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Oct. 20 2006

Lecture 12: Multivariable Calculus

Reading:
Kreyszig Sections: 9.5, 9.6, 9.7 (pages389-398, 400-403, 403-409)

The Calculus of Curves

In the last lecture, the derivatives of a vector that varied continuously with a parameter, 7(t), were
considered. It is natural to think of 7(¢) as a curve in whatever space the vector 7 is defined. The most
familiar example is a curve in the plane: the two values (x(t), y(t)) are mapped onto the plane through
values as t sweeps through its range tinitial < ¢ < tgnal- A curve in three-dimensional cartesian space is
the mapping of three values (z(t),y(t), 2(t)); in cylindrical coordinates: (r(t),6(t), z(t)). In general, a
curve is represented by N coordinates as a single parameter (i.e., t) takes on a range of numbers—the
N coordinates form the embedding space.

Objects that have more dimensions than curves need more parameters. The number of parameters
is the dimensionality of the object and the number of coordinates is the dimensionality of the embedding
space. What we naturally call a surface is a two dimensional object embedded in a three-dimensional
space—for example, in cartesian coordinates (z(u,v),y(u,v), z(u,v)) is a surface.

The two-dimensional surface (z(u,v),y(u,v),z(u,v)) can itself become an embedding space for
lower dimensional objects; for example, the curve (u(t),v(t)) is embedded in the surface (u,v) which
itself embedded in (z,y,2). In other words, the curve (z(u(t),v(t)),y(u(t),v(t)), z(u(t),v(t))) can
be considered to be embedded in (u,v), or embedded in (x,y,z) and constrained to the surface
(z(u,v),y(u,v), z(u,v)).

In higher dimensions, there are many more possibilities and we can make a few introductory re-
marks about the language that is used to describe them. For application to physical problems, these
considerations indicate the number of degrees-of-freedom that are available and the conditions that a
system is overconstrained. An N-dimensional surface (sometimes called a hyper-surface) embedded in
an M-dimensional space is said to have codimension M — N. Some objects cannot be embedded in
a higher dimensional space; these are called non-embeddable, examples include the Klein bottle which
cannot be embedded in our three-dimensional space.
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Lecture 12 MATHEMATICA®R) Example 1

Curves in Three Dimensions

Download notebooks, pdfs, or html from http://pruffle.mit.edu/3.016-2006.

Two examples of parametric curves are presented with a visualization technique that animates the vector as it

sweeps out a curve.

2:

This is the second of two example functions that take an argument and
return a vector at the argument. It is a vector function that takes a scalar
argument.

The function showcurve takes two arguments. The first argument is the
name of a vector function that takes a single argument, as in the above
examples. The second argument is the upper limit of time to be plotted;
i.e., it will sweep out a curve from ¢ = 0 to ¢ =upper-limit. The option
DisplayFunction is a replacement to Identity, so the graphics will not
be displayed.

The function showline takes the same two arguments, and it creates a
graphics-object for a line drawn from the origin to the point indicated by
the second argument.

The function showcurveline takes the same two arguments and calls the
previously defined functions showcurve and showline with the graphics
displayed by using DisplayFunction — $DisplayFunction. The result
should be a line pointing to a curve that is swept out from the time ¢ = 0.

CurveLineSequence just calls showcurveline for a fixed interval.

This is the second example of an animation showing the vector as it sweeps
out a curve.

PrettyFlower[t_] :=
(% + % Coslaﬂ)(Cos[tl"S, SinltlA3, Sinltl Cosltlr2}

n

[Bendylt_1 := (Cosltl, sinlt], Sinlt] Cosltl}

Display Functions

showcurve[VecFunc_ , tl_] := ParametricPlot3D[
EvaluatelVecFuncltvalll, {tval, 0, tl}, Compiled - False,
DisplayFunction - Identity, PlotRange —
{{=1, 1}, {=1, 1}, {1, 1}}, BoxRatios - {1, 1, 1}]

IS

showline[VecFunc_, tl_] := Graphics3D[
{Thickness[0.01], Huel1], Line[{{0, 0, 0}, VecFuncltil}]}]

showcurveline[VecFunc_, tl_] :=
Show[{showcurve[VecFunc, tl], showline[VecFunc, I},
DisplayFunction - $DisplayFunction]

&

6

CurveLineSequence[VecFunc_] =
Table[showcurveline[VecFunc, il, {i, .1, 3Pi, .1}]

Animating the Curves with Their Parameter

7| CurveLineSequence[PrettyFlower]; |

8| CurveLineSequence[Bendy]; |
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Lecture 12 MATHEMATICA®) Example 2

Embedding Curves in Surfaces

Download notebooks, pdfs, or html from http://pruffle.mit.edu/3.016-2006.

