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Oct. 23 2006

Lecture 13: Differential Operations on Vectors

Reading:
Kreyszig Sections: 9.8, 9.9 (pages410–413, 414–416)

Generalizing the Derivative

The number of different ideas, whether from physical science or other disciplines, that can be understood
with reference to the “meaning” of a derivative from the calculus of scalar functions is very very large.
Our ideas about many topics, such as price elasticity, strain, stability, and optimization, are connected
to our understanding of a derivative.

In vector calculus, there are generalizations to the derivative from basic calculus that acts on a
scalar and gives another scalar back:

gradient (∇): A derivative on a scalar that gives a vector.

curl (∇×): A derivative on a vector that gives another vector.

divergence (∇·): A derivative on a vector that gives scalar.

Each of these have “meanings” that can be applied to a broad class of problems.
The gradient operation on f(~x) = f(x, y, z) = f(x1, x2, x3),

gradf = ∇f
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f (13-1)

has been discussed previously. The curl and divergence will be discussed below.



108 MIT 3.016 Fall 2006 c© W.C Carter Lecture 13

Lecture 13 Mathematica R© Example 1

Gradients and Laplacians on Scalar Potentials

Download notebooks, pdfs, or html from http://pruffle.mit.edu/3.016-2006.

An example of a scalar potential due three point charges in the plane is visualized. Methods for computing a
gradient and the divergence of a gradient (Laplacian) are presented.

1: This is the 2D 1/r-potential; here potential takes four arguments: two
for the location of the charge and two for the position where the “test”
charge “feels” the potential.

4: This is the third of three fixed charge potentials, arranged at the vertices
of an equilateral triangle.

5: gradfield is an example of a function that takes a scalar function of x and
y and returns a vector with component derivatives. . .

6: However, the previous example only works for functions of x and y ex-
plicitly. This expands gradfield to other cartesian coordinates other than
x and y.

8: Plot3D is used to visualize the superposition of the three charge potentials
defined as ThreeHolePotential .

9: ContourPlot is an alternative method to visualize this scalar field. The
option ColorFunction points to an example of a Pure Function—a
method of making functions that do not operate with the usual “square
brackets.” Pure functions are indicated with the & at the end; the # is a
place-holder for the pure function’s argument.

12: PlotVectorField is in the Graphics‘PlotField‘ package. Because a
gradient produces a vector field from a scalar potential, arrows are used
at discrete points to visualize it.

14: The divergence operates on a vector and produces a scalar. Therefore,
taking the divergence of the gradient of a scalar field returns a scalar field
that is naturally associated with the original—its physical interpretation
is (minus) the rate at which gradient vectors “diverge” from a point.

1 potential@x_ , y_, xo_ , yo_D :=
-1 êSqrt@Hx- xoL^2 + Hy - yoL^2D

2 HoleSouth@x_, y_D := potential@x, y, Cos@3 Pi ê2D, Sin@3Pi ê2DD

3 HoleNorthWest@x_ , y_D :=
potential@x, y, Cos@Pi ê6D, Sin@Pi ê6DD

4 HoleNorthEast@x_ , y_D :=
potential@x, y, Cos@ 5Pi ê6D, Sin@5Pi ê6DD

5
gradfield@scalarfunction_D :=
8D@scalarfunction@x, yD, xD êê Simplify,
D@scalarfunction@x, yD, yD êê Simplify<

6
gradfield@scalarfunction_, x_ , y_D :=
8D@scalarfunction@x, yD, xD êê Simplify,
D@scalarfunction@x, yD, yD êê Simplify<

