

Lecture 13: Differential Operations on Vectors

Reading:

Kreyszig Sections: 9.8, 9.9 (pages 410–413, 414–416)

Generalizing the Derivative

The number of different ideas, whether from physical science or other disciplines, that can be understood with reference to the “meaning” of a derivative from the calculus of scalar functions is very very large. Our ideas about many topics, such as price elasticity, strain, stability, and optimization, are connected to our understanding of a derivative.

In vector calculus, there are generalizations to the derivative from basic calculus that acts on a scalar and gives another scalar back:

gradient (∇): A derivative on a scalar that gives a vector.

curl ($\nabla \times$): A derivative on a vector that gives another vector.

divergence ($\nabla \cdot$): A derivative on a vector that gives scalar.

Each of these have “meanings” that can be applied to a broad class of problems.

The gradient operation on $f(\vec{x}) = f(x, y, z) = f(x_1, x_2, x_3)$,

$$\text{grad } f = \nabla f \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \right) = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} \right) f \quad (13-1)$$

has been discussed previously. The curl and divergence will be discussed below.

[3.016 Home](#)

[Full Screen](#)

[Close](#)

[Quit](#)

Gradients and Laplacians on Scalar Potentials

[notebook \(non-evaluated\)](#)

[pdf \(evaluated\)](#)

[html \(evaluated\)](#)

An example of a scalar potential due three point charges in the plane is visualized. Methods for computing a gradient and the divergence of a gradient (Laplacian) are presented.

- This is the 2D $1/r$ -potential; here *potential* takes four arguments: two for the location of the charge and two for the position where the “test” charge “feels” the potential.
- This is the third of three fixed charge potentials, arranged at the vertices of an equilateral triangle.
- gradfield* is an example of a function that takes a scalar function of x and y and returns a vector with component derivatives...
- However, the previous example only works for functions of x and y explicitly. This expands *gradfield* to other cartesian coordinates other than x and y .
- Plot3D* is used to visualize the superposition of the three charge potentials defined as *ThreeHolePotential*.
- ContourPlot* is an alternative method to visualize this scalar field. The option *ColorFunction* points to an example of a *Pure Function*—a method of making functions that do not operate with the usual “square brackets.” Pure functions are indicated with the & at the end; the # is a place-holder for the pure function’s argument.
- PlotVectorField* is in the *Graphics‘PlotField‘* package. Because a gradient produces a vector field from a scalar potential, arrows are used at discrete points to visualize it.
- The divergence operates on a vector and produces a scalar. Therefore, taking the divergence of the gradient of a scalar field returns a scalar field that is naturally associated with the original—its physical interpretation is (minus) the rate at which gradient vectors “diverge” from a point.

```

1 potential[x_, y_, xo_, yo_] := -1/Sqrt[(x - xo)^2 + (y - yo)^2]
2 HoleSouth[x_, y_] := potential[x, y, Cos[3 Pi/2], Sin[3 Pi/2]]
3 HoleNorthWest[x_, y_] := potential[x, y, Cos[Pi/6], Sin[Pi/6]]
4 HoleNorthEast[x_, y_] := potential[x, y, Cos[5 Pi/6], Sin[5 Pi/6]]
5 gradfield[scalarfunction_] := (D[scalarfunction][x, y] // Simplify, D[scalarfunction][y, x] // Simplify)
6 gradfield[scalarfunction_, x_, y_] := (D[scalarfunction][x, y] // Simplify, D[scalarfunction][y, x] // Simplify)
7 ThreeHolePotential[x_, y_] := HoleSouth[x, y] + HoleNorthWest[x, y] + HoleNorthEast[x, y]
8 Plot3D[ThreeHolePotential[x, y], {x, -2, 2}, {y, -2, 2}]
9 ContourPlot[ThreeHolePotential[x, y], {x, -2, 2}, {y, -2, 2}, PlotPoints -> 40, ColorFunction -> {Hue[1 - # + 0.66] &}]
10 gradthreehole = gradfield[ThreeHolePotential]
11 << Graphics‘PlotField‘
12 PlotVectorField[gradthreehole, {x, -2, 2}, {y, -2, 2}, ScaleFactor -> 0.2, ColorFunction -> {Hue[1 - # + 0.66] &}, PlotPoints -> 21]
13 divergence[{xcomp_, ycomp_}] := Simplify[D[xcomp, x] + D[ycomp, y]]
14 divgradthreehole = divergence[gradfield[ThreeHolePotential]] // Simplify
15 Plot3D[divgradthreehole, {x, -2, 2}, {y, -2, 2}, PlotPoints -> 60]