An example is constructed that visualizes a two-dimensional surface in three dimensions and then visualizes a

one-dimensional curve constrained to the surface.

1: FlowerPot takes two arguments and returns a vector. As the arguments
sweep through domains, the vector will trace out a surface.

3: Using the ParametricPlot3D that is in the Graphics‘ParametricPlot*
package, the surface defined by FlowerPlot can be visualized.

4: Vines takes a single argument and then calls FlowerPot with arguments
that are functions of that single argument—the result must be a curve
embedded in the surface. In this case, the function is scaled a little, so
the curves will be visible.

5: This is an example that makes the curve fat and green colored.

6: Here, both the embedded curve and the surface are shown together.

FlowerPot[u_, v_] :={(3 + Coslv] Coslul,

I Sinlul + B + CoslvD Sinlul, (3/2 + Coslu + vD Sinlvl}

2| << Graphics'ParametricPlot3D" |

Flowerplot = ParametricPlot3D[FlowerPot[u, v], {u, 0, 2 Pi},
3 {v, 0, 2Pi}, ViewPoint —> {0.141, 1.653, 1.117},
PlotPoints —> {120, 40}]

Vines|t_] := 1.025 x FlowerPot[t Coslt], -tA2 Sin[ t]]
vineplot = ParametricPlot3D|[Vineslt], {t, 0, 2 Pi},
ViewPoint —> {0.141, 1.653, 1.117}, PlotPoints —> 500]

IS

5| thickvineplot = Show[{Graphics3DIThickness[0.021], ‘

Graphics3D[Hue[0.333, 0.5, 0.5]], vineplot}]

Gl Show[thickvineplot, Flowerplot] |

7| Show[Flowerplot, thickvineplot] |

Because the derivative of a curve with respect to its parameter is a tangent vector, the unit tangent
can be defined immediately:

dr
dt

a=—d
11

(12-1)

It is convenient to find a new parameter, s(t), that would make the denominator in Eq. 12-1 equal
to one. This parameter, s(t), is the arc-length:

s(t) = /t: ds

t
= Vda? + dy? + dz2

to
t | dx dy dz
_ Sy (B2 o (BENa
/to \/(dt> )" )
d

d
Ty at

(12-2)
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and with s instead of ¢, .
. 7
u(s) = s (12-3)
This is natural because ||7]| and s have the same units (i.e., meters and meters, foots and feet, etc)
instead of, for instance, time, ¢, that makes dr/dt a velocity and involving two different kinds of units
(e.g., furlongs and hours).
With the arc-length s, the magnitude of the curvature is particularly simple,

di d*F
w(s) = 121 = 1551 (12-4)

as is its interpretation—the curvature is a measure of how rapidly the unit tangent is changing direction.
Furthermore, the rate at which the unit tangent changes direction is a vector that must be normal
to the tangent (because d(@ -4 = 1) = 0) and therefore the unit normal is defined by:

o) L di _
ORp (12:5)

There two unit vectors that are locally normal to the unit tangent vector u’ (s) and the curve unit
normal p(s) x @ and @(s) x p. This last choice is called the unit binormal, b = i(s) x p and the three
vectors together form a nice little moving orthogonal axis pinned to the curve. Furthermore, there
are convenient relations between the vectors and differential geometric quantities called the Frenet
equations.

Using Arc-Length as a Curve’s Parameter

However, it should be pointed out that—although re-parameterizing a curve in terms of its arc-length
makes for simple analysis of a curve—achieving this re-parameterization is not necessarily simple.
Consider the steps required to represent a curve 7(t) in terms of its arc-length:
integration The integral in Eq. 12-2 may or may not have a closed form for s(t).
If it does then we can perform the following operation:

inversion s(t) is typically a complicated function that is not easy to invert, i.e., solve for ¢ in terms
of s to get a t(s) that can be substituted into 7(¢(s)) = 7(s).

These difficulties usually result in treating the problem symbolically and the resorting to numerical
methods of achieving the integration and inversion steps.
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Lecture 12 MATHEMATICA® Example 3

Calculating arclength

Download notebooks, pdfs, or html from http://pruffle.mit.edu/3.016-2006.