7 ThreeHolePotential@x_, y_D := HoleSouth@x, yD +
HoleNorthWest@x, yD + HoleNorthEast@x, yD

8 Plot3D@ThreeHolePotential@x, yD, 8x, -2, 2<, 8y, -2, 2<D

9 ContourPlot@ThreeHolePotential@x, yD, 8x, -2, 2<, 8y, -2, 2<,
PlotPoints Ø 40, ColorFunctionØ HHue@1 - # *0.66D &LD

10 gradthreehole = gradfield@ThreeHolePotentialD
11 <<Graphics`PlotField`

12
PlotVectorField@gradthreehole,
8x, -2, 2<, 8y, -2, 2<, ScaleFactorØ 0.2,
ColorFunctionØ HHue@1 - # *0.66D &L, PlotPoints Ø 21D

13 divergence@8xcomp_ , ycomp_<D :=
Simplify@D@xcomp, xD + D@ycomp, yDD

14 divgradthreehole =
divergence@gradfield@ThreeHolePotentialDD êê Simplify

15 Plot3D@divgradthreehole,
8x, -2, 2<, 8y, -2, 2<, PlotPoints -> 60D

Divergence and Its Interpretation

The divergence operates on a vector field that is a function of position, ~v(x, y, z) = ~v(~x) = (v1(~x), v2(~x), v3(~x)),
and returns a scalar that is a function of position. The scalar field is often called the divergence field
of ~v or simply the divergence of ~v.

div ~v(~x) = ∇ · ~v =
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)
· ~v (13-2)

Think about what the divergence means,

http://pruffle.mit.edu/3.016-2006/Notebooks/L13/Lecture-13.nb
http://pruffle.mit.edu/3.016-2006/pdf/L13/Lecture-13-1.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-13/HTMLLinks/index_1.html
http://pruffle.mit.edu/3.016-2006
http://pruffle.mit.edu/3.016-2006/html/Lecture-13/HTMLLinks/index_1.html
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Coordinate Systems

The above definitions are for a Cartesian (x, y, z) system. Sometimes it is more convenient to work
in other (spherical, cylindrical, etc) coordinate systems. In other coordinate systems, the derivative
operations ∇, ∇·, and ∇× have different forms. These other forms can be derived, or looked up in a
mathematical handbook, or specified by using the Mathematica R© package “VectorAnalysis.”
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Lecture 13 Mathematica R© Example 2

Coordinate Transformations

Download notebooks, pdfs, or html from http://pruffle.mit.edu/3.016-2006.

Examples of Coordinate Transformations obtained from the Calculus‘VectorAnalysis‘ package. An
frivolous example of computing distances from Boston to Paris along different routes using data from the
Miscellaneous‘CityData‘ package.

2: CoordinatesFromCartesian from the Calculus‘VectorAnalysis‘
package transforms three cartesian coordinates, named in the first
argument-list into one of many coordinate systems named by the second
argument.

3: CoordinatesFromCartesian transforms one of many different coordinate
systems, named in the second argument into three cartesian coordinates,
named in the first argument-list.

7: CityData in the Calculus‘VectorAnalysis‘ package can give the lat-
itude and longitude of cities in the database—in this case Boston and
Paris.

8: SphericalCoordinatesofCity takes the string-argument of a city name
and uses CityData to compute its spherical coordinates (i.e., (rearth, θ, φ)
are same as (average earth radius = 6378.1 km, latitude, longitude)).
ToDegrees is from the Miscellaneous‘Geodesy‘ package and converts
a (degree, minutes, seconds)-structure to degrees.

10: CartesianCoordinatesofCity uses a coordinate transform and Spherical-
CoordinatesofCity to compute cartesian coordinates.

12: Imagining that a tunnel could be constructed between two cities, this
function would calculate the minimum distance between cities.

14: Comparing the great circle route using SphericalDistance to the eu-
clidian distance is a result that suprises me. It would save only about 55
kilometers to dig a tunnel to Paris—sigh.

15: SpheroidalDistance accounts for the earth’s extra waistline for comput-
ing minimum distances.