```

[3.016 Home](#)

[Full Screen](#)

[Close](#)

[Quit](#)

Divergence and Its Interpretation

The divergence operates on a vector field that is a function of position, $\vec{v}(x, y, z) = \vec{v}(\vec{x}) = (v_1(\vec{x}), v_2(\vec{x}), v_3(\vec{x}))$, and returns a scalar that is a function of position. The scalar field is often called the divergence field of \vec{v} or simply the divergence of \vec{v} .

$$\operatorname{div} \vec{v}(\vec{x}) = \nabla \cdot \vec{v} = \frac{\partial v_1}{\partial x} + \frac{\partial v_2}{\partial y} + \frac{\partial v_3}{\partial z} = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} \right) \cdot (v_1, v_2, v_3) = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} \right) \cdot \vec{v} \quad (13-2)$$

Think about what the divergence means,

[3.016 Home](#)

Coordinate Systems

The above definitions are for a Cartesian (x, y, z) system. Sometimes it is more convenient to work in other (spherical, cylindrical, etc) coordinate systems. In other coordinate systems, the derivative operations ∇ , $\nabla \cdot$, and $\nabla \times$ have different forms. These other forms can be derived, or looked up in a mathematical handbook, or specified by using the MATHEMATICA® package “VectorAnalysis.”

[Full Screen](#)

[Close](#)

[Quit](#)

Coordinate Transformations

notebook (non-evaluated)

pdf (evaluated)

html (evaluated)

Examples of *Coordinate Transformations* obtained from the `Calculus`VectorAnalysis`` package. An frivolous example of computing distances from Boston to Paris along different routes using data from the `Miscellaneous`CityData`` package.

- 2: `CoordinatesFromCartesian` from the `Calculus`VectorAnalysis`` package transforms three cartesian coordinates, named in the first argument-list into one of many coordinate systems named by the second argument.
- 3: `CoordinatesFromCartesian` transforms one of many different coordinate systems, named in the second argument into three cartesian coordinates, named in the first argument-list.
- 7: `CityData` in the `Calculus`VectorAnalysis`` package can give the latitude and longitude of cities in the database—in this case Boston and Paris.
- 8: `SphericalCoordinatesofCity` takes the string-argument of a city name and uses `CityData` to compute its spherical coordinates (i.e., $(r_{\text{earth}}, \theta, \phi)$ are same as (average earth radius = 6378.1 km, latitude, longitude)). `ToDegrees` is from the `Miscellaneous`Geodesy`` package and converts a (degree, minutes, seconds)-structure to degrees.
- 10: `CartesianCoordinatesofCity` uses a coordinate transform and `SphericalCoordinatesofCity` to compute cartesian coordinates.
- 12: Imagining that a tunnel could be constructed between two cities, this function would calculate the minimum distance between cities.
- 14: Comparing the great circle route using `SphericalDistance` to the euclidian distance is a result that surprises me. It would save only about 55 kilometers to dig a tunnel to Paris—sigh.
- 15: `SpheroidalDistance` accounts for the earth's extra waistline for computing minimum distances.

```

1 << Calculus`VectorAnalysis`
Converting between coordinate systems
2 CoordinatesFromCartesian[{x, y, z}, Spherical[r, theta, phi]]
3 CoordinatesToCartesian[{r, theta, phi}, Spherical[r, theta, phi]]
4 Simplify[CoordinatesFromCartesian[
  {at, bt, ct}, Spherical[r, theta, phi]], t > 0]
An example of calculating the positions of cities in cartesian
and spherical coordinates.
5 << Miscellaneous`CityData`
6 boston = CityData["Boston", CityPosition]
7 paris = CityData["Paris", CityPosition]
8 SphericalCoordinatesofCity[cityname_String] :=
  {6378.1,
   2 Pi ToDegrees[CityData[cityname, CityPosition][[1]]], 
   360
   2 Pi ToDegrees[CityData[cityname, CityPosition][[2]]]
  }
9 SphericalCoordinatesofCity["Boston"]
10 CartesianCoordinatesofCity[cityname_String] :=
  CoordinatesToCartesian[SphericalCoordinatesofCity[
    cityname], Spherical[{r, theta, phi}]]
11 CartesianCoordinatesofCity["Paris"]
12 MinimumTunnel[city1_String, city2_String] :=
  Norm[CartesianCoordinatesofCity[city1] - 
  CartesianCoordinatesofCity[city2]]
13 MinimumTunnel["Boston", "Paris"]
14 SphericalDistance[boston, paris] // N
15 SpheroidalDistance[boston, paris] // N