Examples of computing a curve’s arc-length s

1 | dFlowerDt = Simplify[D[PrettyFlowerlt], ]]

1: Here, the tangent vector for the function, PrettyFlower defined above, is 2[sFlower = integratelSarSimpifyldFiowerDt.dFiowerDd] 1 _ |
computed 3[ dBendyDt = DiBendyltl, 1 |
|

4| sBendy = Integrate[Sqrt{[dBendyDt.dBendyDt], t]

2: This is an attempt to find a closed-form solution for arclength s(7)—s(0) =

fOT (%)th. A closed-form doesn’t exist.

4: However, a closed-form solution does exist for the Bendy -function defined
earlier. If the closed-form s(t) could be inverted (i.e., ¢(s)) then the curve
¢(t) could be expressed in terms of its natural variable ¢(s) = ¢((s)).

5[ PlotlsBendy, {t, 0, 2Pill

Plot[Evaluate[NIntegrate[
SqrtldFlowerDt.dFlowerDtl, {t, 0, uplim}]], {uplim, 0, 6.4}]

5: The plot, s(t) is monotonically increasing and therefore, the function could
always be inverted numerically.

6: Even for the arc-length that could not be evaluated in closed-form (i.e.,
PrettyFlower ), a numerical integration could be used to perform the
inversion.

Scalar Functions with Vector Argument

In materials science and engineering, the concept of a spatially varying function arises frequently:
For example:

Concentration c¢;(z,y,z) = ¢;(Z) is the number (or moles) of chemical species of type i per unit
volume located at the point Z.

Density p(z,y,z) = p(Z) mass per unit volume located at the point Z. a point p(x,y, z) = p(Z).
Energy Density u(x,y,z) = u(Z) energy per unit volume located at the point Z.

The examples above are spatially dependent densities of “extensive quantities.”
There are also spatially variable intensive quantities:

Temperature T'(z,y,z) = T(Z) is the temperature which would be measured at the point &.
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Pressure P(z,y,z) = P(Z) is the pressure which would be measured at the point Z.

Chemical Potential p;(x,y,z) = pi(Z) is the chemical potential of the species i which would be
measured at the point Z.

Each example is a scalar function of space—that is, the function associates a scalar with each point
in space.

A topographical map is a familiar example of a graphical illustration of a scalar function (altitude)
as a function of location (latitude and longitude).

How Confusion Can Develop in Thermodynamics

However, there are many other types of scalar functions of several arguments, such as the state function:
U=U(S,V,N;) or P=P(V,T, N;). It is sometimes useful to think of these types of functions a scalar
functions of a “point” in a thermodynamics space.

However, this is often a source of confusion: notice that the internal energy is used in two different
contexts above. One context is the value of the energy, say 128.2 Joules. The other context is the
function U (S, V, N;). While the two symbols are identical, their meanings are quite different.

The root of the confusion lurks in the question, “What are the variables of U?” Suppose that
there is only one (independent) chemical species, then U(-) has three variables, such as U(S,V, N).
“But what if S(T,P,u), V(T,P,u), and N(T,P,u) are known functions, what are the variables
of U?” The answer is, they are any three independent variables, one could write U(T, P,u) =
U(S(T,P,n),V(T, P,u), N(T, P, ;1)) and there are six other natural choices.

The trouble arises when variations of a function like U are queried—then the variables that are
varying must be specified.

For this reason, it is either a good idea to keep the functional form explicit in thermodynamics, i.e.,

N N N
dU(S,V,N) = oU(S,V, )dS + oSV, )dV + MdN
oS ov ON (12-6)
oU (T, P, 1) oU(T, P, i) OU(T, P, ) ]
T,Pu) = ———""2dT
dU(T, P, ) 5T dT" + o7 av + o du
or use, the common thermodynamic notation,
w=(2) ase (%) ave(29) ax
V,N 8,N sV (12-7)

oU oU oU
dU = | — dT + <) dP + <> d
<3T>p,u oP)r, o) p

Total and Partial Derivatives, Chain Rule

There is no doubt that a great deal confusion arises from the following question, “What are the variables
of my function?”

For example, suppose we have a three-dimensional space (x,y, z), in which there is an embedded
surface (z(w,v),y(w,v),z(w,v)) F(w,v) = ¥(«) where @ = (v, w) is a vector that lies in the surface,
and an embedded curve (z(s),y(s), z(s)) = Z(s). Furthermore, suppose there is a curve that lies within
the surface (w(t),v(t)) = u(t).