1 << Calculus`VectorAnalysis`

Converting between coordinate systems

2 CoordinatesFromCartesian@8x, y, z<, Spherical@r, theta, phiDD
3 CoordinatesToCartesian@8r, theta, phi<, Spherical@r, theta, phiDD

4 Simplify@CoordinatesFromCartesian@
8a t, b t, c t<, Spherical@r, theta, phiDD, t > 0D

An example of calculating the positions of cities in cartesian 
and spherical coordinates.

5 << Miscellaneous`CityData`

6 boston = CityData@"Boston", CityPositionD
7 paris = CityData@"Paris", CityPositionD

8

SphericalCoordinatesofCity@cityname_StringD :=
96378.1 ,

2 Pi
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
360

 ToDegrees@CityData@cityname, CityPositionD@@1DDD,

2 Pi
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
360

 ToDegrees@CityData@cityname, CityPositionD@@2DDD
=

9 SphericalCoordinatesofCity@"Boston"D

10
CartesianCoordinatesofCity@cityname_StringD :=

CoordinatesToCartesian@SphericalCoordinatesofCity@
citynameD, Spherical@r, theta, phiDD

11 CartesianCoordinatesofCity@"Paris"D

12
MinimumTunnel@city1_String, city2_StringD :=

Norm@CartesianCoordinatesofCity@city1D -
CartesianCoordinatesofCity@city2DD

13 MinimumTunnel@"Boston", "Paris"D
14 SphericalDistance@boston, parisD êê N

15 SpheroidalDistance@boston, parisD êê N

http://pruffle.mit.edu/3.016-2006/Notebooks/L13/Lecture-13.nb
http://pruffle.mit.edu/3.016-2006/pdf/L13/Lecture-13-2.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-13/HTMLLinks/index_2.html
http://pruffle.mit.edu/3.016-2006
http://pruffle.mit.edu/3.016-2006/html/Lecture-13/HTMLLinks/index_2.html
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Lecture 13 Mathematica R© Example 3

Gradient and Divergence Operations in Other Coordinate Systems

Download notebooks, pdfs, or html from http://pruffle.mit.edu/3.016-2006.

A 1/rn-potential is used to demonstrate how to obtain gradients and divergences in other coordinate systems.

1: SimplePot is an example function—a 1/rn potential in cartesian coordi-
nates.

2: Grad is defined in the Calculus‘VectorAnalysis‘: in this form it takes
a scalar function and returns its gradient in the coordinate system defined
by the second argument.

3: An alternate form of SimplePot is defined here in spherical coordinates.
4: Here, the gradient of 1/r is obtained in spherical coordinates.
5: Here, the gradient of 1/r is obtained in cylindrical coordinates.
6: Here, the gradient of 1/r is obtained in prolate spheriodal coordinates.
8: The laplacian (∇2(1/rn)) has a particularly simple form. . .

9: By inspection of ∇2(1/rn) or by direct calculation, it follows that ∇2(1/r)
vanishes identically.

1 SimplePot@x_ , y_ , z_, n_D := 1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
Hx^2 + y^2 + z^2L nÅÅÅÅÅÅ2

2 gradsp =Grad@SimplePot@x, y, z, 1D, Cartesian@x, y, zDD

3 SimplePot@r_, n_D := 1
ÅÅÅÅÅÅÅÅ
rn

4 gradsphere =Grad@SimplePot@r, 1D, Spherical@r, q, jDD
5 Grad@SimplePot@r, 1D, Cylindrical@r, q, zDD
6 Grad@SimplePot@r, 1D, ProlateSpheroidal@r, q, jDD

7 GradSimplePot@x_, y_, z_, n_D :=
Evaluate@Grad@SimplePot@x, y, z, nD, Cartesian@x, y, zDDD

8 Div@GradSimplePot@x, y, z, nD, Cartesian@x, y, zDD êê Simplify
9 Div@GradSimplePot@x, y, z, 1D, Cartesian@x, y, zDD êê Simplify

Curl and Its Interpretation

The curl is the vector valued derivative of a vector function. As illustrated below, its operation can be
geometrically interpreted as the rotation of a field about a point.

