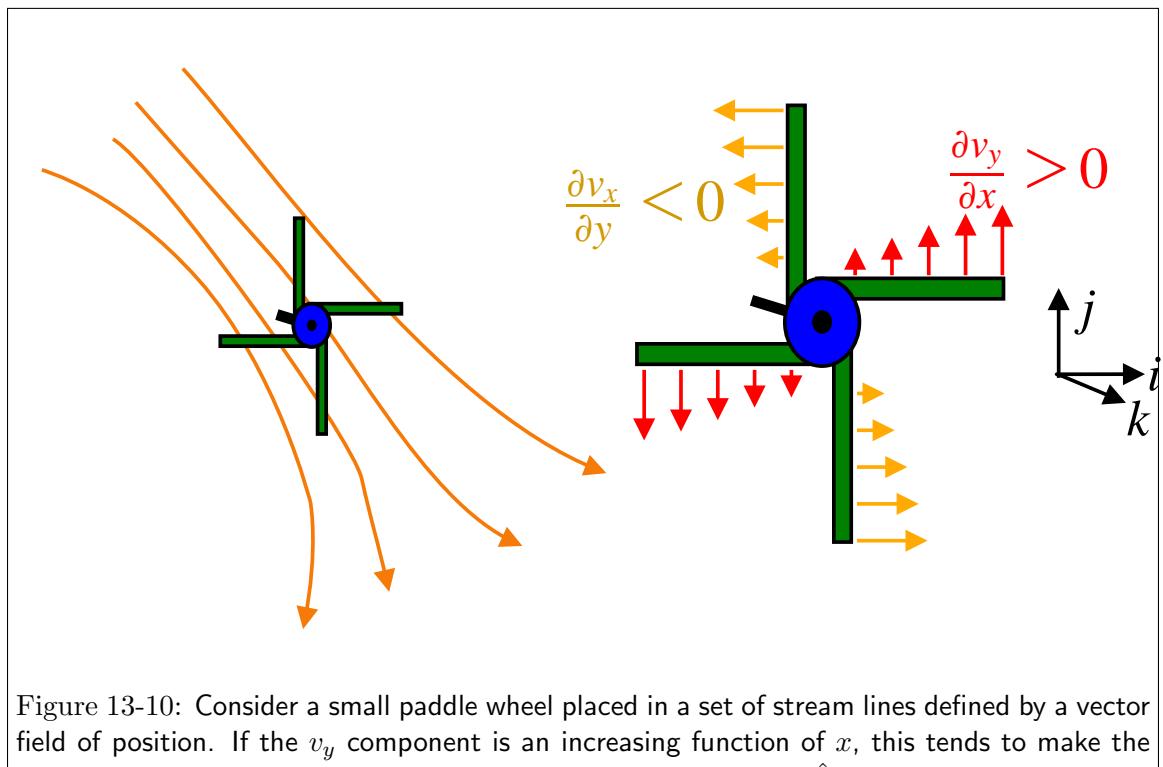


Figure 13-10: Consider a small paddle wheel placed in a set of stream lines defined by a vector field of position. If the v_y component is an increasing function of x , this tends to make the paddle wheel want to spin (positive, counter-clockwise) about the \hat{k} -axis. If the v_x component is a decreasing function of y , this tends to make the paddle wheel want to spin (positive, counter-clockwise) about the \hat{k} -axis. The net impulse to spin around the \hat{k} -axis is the sum of the two.

Note that this is independent of the reference frame because a constant velocity $\vec{v} = \text{const.}$ and the local acceleration $\vec{v} = \nabla f$ can be subtracted because of Eq. 13-10.

Another important result is that divergence of any curl is also zero, for $\vec{v}(\vec{x}) = \vec{v}(x, y, z)$:

$$\nabla \cdot (\nabla \times \vec{v}) = 0 \quad (13-10)$$