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Lecture 13: Differential Operations on Vectors

Reading:
Kreyszig Sections: 9.8, 9.9 (pages410–413, 414–416)

Generalizing the Derivative

The number of different ideas, whether from physical science or other disciplines, that can be understood
with reference to the “meaning” of a derivative from the calculus of scalar functions is very very large.
Our ideas about many topics, such as price elasticity, strain, stability, and optimization, are connected
to our understanding of a derivative.

In vector calculus, there are generalizations to the derivative from basic calculus that acts on a
scalar and gives another scalar back:

gradient (∇): A derivative on a scalar that gives a vector.

curl (∇×): A derivative on a vector that gives another vector.

divergence (∇·): A derivative on a vector that gives scalar.

Each of these have “meanings” that can be applied to a broad class of problems.
The gradient operation on f(~x) = f(x, y, z) = f(x1, x2, x3),

gradf = ∇f

(
∂f

∂x
,
∂f

∂y
,
∂f

∂z

)
=

(
∂

∂x
,

∂

∂y
,

∂

∂z

)
f (13-1)

has been discussed previously. The curl and divergence will be discussed below.
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Lecture 13 Mathematica R© Example 1

Gradients and Laplacians on Scalar Potentials

notebook (non-evaluated) pdf (evaluated) html (evaluated)
An example of a scalar potential due three point charges in the plane is visualized. Methods for computing a

gradient and the divergence of a gradient (Laplacian) are presented.

1: This is the 2D 1/r-potential; here potential takes four arguments: two
for the location of the charge and two for the position where the “test”
charge “feels” the potential.

4: This is the third of three fixed charge potentials, arranged at the vertices
of an equilateral triangle.

5: gradfield is an example of a function that takes a scalar function of x and
y and returns a vector with component derivatives. . .

6: However, the previous example only works for functions of x and y ex-
plicitly. This expands gradfield to other cartesian coordinates other than
x and y.

8: Plot3D is used to visualize the superposition of the three charge potentials
defined as ThreeHolePotential .

9: ContourPlot is an alternative method to visualize this scalar field. The
option ColorFunction points to an example of a Pure Function—a
method of making functions that do not operate with the usual “square
brackets.” Pure functions are indicated with the & at the end; the # is a
place-holder for the pure function’s argument.

12: PlotVectorField is in the Graphics‘PlotField‘ package. Because a
gradient produces a vector field from a scalar potential, arrows are used
at discrete points to visualize it.

14: The divergence operates on a vector and produces a scalar. Therefore,
taking the divergence of the gradient of a scalar field returns a scalar field
that is naturally associated with the original—its physical interpretation
is (minus) the rate at which gradient vectors “diverge” from a point.

1 potential@x_ , y_, xo_ , yo_D :=
-1 êSqrt@Hx- xoL^2 + Hy - yoL^2D

2 HoleSouth@x_, y_D := potential@x, y, Cos@3 Pi ê2D, Sin@3Pi ê2DD

3 HoleNorthWest@x_ , y_D :=
potential@x, y, Cos@Pi ê6D, Sin@Pi ê6DD

4 HoleNorthEast@x_ , y_D :=
potential@x, y, Cos@ 5Pi ê6D, Sin@5Pi ê6DD

5
gradfield@scalarfunction_D :=
8D@scalarfunction@x, yD, xD êê Simplify,
D@scalarfunction@x, yD, yD êê Simplify<

6
gradfield@scalarfunction_, x_ , y_D :=
8D@scalarfunction@x, yD, xD êê Simplify,
D@scalarfunction@x, yD, yD êê Simplify<

7 ThreeHolePotential@x_, y_D := HoleSouth@x, yD +
HoleNorthWest@x, yD + HoleNorthEast@x, yD

8 Plot3D@ThreeHolePotential@x, yD, 8x, -2, 2<, 8y, -2, 2<D

9 ContourPlot@ThreeHolePotential@x, yD, 8x, -2, 2<, 8y, -2, 2<,
PlotPoints Ø 40, ColorFunctionØ HHue@1 - # *0.66D &LD

10 gradthreehole = gradfield@ThreeHolePotentialD
11 <<Graphics`PlotField`

12
PlotVectorField@gradthreehole,
8x, -2, 2<, 8y, -2, 2<, ScaleFactorØ 0.2,
ColorFunctionØ HHue@1 - # *0.66D &L, PlotPoints Ø 21D

13 divergence@8xcomp_ , ycomp_<D :=
Simplify@D@xcomp, xD + D@ycomp, yDD

14 divgradthreehole =
divergence@gradfield@ThreeHolePotentialDD êê Simplify

15 Plot3D@divgradthreehole,
8x, -2, 2<, 8y, -2, 2<, PlotPoints -> 60D
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Divergence and Its Interpretation