For a vector-valued function of (x, y, z):

~v(x, y, z) = ~v(~x) = (v1(~x), v2(~x), v3(~x)) = v1(x, y, z)̂i + v2(x, y, z)ĵ + v3(x, y, z)k̂ (13-3)

the curl derivative operation is another vector defined by:

curl ~v = ∇× ~v =
((

∂v3

∂y
− ∂v2

∂z

)
,

(
∂v1

∂z
− ∂v3

∂x

)
,

(
∂v2

∂x
− ∂v1

∂y

))
(13-4)

or with the memory-device:

curl ~v = ∇× ~v = det

 î ĵ k̂
∂
∂x

∂
∂y

∂
∂z

v1 v2 v3

 (13-5)

http://pruffle.mit.edu/3.016-2006/Notebooks/L13/Lecture-13.nb
http://pruffle.mit.edu/3.016-2006/pdf/L13/Lecture-13-3.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-13/HTMLLinks/index_3.html
http://pruffle.mit.edu/3.016-2006
http://pruffle.mit.edu/3.016-2006/html/Lecture-13/HTMLLinks/index_3.html
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For an example, consider the vector function that is often used in Brakke’s Surface Evolver program:

~w =
zn

(x2 + y2)(x2 + y2 + z2)
n
2

(yî− xĵ) (13-6)

This will be shown below, in a Mathematica R© example, to have the property:

∇× ~w =
nzn−1

(x2 + y2 + z2)1+
n
2

(xî + yĵ + zk̂) (13-7)

which is spherically symmetric for n = 1 and convenient for turning surface integrals over a portion of
a sphere into a path-integral over a curve on a sphere.

Lecture 13 Mathematica R© Example 4

Computing and Visualizing Curl Fields

Download notebooks, pdfs, or html from http://pruffle.mit.edu/3.016-2006.

Examples of curls are computing for a particular family of vector fields. Visualization is produced with the
PlotVectorField3D function from the Graphics‘PlotField3D‘.

1: LeavingKansas is the family of vector fields indicated by 13-6.
4: The function will be singular for n > 1 along the z−axis, this singularity

will be reported during the numerical evaluations for visualization.
5: Here, the singularity is removed by testing the value of the argument and

returning a fixed value along the singular axis.
7: Alternatively, the singular axis can be avoided by explicitly removing it

from the domain of plotting.
9: This demonstrates the assertion (13-7) about the cylindrical symmetry of

this curl for n = 1.
10: Visualizing the curl for n = 3: note that the field is points up with large

magnitude near the vortex at the origin.
11: Demonstrate that the divergence of the curl of ~w vanishes for any n—this

is true for any differentiable vector field.

1
LeavingKansas@x_, y_, z_ , n_D :=

zn
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
Hx^2 + y^2L Hx^2 + y^2 + z^2L nÅÅÅÅÅÅ2

8y, -x, 0<

2 LeavingKansas@x, y, z, 3D
3 << Graphics`PlotField3D`

4
PlotVectorField3D@LeavingKansas@x, y, z, 3D,
8x, -1, 1<, 8y, -1, 1<, 8z, -.5, .5<, VectorHeadsØ True,
ColorFunctionØ HHHue@#* .66DL &L,
PlotPoints Ø 15, ScaleFactorØ 0.5D

5

LeavingKansasNicely@x_, y_, z_ , n_D :=
ModuleA8CindRadsq = x^2 + y^2<,
CindRadsq =
If@CindRadsq § 10-4 , 10-4 , CindRadsq, CindRadsqD;

zn
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
CindRadsq HCindRadsq + z^2L nÅÅÅÅÅÅ2

8y, -x, 0<E

6
PlotVectorField3D@LeavingKansasNicely@x, y, z, 3D,
8x, -1, 1<, 8y, -1, 1<, 8z, -.5, .5<, VectorHeadsØ True,
ColorFunctionØ HHHue@#* .66DL &L,
PlotPoints Ø 15, ScaleFactorØ 0.5D