```

3.016 Home

Full Screen

Close

Quit

Gradient and Divergence Operations in Other Coordinate Systems

notebook (non-evaluated)

pdf (evaluated)

html (evaluated)

A $1/r^n$ -potential is used to demonstrate how to obtain gradients and divergences in other coordinate systems.

- 1: *SimplePot* is an example function—a $1/r^n$ potential in cartesian coordinates.
- 2: *Grad* is defined in the **Calculus`VectorAnalysis`**: in this form it takes a scalar function and returns its gradient in the coordinate system defined by the second argument.
- 3: An alternate form of *SimplePot* is defined here in spherical coordinates.
- 4: Here, the gradient of $1/r$ is obtained in spherical coordinates.
- 5: Here, the gradient of $1/r$ is obtained in cylindrical coordinates.
- 6: Here, the gradient of $1/r$ is obtained in prolate spheriodal coordinates.
- 7: The laplacian ($\nabla^2(1/r^n)$) has a particularly simple form...
- 8: By inspection of $\nabla^2(1/r^n)$ or by direct calculation, it follows that $\nabla^2(1/r)$ vanishes identically.

```

1 SimplePot[x_, y_, z_, n_] := 1/(x^2 + y^2 + z^2)^(n/2)
2 gradsp = Grad[SimplePot[x, y, z, 1], Cartesian[x, y, z]]
3 SimplePot[r_, n_] := 1/r^n
4 gradsphere = Grad[SimplePot[r, 1], Spherical[r, \[Theta], \[Phi]]]
5 Grad[SimplePot[r, 1], Cylindrical[r, \[Theta], z]]
6 Grad[SimplePot[r, 1], ProlateSpheroidal[r, \[Theta], \[Phi]]]
7 GradSimplePot[x_, y_, z_, n_] :=
  Evaluate[Grad[SimplePot[x, y, z, n], Cartesian[x, y, z]]]
8 Div[GradSimplePot[x, y, z, 1], Cartesian[x, y, z]] // Simplify
9 Div[GradSimplePot[x, y, z, 1], Cartesian[x, y, z]] // Simplify

```

[3.016 Home](#)

[Full Screen](#)

[Close](#)

[Quit](#)

Curl and Its Interpretation

The curl is the vector valued derivative of a vector function. As illustrated below, its operation can be geometrically interpreted as the rotation of a field about a point.

For a vector-valued function of (x, y, z) :

$$\vec{v}(x, y, z) = \vec{v}(\vec{x}) = (v_1(\vec{x}), v_2(\vec{x}), v_3(\vec{x})) = v_1(x, y, z)\hat{i} + v_2(x, y, z)\hat{j} + v_3(x, y, z)\hat{k} \quad (13-3)$$

the curl derivative operation is another vector defined by:

$$\text{curl } \vec{v} = \nabla \times \vec{v} = \left(\left(\frac{\partial v_3}{\partial y} - \frac{\partial v_2}{\partial z} \right), \left(\frac{\partial v_1}{\partial z} - \frac{\partial v_3}{\partial x} \right), \left(\frac{\partial v_2}{\partial x} - \frac{\partial v_1}{\partial y} \right) \right) \quad (13-4)$$