Suppose that &€ = f(x,y, z) is a scalar function of (z,y, 2).

Here are some questions that arise in different applications:

1. How does £ vary as a function of position?
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2. How does & vary along the surface?
3. How does &£ vary along the curve?

4. How does &£ vary along the curve embedded in the surface?
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Lecture 12 MATHEMATICA®R) Example 4

Total Derivatives and Partial Derivatives: A Mathematica Review

Download notebooks, pdfs, or html from http://pruffle.mit.edu/3.016-2006.

Demonstrations of 1) the three spatial derivatives of F(z,y,2); 2) the two independent derivatives on a two-

dimensional surface embedded in z—y—z; 3) the complete derivative of F(x,y, z) along a curve (x(t), y(t), z(t)).

1:

10:

AScalarFunction is a symbolic representation of a function—it will be a
place-holder for examples of partial derivatives.

This will print Mathematica’s representation of derivatives with respect to
one of several arguments—e.g., OF (z,y, 2)/Jy is written as F©®1:9 [x v 7].
AScalarFunction becomes a function of two-variables when =,
y, and z are restricted to a surface parameterized by (u,v):
(@(w,v),y(w,v), 2(w,v))

Caution: the distinction between the symbol x and the symbol x [w,v] is
important; the following two examples show how the derivatives should
appear.

This and the previous example show how the chain rule is computed,
these two terms are the components of the gradient in the surface.

In this case, the previous AScalarFunction becomes a function of a single
variable by specifying a curve in the surface with (w(t),v(¢)).

Now, a total derivative can be calculated with the chain rule. This is
equivalent to. ..

The total derivative along a specific curve (x(t),y(t), z(t).

Taylor Series

The behavior of a function near a point is something that arises frequently in physical models. When
the function has lower-order continuous partial derivatives (generally, a “smooth” function near the
point in question), the stock method to model local behavior is Taylor’s series expansions around a

fixed point.

Taylor’s expansion for a scalar function of n variables, f(z1,x2,...

1 | AScalarFunction[x. , z_] = SomeFunction[x, y, z]

2| AScalarFunction|x, y, z]

Print["derivative w/r to first argument is ";
dFuncX = D[AScalarFunction[x, y, z], X]
Print["derivative w/r to second argument is " |;
dFuncY = D[AScalarFunction[x, y, z], y]
Print["derivative w/r to third argument is " |;
dFuncZ = D[AScalarFunction[x, y, z], z]

()

4| AScalarFunction[x[w, v], y[w, v], z[w, v]]

5| D[AScalarFunction[x[w, V], y[w, V], z[w, V]], X]

6| dFuncW = D[AScalarFunction[x[w, v], y[w, V], z[w, v]], w]

7| dFuncV = D[AScalarFunction[x[w, V], y[w, V], z[w, v]], v]

8[ AscalarFunctionfxiwltl, vitl], ylwltl, vitl], zlwltl, vitl)

dFuncT =
D[AScalarFunction[x[wlt], v[tl], ylwlt], v[tl], z[wlt], vIt]]], t]

10| dFuncT = D[AScalarFunction[x[t], y[t, z[t]], t]

, Zr,) which has continuous first
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and second partial derivatives near the point E = (&1,82,...,&) is:
f(£17€2?"'7§n) = f(x1>$2,---,$n)
of of of
+ Ere 5(51—x1)+ 92s g_}(52—5152)+-~+ pr. g(fn—l’n)
1
+51
0*f > 0*f o2 f
8712 g(§1 - xl) ) + 85[318(172 5(51 - .I'l)(fg - 1’2) +...+ 8%18(1?71 g(él - xl)(gn - x’fL)
0% f 0% f ) o2 f
D0y 5(52 —9)(& — 1) + 0g? g(~’§2 —z9)° 4 ...+ Dra0i g({2 —22)(€n — ) (12-8)
0*f 0*f 0% f )
axnaxl g(é-n - xn)(§1 - .’El) + al,naxz E(én - xn)(§2 - 1‘2) +...+ aZEnQ 5_‘(fn - -Tn)

]
+O[(& —21)°] + O [(& —21)* (& — m2)] + O [(&1 — 21)(b2 — 22)°] + O [(&2 — 22)°]
o+ O0[(G—21) (G —2n)] +O(& —21) (& — 22) (G — zn)] + ... + O [(§n — )]

or in a vector shorthand:

—

1@ = FE + Vafly €= D+ E- ) (VaVafllg- @D +O[IE-7°]  (12:9)

In the following example, visualization of local approximations will be obtained for a scalar function
of two variables, f(z,y). This will be extended into a an approximating function of four variables by
expanding it about a point (£, 7) to second order. The expansion is now a function of four variables—
the first two variables are the point the function is expanded around (x and y), and the second two
are the variable of the parabolic approximation at that point (§ and n): fappx(§,m:2,y) = f(z,y) +

2 82
Sl e+ -y Qwhere =3 5| (€€ o)+ Tf| € —u)+
2 f—l‘
%% T,y (n—y)(n —y) or fappx(&,n,2,y) = flw,y) + V- ( n—y > + %Qform where Qg =
2*f 02f
Ox? 0xdy —
(g_x;n_y) 82f Y (92f Y (f.]_y)
L PRl P

The function fappx(§,7,,y) will be plotted as a function of § and n for [{ —z| < d and [n—y| <
for a selected number of points (x,y).
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Lecture 12 MATHEMATICA® Example 5

Approximating Surfaces at Points

Download notebooks, pdfs, or html from http://pruffle.mit.edu/3.016-2006.

Visualization of a quadratic approximations to a surface at points on that surface

CrazyFun is an example function of two variables.

Using Normal to convert the Taylor Expansion obtained by Series at
an point x,, Y, produces a function Approzfunction of four variables.
This illustrates how the local quadratic approximation fits the surface
locally at a particular point.

4| CrazyFunix_, y_| := Sinl5xxISin[5xy] /(xy) +
Sinl5 7 (= DISin{5 7 (y — 1]/ (x— 1) (y — 1))

2

theplot = Plot3D[CrazyFun|[x, y], {x, 0.1, .9},
{y, 0.1, .9}, PlotRange - All, Mesh - False]

]

Approxfunction[x_, y_, xo_, yo_| :=
Senes[CrazyFunlx yl, (x XO 2}, {y, yo, 2}] // Normal

4

anapprox = Plot3D[Evalua1e[Approxfunmlon[x y, .7, 1],
{x,.7-1,.7+.1}{y, .1-.1, 1 +.1}]

5| Show[anapprox, theplot]

. . . . . . 6| Table[{xolil = Randoml], yolil = Randomll}, {i, 1, 100}];
Generate a list of random points at which to visualize the local approxi- |
. ApproxPlotli_] :=
mation. Plot3D[Evaluate[Approxfunctionx, y, xolil, yolil]},
7 {x, xolil - .1, xolil + .1},
{y, yolil - .1, yolil + .1}, PlotPoints - 6,

ApproxPlot is an example that will plot the local approximation for any
indexed random point. The surface is colored by using the value of the
point as an indicator. Visualization is delayed: only a graphics object is
produced.

This is an example of producing a stack of graphics with a recursive
graphics function. It iteravely adds a new approximating surface graphics
object to the set of the previous ones.

GraphicsArray allows plots to be drawn in rows and columns. Here, in-

termediate output is produced and displayed, and then the approximating
surfaces are plotted on the left of the surfaces with the original surface.

ColorFunction - (RGBColor[0.9 xolil, 0.9 yolil, #] &),
DisplayFunction - Identity]

©

GraphicsStack[0] =
Show[ApproxPIot[ﬂ DisplayFunction - Identity]

Grapt [i_] := Grapt klil =

Show[GraphlcsStack[

11, ApproxPlotli+ 11]

Show|[GraphicsArray[

{GraphicsStackl10], Show|theplot, GraphicsStackl101]}],

DisplayFunction - $DisplayFunction]

Just a few of many examples of instances where Taylor’s expansions are used are:

linearization Examining the behavior of a model near a point where the model is understood. Even

if the model is wildly non-linear, a useful approximation is to make it linear by evaluating near
a fixed point.

approximation If a model has a complicated representation in terms of unfamiliar functions, a Taylor

expansion can be used to characterize the ‘local’ model in terms of a simple polynomials.

asymptotics Even when a system has singular behavior (e.g, the value of a function becomes infinite as

some variable approaches a particular value), how the system becomes singular is very important.

At singular points, the Taylor expansion will have leading order terms that are singular, for
example near x = 0,

sin(z) 1 = 3

=———-+0(x

x2 x 6 (@)

The singularity can be subtracted off and it can be said that this function approaches oo ”linearly”
from below with slope -1/6. Comparing this to the behavior of another function that is singular

(12-10)
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near zero: 9

exp(z) 1 r oz 3
4T 12-11
- S tl+g+ 5 + O(x?) ( )

shows that the e”/z behavior is “more singular.”