The divergence operates on a vector field that is a function of position, ~v(x, y, z) = ~v(~x) = (v1(~x), v2(~x), v3(~x)),
and returns a scalar that is a function of position. The scalar field is often called the divergence field
of ~v or simply the divergence of ~v.

div ~v(~x) = ∇ · ~v =
∂v1

∂x
+

∂v2

∂y
+

∂v3

∂z
=

(
∂

∂x
,

∂

∂y
,

∂

∂z

)
· (v1, v2, v3) =

(
∂

∂x
,

∂

∂y
,

∂

∂z

)
· ~v (13-2)

Think about what the divergence means,

Coordinate Systems

The above definitions are for a Cartesian (x, y, z) system. Sometimes it is more convenient to work
in other (spherical, cylindrical, etc) coordinate systems. In other coordinate systems, the derivative
operations ∇, ∇·, and ∇× have different forms. These other forms can be derived, or looked up in a
mathematical handbook, or specified by using the Mathematica R© package “VectorAnalysis.”

http://pruffle.mit.edu/3.016-2006/
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Lecture 13 Mathematica R© Example 2

Coordinate Transformations

notebook (non-evaluated) pdf (evaluated) html (evaluated)
Examples of Coordinate Transformations obtained from the Calculus‘VectorAnalysis‘ package. An

frivolous example of computing distances from Boston to Paris along different routes using data from the
Miscellaneous‘CityData‘ package.

2: CoordinatesFromCartesian from the Calculus‘VectorAnalysis‘
package transforms three cartesian coordinates, named in the first
argument-list into one of many coordinate systems named by the second
argument.

3: CoordinatesFromCartesian transforms one of many different coordinate
systems, named in the second argument into three cartesian coordinates,
named in the first argument-list.

7: CityData in the Calculus‘VectorAnalysis‘ package can give the lat-
itude and longitude of cities in the database—in this case Boston and
Paris.

8: SphericalCoordinatesofCity takes the string-argument of a city name
and uses CityData to compute its spherical coordinates (i.e., (rearth, θ, φ)
are same as (average earth radius = 6378.1 km, latitude, longitude)).
ToDegrees is from the Miscellaneous‘Geodesy‘ package and converts
a (degree, minutes, seconds)-structure to degrees.

10: CartesianCoordinatesofCity uses a coordinate transform and Spherical-
CoordinatesofCity to compute cartesian coordinates.

12: Imagining that a tunnel could be constructed between two cities, this
function would calculate the minimum distance between cities.

14: Comparing the great circle route using SphericalDistance to the eu-
clidian distance is a result that suprises me. It would save only about 55
kilometers to dig a tunnel to Paris—sigh.

15: SpheroidalDistance accounts for the earth’s extra waistline for comput-
ing minimum distances.

1 << Calculus`VectorAnalysis`

Converting between coordinate systems

2 CoordinatesFromCartesian@8x, y, z<, Spherical@r, theta, phiDD
3 CoordinatesToCartesian@8r, theta, phi<, Spherical@r, theta, phiDD

4 Simplify@CoordinatesFromCartesian@
8a t, b t, c t<, Spherical@r, theta, phiDD, t > 0D

An example of calculating the positions of cities in cartesian 
and spherical coordinates.

5 << Miscellaneous`CityData`

6 boston = CityData@"Boston", CityPositionD
7 paris = CityData@"Paris", CityPositionD

8

SphericalCoordinatesofCity@cityname_StringD :=
96378.1 ,

2 Pi
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
360

 ToDegrees@CityData@cityname, CityPositionD@@1DDD,

2 Pi
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
360

 ToDegrees@CityData@cityname, CityPositionD@@2DDD
=

9 SphericalCoordinatesofCity@"Boston"D

10
CartesianCoordinatesofCity@cityname_StringD :=

CoordinatesToCartesian@SphericalCoordinatesofCity@
citynameD, Spherical@r, theta, phiDD

11 CartesianCoordinatesofCity@"Paris"D

12
MinimumTunnel@city1_String, city2_StringD :=

Norm@CartesianCoordinatesofCity@city1D -
CartesianCoordinatesofCity@city2DD

13 MinimumTunnel@"Boston", "Paris"D
14 SphericalDistance@boston, parisD êê N

15 SpheroidalDistance@boston, parisD êê N
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Lecture 13 Mathematica R© Example 3

Gradient and Divergence Operations in Other Coordinate Systems

notebook (non-evaluated) pdf (evaluated) html (evaluated)
A 1/rn-potential is used to demonstrate how to obtain gradients and divergences in other coordinate systems.