[3.016 Home](#)

or with the memory-device:

$$\text{curl } \vec{v} = \nabla \times \vec{v} = \det \begin{pmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ v_1 & v_2 & v_3 \end{pmatrix} \quad (13-5)$$

For an example, consider the vector function that is often used in Brakke's Surface Evolver program:

$$\vec{w} = \frac{z^n}{(x^2 + y^2)(x^2 + y^2 + z^2)^{\frac{n}{2}}} (y\hat{i} - x\hat{j}) \quad (13-6)$$

[Full Screen](#)

This will be shown below, in a MATHEMATICA® example, to have the property:

$$\nabla \times \vec{w} = \frac{nz^{n-1}}{(x^2 + y^2 + z^2)^{1+\frac{n}{2}}} (x\hat{i} + y\hat{j} + z\hat{k}) \quad (13-7)$$

[Close](#)

which is spherically symmetric for $n = 1$ and convenient for turning surface integrals over a portion of a sphere into a path-integral over a curve on a sphere.

[Quit](#)

Computing and Visualizing Curl Fields

[notebook \(non-evaluated\)](#)

[pdf \(evaluated\)](#)

[html \(evaluated\)](#)

Examples of curls are computing for a particular family of vector fields. Visualization is produced with the `PlotVectorField3D` function from the `Graphics`PlotField3D``.

- 1: `LeavingKansas` is the family of vector fields indicated by 13-6.
- 4: The function will be singular for $n > 1$ along the $z-axis$, this singularity will be reported during the numerical evaluations for visualization.
- 5: Here, the singularity is removed by testing the value of the argument and returning a fixed value along the singular axis.
- 7: Alternatively, the singular axis can be avoided by explicitly removing it from the domain of plotting.
- 9: This demonstrates the assertion (13-7) about the cylindrical symmetry of this curl for $n = 1$.
- 10: Visualizing the curl for $n = 3$: note that the field is points up with large magnitude near the vortex at the origin.
- 11: Demonstrate that the divergence of the curl of \vec{w} vanishes for any n —this is true for any differentiable vector field.

```

1 LeavingKansas[x_, y_, z_, n_] :=
  z^n
  (x^2 + y^2)(x^2 + y^2 + z^2)^(n/2) {y, -x, 0}
2 LeavingKansas[x, y, z, 3]
3 << Graphics`PlotField3D`
4 PlotVectorField3D[LeavingKansas[x, y, z, 3],
  {x, -1, 1}, {y, -1, 1}, {z, -.5, .5}, VectorHeads -> True,
  ColorFunction -> ((Hue[#*.66]) &),
  PlotPoints -> 15, ScaleFactor -> 0.5]
5 LeavingKansasNicely[x_, y_, z_, n_] :=
  Module[{CindRadsq = x^2 + y^2},
    CindRadsq =
      If[CindRadsq <= 10^-4, 10^-4, CindRadsq, CindRadsq];
    CindRadsq/(CindRadsq + z^2)^(n/2) {y, -x, 0}]
6 PlotVectorField3D[LeavingKansasNicely[x, y, z, 3],
  {x, -1, 1}, {y, -1, 1}, {z, -.5, .5}, VectorHeads -> True,
  ColorFunction -> ((Hue[#*.66]) &),
  PlotPoints -> 15, ScaleFactor -> 0.5]
7 PlotVectorField3D[LeavingKansas[x, y, z, 3],
  {x, .01, 1}, {y, .01, 1}, {z, .01, .5}, VectorHeads -> True,
  ColorFunction -> ((Hue[#*.66]) &),
  PlotPoints -> 15, ScaleFactor -> 0.5]
8 Curl[LeavingKansas[x, y, z, 3], Cartesian[x, y, z]] // Simplify
9 Glenda[x_, y_, z_, n_] :=
  Simplify[Curl[LeavingKansas[x, y, z, n], Cartesian[x, y, z]]]
10 Glenda[x, y, z, 1]
11 PlotVectorField3D[Evaluate[Glenda[x, y, z, 3]],
  {x, 0, .5}, {y, 0, .5}, {z, 0.1, .5}, VectorHeads -> True,
  ColorFunction -> ((Hue[#*.66]) &), PlotPoints -> 7]
12 DivCurl = Div[Glenda[x, y, z, n], Cartesian[x, y, z]]
13 Simplify[DivCurl]

