Lecture 8: Complex Numbers and Euler’s Formula

Reading:
Kreyszig Sections: 8.1, 8.2, 8.3 (pages334-338, 340-343, 345-348)

Complex Numbers and Operations in the Complex Plane

Consider, the number zero: it could be operationally defined as the number, which when multiplied by
any other number always yields itself; and its other properities would follow.
Negative numbers could be defined operationally as something that gives rise to simple pat-

terns. Multiplying by —1 gives rise to the pattern 1,—1,1,—1,... In the same vein, a number, 1,
can be created that doubles the period of the previous example: multiplying by @ gives the pattern:
1,2,—1,—12,1,2,—1, —1,... Combining the imaginary number, ¢, with the real numbers, arbitrarily long

periods can be defined by multiplication; applications to periodic phenonena is probably where complex
numbers have their greatest utility in science and engineering
With + = /—1, the complex numbers can be defined as the space of numbers spanned by the

vectors:
(é) ol (?) (8-1)

so that any complex number can be written as

z:x<é>+y<g) (8-2)

zZ =gy (8-3)

or just simply as

where x and y are real numbers. Rez = x and Imz = y.
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Operations on complex numbers
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Straightforward examples of addition, subtraction, multiplication, and division of complex numbers are demon-

strated. An example that demonstrates that MATHEMATICA®) doesn’t make a priori assumptions about

whether a symbol is real or complex. An example function that converts a complex number to its polar form is

constructed.

2: Just like Pi is a mathematical constant, the imaginary number is defined
in MATHEMATICA®) as something with the properties of ¢

3: Here, two numbers that are potentially, but not necessarily complex are
defined.

4: Addition and multiplication are defined as for any symbol; here the results
do not appear to be very interesting because the other symbols could
themselves be complex. . .

5: And, Simplify doesn’t help much even with assumptions.

6: The real and imaginary parts of a complex entity can be extracted with

Re and Im. This demonstrates that MATHEMATICA®) hasn’t made
assumptions about a, b, c, and d.

8-12 However, ComplexExpand does make assumptions that symbols are real
and, here, demonstrate the rules for addition, multiplication, division,
and exponentiation.

13: Abs calculates the magnitude (also known as modulus or absolute value)

and Arg calculates the argument (or angle) of a complex number. Here,
they are used to define a function to convert and expression to an equiv-
alent polar form of a complex number.

1| imaginary = Sqrtl-1]

2| (~imaginary)*2

z1 =a+ib;
z2=c +id;

4| compadd = z1 + z2;

5| compmult = z1422;

6 Simplify[compmult,

ac Reals & b e Reals &&c € Reals && d € Reals|

Mathematica doesn't assume that symbols are necessarily real...

Re[compadd]
Im[compadd]

However, the ica function C
assume that the variables are real....

does

8[ ComplexExpand|Relcompaddi]

9| ComplexExpand[Im[compadd]]

10| ComplexExpand[Relz1/z2l1

11 | ComplexExpand[compmult]

5 ComplexExpand[Relz143]]
ComplexExpandliml(z143]]

Function to convert to Polar Form

13[ Pformiz_] = Abslz] Expli Arglz])

14[ Plormlz1]

15[ Pormiz1 /. {a > 2, b - —xl]

16| ComplexExpand[Pformlz1]]
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Complex Plane and Complex Conjugates

Because the complex basis can be written in terms of the vectors in Equation 8-1, it is natural to plot
complex numbers in two dimensions—typically these two dimensions are the “complex plane” with
(0,1) associated with the y-axis and (1,0) associated with the z-axis.

The reflection of a complex number across the real axis is a useful operation. The image of a
reflection across the real axis has some useful qualities and is given a special name—“the complex
conjugate.”

A(0,1) N 3.016 Home
XA 1y Xt 1y
i S TN PRI
(17 O) _.""
.A'
—z=—X — 1y

Full Screen

Figure 8-3: Plotting the complex number z in the complex plane: The complex conjugate
(2) is a reflection across the real axis; the minus (—z) operation is an inversion through the
origin; therefore —(Z) = (—z) is equivalent to either a reflection across the imaginary axis or an
inversion followed by a reflection across the real axis.

The real part of a complex number is the projection of the displacement in the real direction and
also the average of the complex number and its conjugate: Rez = (z+2)/2. The imaginary part
is the displacement projected onto the imaginary axis, or the complex average of the complex Quit
number and its reflection across the imaginary axis: Imz = (z — 2) /(22).
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Polar Form of Complex Numbers

There are physical situations in which a transformation from Cartesian (z,y) coordinates to polar (or
cylindrical) coordinates (r, ) simplifies the algebra that is used to describe the physical problem.

An equivalent coordinate transformation for complex numbers, z = x + 1y, has an analogous sim-
plifying effect for multiplicative operations on complex numbers. It has been demonstrated how the
complex conjugate, z, is related to a reflection—multiplication is related to a counter-clockwise
rotation in the complex plane. Counter-clockwise rotation corresponds to increasing 6.

The transformations are:

(a:,y) = (7“, 9) { e L 3.016 Home

=rsind
. (8-4)

mmwaw{rzvﬁ+f

6 = arctan ¥

where arctan € (—m, 7. ﬂﬂﬁﬂ

Multiplication, Division, and Roots in Polar Form

One advantage of the polar complex form is the simplicity of multiplication operations:

. ; Full Screen
DeMoivre’s formulas:

2" = r"(cosnb + 1sin nd) (8-5)

0+ 2k 0 + 2k
Yz = ¥z(cos ol + 2sin l) (8-6)
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Numerical Properties of Operations on Complex Numbers
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Several examples demonstrate issues that arise when complex numbers are evaluated numerically.