1: SimplePot is an example function—a 1/rn potential in cartesian coordi-
nates.

2: Grad is defined in the Calculus‘VectorAnalysis‘: in this form it takes
a scalar function and returns its gradient in the coordinate system defined
by the second argument.

3: An alternate form of SimplePot is defined here in spherical coordinates.
4: Here, the gradient of 1/r is obtained in spherical coordinates.
5: Here, the gradient of 1/r is obtained in cylindrical coordinates.
6: Here, the gradient of 1/r is obtained in prolate spheriodal coordinates.
8: The laplacian (∇2(1/rn)) has a particularly simple form. . .

9: By inspection of ∇2(1/rn) or by direct calculation, it follows that ∇2(1/r)
vanishes identically.

1 SimplePot@x_ , y_ , z_, n_D := 1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
Hx^2 + y^2 + z^2L nÅÅÅÅÅÅ2

2 gradsp =Grad@SimplePot@x, y, z, 1D, Cartesian@x, y, zDD

3 SimplePot@r_, n_D := 1
ÅÅÅÅÅÅÅÅ
rn

4 gradsphere =Grad@SimplePot@r, 1D, Spherical@r, q, jDD
5 Grad@SimplePot@r, 1D, Cylindrical@r, q, zDD
6 Grad@SimplePot@r, 1D, ProlateSpheroidal@r, q, jDD

7 GradSimplePot@x_, y_, z_, n_D :=
Evaluate@Grad@SimplePot@x, y, z, nD, Cartesian@x, y, zDDD

8 Div@GradSimplePot@x, y, z, nD, Cartesian@x, y, zDD êê Simplify
9 Div@GradSimplePot@x, y, z, 1D, Cartesian@x, y, zDD êê Simplify

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2006/Notebooks/L13/Lecture-13.nb
http://pruffle.mit.edu/3.016-2006/pdf/L13/Lecture-13-3.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-13/HTMLLinks/index_3.html
http://pruffle.mit.edu/3.016-2006/html/Lecture-13/HTMLLinks/index_3.html


3.016 Home

JJ J I II

Full Screen

Close

Quit

c©W. Craig Carter

Curl and Its Interpretation

The curl is the vector valued derivative of a vector function. As illustrated below, its operation can be
geometrically interpreted as the rotation of a field about a point.

For a vector-valued function of (x, y, z):

~v(x, y, z) = ~v(~x) = (v1(~x), v2(~x), v3(~x)) = v1(x, y, z)̂i + v2(x, y, z)ĵ + v3(x, y, z)k̂ (13-3)

the curl derivative operation is another vector defined by:

curl ~v = ∇× ~v =
((

∂v3

∂y
− ∂v2

∂z

)
,

(
∂v1

∂z
− ∂v3

∂x

)
,

(
∂v2

∂x
− ∂v1

∂y

))
(13-4)

or with the memory-device:

curl ~v = ∇× ~v = det

 î ĵ k̂
∂
∂x

∂
∂y

∂
∂z

v1 v2 v3

 (13-5)

For an example, consider the vector function that is often used in Brakke’s Surface Evolver program:

~w =
zn

(x2 + y2)(x2 + y2 + z2)
n
2

(yî− xĵ) (13-6)

This will be shown below, in a Mathematica R© example, to have the property:

∇× ~w =
nzn−1

(x2 + y2 + z2)1+
n
2

(xî + yĵ + zk̂) (13-7)

which is spherically symmetric for n = 1 and convenient for turning surface integrals over a portion of
a sphere into a path-integral over a curve on a sphere.

http://pruffle.mit.edu/3.016-2006/
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Lecture 13 Mathematica R© Example 4

Computing and Visualizing Curl Fields

notebook (non-evaluated) pdf (evaluated) html (evaluated)
Examples of curls are computing for a particular family of vector fields. Visualization is produced with the
PlotVectorField3D function from the Graphics‘PlotField3D‘.

1: LeavingKansas is the family of vector fields indicated by 13-6.
4: The function will be singular for n > 1 along the z−axis, this singularity

will be reported during the numerical evaluations for visualization.
5: Here, the singularity is removed by testing the value of the argument and

returning a fixed value along the singular axis.
7: Alternatively, the singular axis can be avoided by explicitly removing it

from the domain of plotting.
9: This demonstrates the assertion (13-7) about the cylindrical symmetry of

this curl for n = 1.
10: Visualizing the curl for n = 3: note that the field is points up with large

magnitude near the vortex at the origin.
11: Demonstrate that the divergence of the curl of ~w vanishes for any n—this

is true for any differentiable vector field.