```

[3.016 Home](#)

[Full Screen](#)

[Close](#)

[Quit](#)

One important result that has physical implications is that the curl of a gradient is always zero: $f(\vec{x}) = f(x, y, z)$:

$$\nabla \times (\nabla f) = 0 \quad (13-8)$$

Therefore if some vector function $\vec{F}(x, y, z) = (F_x, F_y, F_z)$ can be derived from a scalar potential, $\nabla f = \vec{F}$, then the curl of \vec{F} must be zero. This is the property of an exact differential $df = (\nabla f) \cdot (dx, dy, dz) = \vec{F} \cdot (dx, dy, dz)$. Maxwell's relations follow from equation 13-8:

$$\begin{aligned} 0 &= \frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z} = \frac{\partial \frac{\partial f}{\partial z}}{\partial y} - \frac{\partial \frac{\partial f}{\partial y}}{\partial z} = \frac{\partial^2 f}{\partial z \partial y} - \frac{\partial^2 f}{\partial y \partial z} \\ 0 &= \frac{\partial F_x}{\partial z} - \frac{\partial F_z}{\partial x} = \frac{\partial \frac{\partial f}{\partial x}}{\partial z} - \frac{\partial \frac{\partial f}{\partial z}}{\partial x} = \frac{\partial^2 f}{\partial x \partial z} - \frac{\partial^2 f}{\partial z \partial x} \\ 0 &= \frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y} = \frac{\partial \frac{\partial f}{\partial y}}{\partial x} - \frac{\partial \frac{\partial f}{\partial x}}{\partial y} = \frac{\partial^2 f}{\partial y \partial x} - \frac{\partial^2 f}{\partial x \partial y} \end{aligned} \quad (13-9)$$

Another interpretation is that gradient fields are *curl free, irrotational, or conservative*.

The notion of conservative means that, if a vector function can be derived as the gradient of a scalar potential, then integrals of the vector function over any path is zero for a closed curve—meaning that there is no change in “state;” energy is a common state function.

Here is a picture that helps visualize why the curl invokes names associated with spinning, rotation, etc.

[3.016 Home](#)[Full Screen](#)[Close](#)[Quit](#)