1: The relationship e?™ = 1 is exact.

2.0m7

2: However, e is numerically 1.

3: Chop removes small evalues that are presumed to be the result of numerical
imprecision; it operates on complex numbers as well.
5-8 Here, the difference between something that is exactly ¢ and is numerically
1.0z is demonstrated. . .
9-12 And, this is similar demostration for 1+ using its polar form as a starting
point.

1| ExactlyOne = Expl2ril

2| NumericallyOne = Exp[N[2 7]l

3| Chop[NumericallyOne]

4| Round[NumericallyOne]

5| Exactlyl = Explri/2]

6| Numericallyl = ExpIN[ri/2]]

7| Round[Numericallyl]

8| Chop[Numericallyl]

9| ExactlyOnePlusl = ComplexExpand[v2 Explr i/4]]

10| NumericallyOnePlusl = ComplexExpand[v2 Exp[Nlr i/411]

11 | Chop[NumericallyOnePlusl]
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12| Round[NumericallyOnePlusl]

13[ Round[1.5 - 3.5Sqrtl-1])

14| Re[NumericallyOnePlusl]

15| Im[NumericallyOnePlusl]
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Exponentiation and Relations to Trignometric Functions
Exponentiation of a complex number is defined by:
e” = "W = e%(cos y + 1siny)

Exponentiation of a purely imaginary number advances the angle by rotation:

e =cosy +siny (8-8)
combining Eq. 8-8 with Eq. 8-7 gives the particularly useful form:

z=1x+ 1y =re? (8-9)
and the useful relations (obtained simply by considering the complex plane’s geometry)

e2M=1 eM=-1 e™=—1 erx'=1 e 3'=—1 (8-10)

Subtraction of powers in Eq. 8-8 and generalization gives known relations for trigonometric functions:

¥ 1 e ¥ e — e—iz
cosz = = sinz = s
?
z —z zZ _ =z
coshz = % sinh z = % (8-11)

cos z = cosh 1z 1sin z = sinh 12

costz = cosh z sintz = #sinh z

Complex Numbers in Roots to Polynomial Equations

Complex numbers frequently arise when solving for the roots of a polynomial equation. There are many
cases in which a model of system’s physical behavior depends on whether the roots of a polynomial
are real or imaginary, and if the real part is positive. While evaluating the nature of the roots is
straightforward conceptually, this often creates difficulties computationally. Frequently, ordered lists
of solutions are maintained and the behavior each solution is followed.
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Complex Roots of Polynomial Equations
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Here we construct an artificial example of a model that depends on a single parameter in a quadratic polynomial

and illustrate methods to analyze and visualize its roots. Methods to “peek” at the form of long expressions are

also demonstrated.

1-6 Using a prototype fourth order equation, a list of solutions are obtained;

7.

10:

10:

12:
13:

14:

the real and imaginary parts are computed.

The above is generalized to a single parameter b in the quartic equation;
the conditions that the roots are real will be visualized. bsols, the list of
solution rule-lists is long and complicated.

First, one must consider the structure of bsols, Dimensions indicates it
is a list of four lists, each of length 1.

Short is a practical method to observe the structure without filling up
the screen display.

Flatten converts lists of lists into a single list—it is especially useful with
the lists of rule lists that are returned from Solve.

Here, the real and complex parts of each of the solutions is obtained with

Re and Im where the parameter b is assumed to be real via the use of
ComplexExpand. This may take a long time to evaluate on some
computers.

Which of the solutions (i.e., 1,2,3, or 4) is identified by using Hue.

Similarly, the real parts appear to converge to a single value when the
imaginary parts (from above) appear. ..

But, the acual behavior is best illustrated by using Thickness to distin-
guish superposed values. The behavior of real parts of this solution have
what is called a pitchfork structure.

1| sols = Solve[(xA4 —xA3 +x +1) = 0, x]

2[x/. sols

3| Im[x /. sols]

4| ComplexExpand|Im[x /. sols]]

5| ComplexExpand[Im[x /. sols]] // N

6| ComplexExpand[Re[x /. sols]] // N

Generalize the above to a family of solutions: find b such

that imaginary part of the solution vanishes

7| bsols = Solve[(xA4 —xA3 +bxx +1) = 0, x]
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8| Dimensionslbsols]

9[ Shortibsols, 4]

Dimensions|Flatten[bsols]
Short[Flattenlbsols], 4]

11 | Solsbimag = ComplexExpand[Im[x /. bsols]];

1 Dimensions[SolsbImag]
Short[Solsbimagll11]]

13| SolsbReal = ComplexExpand[Rel[x /. bsols]];

14[ Plot|Evaluate[Solsbimag], (b, ~10, 10}]

Plot[Evaluate[Solsblmag], {b, -10, 10},
PlotStyle - Table[{Huel1 —a/6l}, {a, 1, 4}]]

Plot[EvaluatelSolsbReall, {b, —10, 10},
PlotStyle - Table[{Huel1 —a/6l}, {a, 1, 4}]]

17

Plot[Evaluate[SolsbReall, {b, 10, 10}, PlotStyle -
Table[{Huel1 —a/6l, Thickness[0.05 .01 «al}, {a, 1, 411]
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roots of polynomial equations
example of dealing with complex numbers, 69

Short, 69
Simplify, 64
using with assumptions that symbols are real,
64
Solve, 69
using Flatten on its result, 69

Thickness, 69
trignometric functions
relations to trignometric functions, 68
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