Sin[x] 1  Exp[x] 1
“x"2 x' x X
Pl ot Styl e » {{Thi ckness[0.02], Hue[1]}, {Thi ckness[0.01], Hue[O. 5] }}]

Pl ot [{ }. (x, .001, 2.5},

4

- Graphics -

Figure 12-9: Behavior of two singular functions near their singular points.

stability In the expansion of energy about a point is obtained, then the various orders of expansion
can be interpreted:

zero-order The zeroth-order term in a local expansion is the energy of the system at the point
evaluated. Unless this term is to be compared to another point, it has no particular meaning
(if it is not infinite) as energy is always arbitrarily defined up to a constant.

first-order The first-order is related to the driving force to change the state of the system.
Consider:
AE =VE.6i=—F 6% (12-12)
If force exists, the system can decrease it energy linearly by picking a particular change 6%
that is anti-parallel to the force.
For a system to be stable, it is a necessary first condition that the forces (or first

order expansion coefficients) vanish.

second order If a system has no forces on it (therefore satisfying the necessary condition of
stability), then where the system is stable or unstable depends on whether a small 0% can
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be found that deceases the energy:

1
AE = 5(5a?’~ V—F 6%

1 S

=3 VVE - 6% (12-13)
1 0°FE

= — (;J?Z(;J?]
2 89518:5] T1,22, . Tn

where the summation convention is used above and the point (z1,za, ..., x,) is one for which

VE is zero.

numerics Derivatives are often obtained numerically in numerical simulations. The Taylor expan-
sion provides a formula to approximate numerical derivatives—and provides an estimate of the
numerical error as a function of quantities like numerical mesh size.

Gradients and Directional Derivatives

Scalar functions F'(z,y,z) = F(Z) have a natural vector field associated with them—at each point &
there is a direction 7(Z) pointing in the direction of the most rapid increase of F. Associating the
magnitude of a vector in the direction of steepest increase with the rate of increase of ' defines the
gradient.

The gradient is therefore a vector function with a vector argument (& in this case) and it is commonly
written as VF'.

Here are some natural examples:

Meteorology The “high pressure regions” are commonly displayed with weather reports—as are the
”isobars” or curves of constant barometric pressure. Thus displayed, pressure is a scalar function
of latitude and longitude.

At any point on the map, there is a direction that points to local high pressure center—this is
the direction of the gradient. The rate at which the pressure is increasing gives the magnitude
of the gradient.

The gradient of pressure should be a vector that is related to the direction and the speed of wind.
Mosquitoes It is known that hungry mosquitoes tend to fly towards sources (or local maxima) of

carbon dioxide. Therefore, it can be hypothesized that mosquitoes are able to determine the
gradient in the concentration of carbon dioxide.

Heat In an isolated system, heat flows from high-temperature (7'(Z)) regions to low-temperature
regions.

The Fourier empirical law of heat flow states that the rate of heat flows is proportional to the
local decrease in temperature.
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Therefore, the local rate of heat flow should be a proportional to the vector which is minus the
gradient of T'(Z): —VT

Finding the Gradient

Potentials and Force Fields

Force is a vector. Force projected onto a displacement vector dz is the rate at which work, dW, is done
on an object dW = —F - dz.

If the work is being supplied by an external agent (e.g., a charged sphere, a black hole, a magnet,
etc.), then it may be possible to ascribe a potential energy (E(Z), a scalar function with vector argu-
ment) to the agent associated with the position at which the force is being applied.> This E(Z) is the
potential for the agent and the force field due to the agent is F(Z) = —VE(&).

Sometimes the force (and therefore the energy) scale with the “size” of the object (i.e., the object’s
total charge in an electric potential due to a fixed set of charges, the mass of an object in the gravita-
tional potential of a black hole, the magnetization of the object in a magnetic potential, etc.). In these
cases, the potential field can be defined in terms of a unit size (per unit charge, per unit mass, etc.).
One can determine whether such a scaling is applied by checking the units.

5As with any energy, there is always an arbitrary constant associated with the position (or state) at which the energy
is taken to be zero. There is no such ambiguity with force. Forces are, in a sense, more fundamental than energies.
Energy appears to be fundamental because all observations of the first law of thermodynamics demonstrate that there is
a conserved quantity which is a state function and is called energy.
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