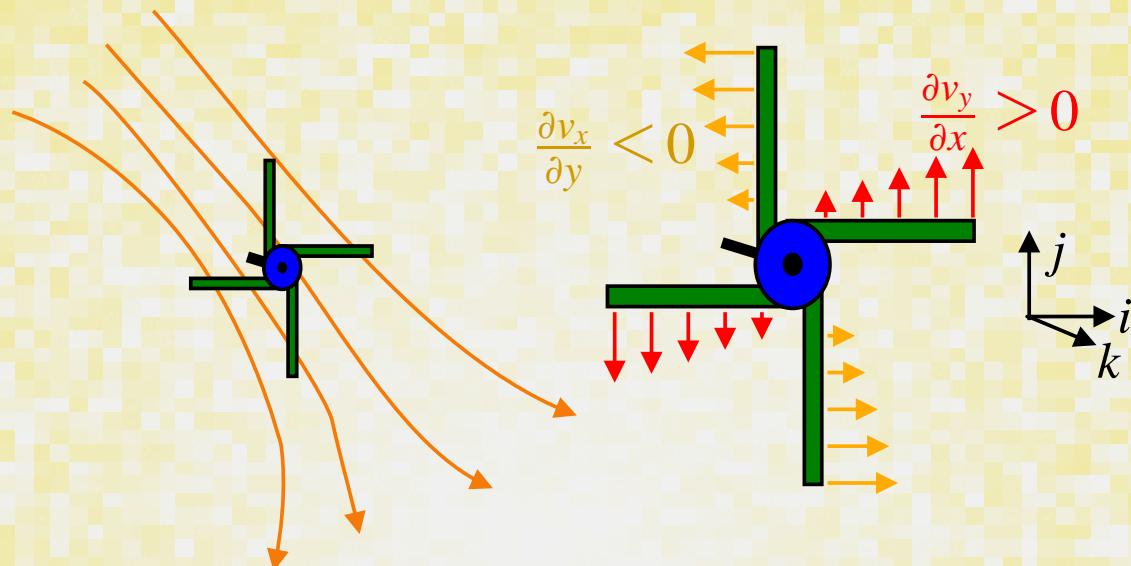


Figure 13-10: Consider a small paddle wheel placed in a set of stream lines defined by a vector field of position. If the v_y component is an increasing function of x , this tends to make the paddle wheel want to spin (positive, counter-clockwise) about the \hat{k} -axis. If the v_x component is a decreasing function of y , this tends to make the paddle wheel want to spin (positive, counter-clockwise) about the \hat{k} -axis. The net impulse to spin around the \hat{k} -axis is the sum of the two. Note that this is independent of the reference frame because a constant velocity $\vec{v} = \text{const.}$ and the local acceleration $\vec{v} = \nabla f$ can be subtracted because of Eq. 13-10.

Another important result is that divergence of any curl is also zero, for $\vec{v}(\vec{x}) = \vec{v}(x, y, z)$:

$$\nabla \cdot (\nabla \times \vec{v}) = 0 \quad (13-10)$$

Index

Boston

 distance to Paris, 110

Brakke, Ken

 The Surface Evolver, 112

Calculus‘*VectorAnalysis*’, 110, 111

CartesianCoordinatesofCity, 110

CityData, 110

ColorFunction, 108

conservative, irrotational, curl free fields, 114

ContourPlot, 108

coordinate systems

 gradients and divergence computations, 111

Coordinate Transformations, 110

coordinate transformations, 110

CoordinatesFromCartesian, 110

curl

 interpretations, 112

curl free, irrotational, conservative fields, 114

cylindrical coordinates, 110

 form of gradient and divergence, 111

divergence

 example calculation and visualization, 108

 interpretations, 109

Example function

CartesianCoordinatesofCity, 110

LeavingKansas, 113

SimplePot, 111

SphericalCoordinatesofCity, 110

ThreeHolePotential, 108

gradfield, 108

potential, 108

Grad, 111

grad, div, and curl, 107

gradfield, 108

gradients

 example calculation and visualization, 108

Graphics‘*PlotField3D*’, 113

Graphics‘*PlotField*’, 108

irrotational, curl free, conservative fields, 114

laplacian

 example calculation and visualization, 108

LeavingKansas, 113

Mathematica function

CityData, 110

ColorFunction, 108

ContourPlot, 108

CoordinatesFromCartesian, 110

Grad, 111

Plot3D, 108

PlotVectorField3D, 113

PlotVectorField, 108

SphericalDistance, 110

SpheroidalDistance, 110

[3.016 Home](#)

[Full Screen](#)

[Close](#)

[Quit](#)

ToDegrees, 110

Mathematica package

Calculus‘VectorAnalysis‘, 110, 111

Graphics‘PlotField3D‘, 113

Graphics‘PlotField‘, 108

Miscellaneous‘CityData‘, 110

Miscellaneous‘Geodesy‘, 110

Miscellaneous‘CityData‘, 110

Miscellaneous‘Geodesy‘, 110

Paris

 distance to Boston, 110

Plot3D, 108

PlotVectorField, 108

PlotVectorField3D, 113

potential

$1/r$, 108

potential, 108

prolate spheroidal coordinates

 form of gradient and divergence, 111

Pure Function, 108

scalar potential

 curl of gradient of, 114

SimplePot, 111

singularities

 example of removing for numerical evaluation,
 113

spherical coordinates, 110

 form of gradient and divergence, 111

SphericalCoordinatesofCity, 110

SphericalDistance, 110

SpheroidalDistance, 110

ThreeHolePotential, 108

ToDegrees, 110

vector derivatives, 107

visual picture of curl, 114

[3.016 Home](#)

[Full Screen](#)

[Close](#)

[Quit](#)