1
LeavingKansas@x_, y_, z_ , n_D :=

zn
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
Hx^2 + y^2L Hx^2 + y^2 + z^2L nÅÅÅÅÅÅ2

8y, -x, 0<

2 LeavingKansas@x, y, z, 3D
3 << Graphics`PlotField3D`

4
PlotVectorField3D@LeavingKansas@x, y, z, 3D,
8x, -1, 1<, 8y, -1, 1<, 8z, -.5, .5<, VectorHeadsØ True,
ColorFunctionØ HHHue@#* .66DL &L,
PlotPoints Ø 15, ScaleFactorØ 0.5D

5

LeavingKansasNicely@x_, y_, z_ , n_D :=
ModuleA8CindRadsq = x^2 + y^2<,
CindRadsq =
If@CindRadsq § 10-4 , 10-4 , CindRadsq, CindRadsqD;

zn
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
CindRadsq HCindRadsq + z^2L nÅÅÅÅÅÅ2

8y, -x, 0<E

6
PlotVectorField3D@LeavingKansasNicely@x, y, z, 3D,
8x, -1, 1<, 8y, -1, 1<, 8z, -.5, .5<, VectorHeadsØ True,
ColorFunctionØ HHHue@#* .66DL &L,
PlotPoints Ø 15, ScaleFactorØ 0.5D

7
PlotVectorField3D@LeavingKansas@x, y, z, 3D,
8x, .01, 1<, 8y, .01, 1<, 8z, .01, .5<, VectorHeads Ø True,
ColorFunctionØ HHHue@#* .66DL &L,
PlotPoints Ø 15, ScaleFactorØ 0.5D

8 Curl@LeavingKansas@x, y, z, 3D, Cartesian@x, y, zDD êê Simplify

9 Glenda@x_, y_, z_, n_D :=
Simplify@Curl@LeavingKansas@x, y, z, nD, Cartesian@x, y, zDDD

10 Glenda@x, y, z, 1D

11
PlotVectorField3D@Evaluate@Glenda@x, y, z, 3DD,
8x, 0, .5<, 8y, 0, .5<, 8z, 0.1, .5<, VectorHeadsØ True,
ColorFunctionØ HHHue@# * .66DL &L, PlotPoints Ø 7D

12 DivCurl = Div@Glenda@x, y, z, nD, Cartesian@x, y, zDD
13 Simplify@DivCurlD
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One important result that has physical implications is that a the curl of a gradient is always zero:
f(~x) = f(x, y, z):

∇× (∇f) = 0 (13-8)

Therefore if some vector function ~F (x, y, z) = (Fx, Fy, Fz) can be derived from a scalar potential,
∇f = ~F , then the curl of ~F must be zero. This is the property of an exact differential df = (∇f) ·
(dx, dy, dz) = ~F · (dx, dy, dz). Maxwell’s relations follow from equation 13-8:

0 =
∂Fz

∂y
− ∂Fy

∂z
=

∂ ∂f
∂z

∂y
−

∂ ∂f
∂y

∂z
=

∂2f

∂z∂y
− ∂2f

∂y∂z

0 =
∂Fx

∂z
− ∂Fz

∂x
=

∂ ∂f
∂x

∂z
−

∂ ∂f
∂z

∂x
=

∂2f

∂x∂z
− ∂2f

∂z∂x

0 =
∂Fy

∂x
− ∂Fx

∂y
=

∂ ∂f
∂y

∂x
−

∂ ∂f
∂x

∂y
=

∂2f

∂y∂x
− ∂2f

∂x∂y

(13-9)

Another interpretation is that gradient fields are curl free, irrotational, or conservative.
The notion of conservative means that, if a vector function can be derived as the gradient of a scalar

potential, then integrals of the vector function over any path is zero for a closed curve—meaning that
there is no change in “state;” energy is a common state function.

Here is a picture that helps visualize why the curl invokes names associated with spinning, rotation,
etc.

http://pruffle.mit.edu/3.016-2006/
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Figure 13-10: Consider a small paddle wheel placed in a set of stream lines defined by a vector
field of position. If the vy component is an increasing function of x, this tends to make the

paddle wheel want to spin (positive, counter-clockwise) about the k̂-axis. If the vx component is
a decreasing function of y, this tends to make the paddle wheel want to spin (positive, counter-
clockwise) about the k̂-axis. The net impulse to spin around the k̂-axis is the sum of the two.
Note that this is independent of the reference frame because a constant velocity ~v = const. and
the local acceleration ~v = ∇f can subtracted because of Eq. 13-10.

Another important result is that divergence of any curl is also zero, for ~v(~x) = ~v(x, y, z):

∇ · (∇× ~v) = 0 (13-10)

http://pruffle.mit.edu/3.016-2006/
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