7
PlotVectorField3D@LeavingKansas@x, y, z, 3D,
8x, .01, 1<, 8y, .01, 1<, 8z, .01, .5<, VectorHeads Ø True,
ColorFunctionØ HHHue@#* .66DL &L,
PlotPoints Ø 15, ScaleFactorØ 0.5D

8 Curl@LeavingKansas@x, y, z, 3D, Cartesian@x, y, zDD êê Simplify

9 Glenda@x_, y_, z_, n_D :=
Simplify@Curl@LeavingKansas@x, y, z, nD, Cartesian@x, y, zDDD

10 Glenda@x, y, z, 1D

11
PlotVectorField3D@Evaluate@Glenda@x, y, z, 3DD,
8x, 0, .5<, 8y, 0, .5<, 8z, 0.1, .5<, VectorHeadsØ True,
ColorFunctionØ HHHue@# * .66DL &L, PlotPoints Ø 7D

12 DivCurl = Div@Glenda@x, y, z, nD, Cartesian@x, y, zDD
13 Simplify@DivCurlD

One important result that has physical implications is that a the curl of a gradient is always zero:
f(~x) = f(x, y, z):

∇× (∇f) = 0 (13-8)

Therefore if some vector function ~F (x, y, z) = (Fx, Fy, Fz) can be derived from a scalar potential,
∇f = ~F , then the curl of ~F must be zero. This is the property of an exact differential df = (∇f) ·

http://pruffle.mit.edu/3.016-2006/Notebooks/L13/Lecture-13.nb
http://pruffle.mit.edu/3.016-2006/pdf/L13/Lecture-13-4.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-13/HTMLLinks/index_4.html
http://pruffle.mit.edu/3.016-2006
http://pruffle.mit.edu/3.016-2006/html/Lecture-13/HTMLLinks/index_4.html
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(dx, dy, dz) = ~F · (dx, dy, dz). Maxwell’s relations follow from equation 13-8:

0 =
∂Fz

∂y
− ∂Fy

∂z
=

∂ ∂f
∂z

∂y
−

∂ ∂f
∂y

∂z
=

∂2f

∂z∂y
− ∂2f

∂y∂z

0 =
∂Fx

∂z
− ∂Fz

∂x
=

∂ ∂f
∂x

∂z
−

∂ ∂f
∂z

∂x
=

∂2f

∂x∂z
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∂z∂x

0 =
∂Fy

∂x
− ∂Fx

∂y
=

∂ ∂f
∂y

∂x
−

∂ ∂f
∂x

∂y
=

∂2f

∂y∂x
− ∂2f

∂x∂y

(13-9)

Another interpretation is that gradient fields are curl free, irrotational, or conservative.
The notion of conservative means that, if a vector function can be derived as the gradient of a scalar

potential, then integrals of the vector function over any path is zero for a closed curve—meaning that
there is no change in “state;” energy is a common state function.

Here is a picture that helps visualize why the curl invokes names associated with spinning, rotation,
etc.

�i
�k

�j

∂vy

∂x >0∂vx
∂y <0

Figure 13-10: Consider a small paddle wheel placed in a set of stream lines defined by a vector
field of position. If the vy component is an increasing function of x, this tends to make the

paddle wheel want to spin (positive, counter-clockwise) about the k̂-axis. If the vx component
is a decreasing function of y, this tends to make the paddle wheel want to spin (positive,
counter-clockwise) about the k̂-axis. The net impulse to spin around the k̂-axis is the sum of
the two.
Note that this is independent of the reference frame because a constant velocity ~v = const.
and the local acceleration ~v = ∇f can subtracted because of Eq. 13-10.

Another important result is that divergence of any curl is also zero, for ~v(~x) = ~v(x, y, z):

∇ · (∇× ~v) = 0 (13-10)
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