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Sept. 29 2006

Lecture 7: Linear Algebra

Reading:
Kreyszig Sections: 13.1, 13.2, 13.5, 13.6 (pages602-606, 607611, 623-626, 626—629)

Uniqueness and Existence of Linear System Solutions

It would be useful to use the Mathematica Help Browser and look through the section in
the Mathematica Book: Advanced Mathematics/ Linear Algebra/Solving Linear Equa-
tions

A linear system of m equations in n variables (1, z2,...,z,) takes the form

Apizy + Appxe + A3z + ..+ Az, = by
Ag1x1 + Agoxs + Aozzs + ...+ Aoz, = by

Api1xy + Apors + Apsxs + ...+ Agpn = by

Apix1 + Amaxa + Az + ..o 4 Apn®n = by

and is fundamental to models of many systems.
The coefficients, A;;, form a matrix and such equations are often written in an “index” short-hand
known as the Einstein summation convention:

Ajjzi =b;  (Einstein summation convention) (7-2)

where if an index (here i) is repeated in any set of multiplied terms, (here A;;x;) then a summation
over all values of that index is implied. Note that, by multiplying and summing in Eq. 7-2, the repeated
index 7 disappears from the right-hand-side. It can be said that the repeated index in “contracted”
out of the equation and this idea is emphasized by writing Eq. 7-2 as

z;A;; =b;  (Einstein summation convention) (7-3)

so that the “touching” index, ¢, is contracted out leaving a matching j-index on each side. In each case,
Eqs. 7-2 and 7-3 represent m equations (5 = 1,2,...,m) in the n variables (i = 1,2,...,n) that are
contracted out in each equation. The summation convention is especially useful when the dimensions
of the coefficient matrix is larger than two; for a linear elastic material, the elastic energy density can
be written as:

1 1
Eelast = ieijcijkl@cl = §O'pquq7"sUrs (7_4)
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where Cjjr; and €;; are the fourth-rank stiffness tensor and second-rank elastic strain tensor; where
Sijr and o;; are the fourth-rank compliance tensor and second-rank stress tensor;
In physical problems, the goal is typically to find the n z; for a given m b; in Eqs. 7-2, 7-3, or 7-1.
This goal is conveniently represented in matrix-vector notation:

AZ =1 (7-5)

Lecture 07 MATHEMATICA® Example 1

Solving Linear Sets of Equations

Download notebooks, pdfs, or html from http://pruffle.mit.edu/3.016-2006.

This example is kind of backwards. We will take a matrix

1 2 1 1 x a
-1 4 =2 0 |y = b

A= L 2 4 5 unknown vector ¥ = i and known vector b = . (7-6)
1 0 1 1 t d

and extract four equations for input to Solve to obtain the solution to Z.

Consider the set of equations
X+2y+ z+t=a
. . P . t e X+ 4dy-2 =b
1: The coefficient matrix is a list of row-lists. e eI

X +2z+ t=d

A unique solution will exist if the determinant, computed with Det, is  Weilustrate how touse amatrix representation to write these
’ ’ out and solve them...

NON-ZEro. T
5: The left-hand-side is a column-vector with four entries. 1 51’1‘;“41’52,{0’
6: This function creates logical equalities for each corresponding entry on the rymari Mo

left- and right-hand-sides. T oyt of st willory o niqu colutionif e

8: Here, the function creates the input four equations and the myx contains 2[Petimymatix |

the unknowns. Now define vectors forx andbinAX = b
3|myx =XV zth |

4| myb = {a, b, c,d}; |

and the left-hand side of all four equations will be

lhs = mymatrix.myx;

5 hs // MatrixForm |

Now define an indexed variable linsys with four entries, each
being one of the equations in the system of interest:

6| linsys[i_Integer] := Ihsllill == mybllill |

7| linsys[2] |

Solving the set of equations for the unknowns X

8| linsol = Solve[{linsys[1], linsys[2], linsys[3], linsys[4l}, myx] |
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Lecture 07 MATHEMATICA® Example 2

Inverting Matrices or Just Solving for the Unknown Vector

Download notebooks, pdfs, or html from http://pruffle.mit.edu/3.016-2006.

Continuing the last example, it is much more compact to invert a matrix symbolically or numerically. If a
matrix inverse is going to be used over and over again, it is probably best to compute and store the inverse once.
However, if a one-time only solution for ¥ in AZ = b is needed, then computing the inverse is computationally
less efficient than using an algorithm designed to solve for & directly. Here is an example of both methods.

Doing the same thing a different way, using Mathematica's
LinearSolve function:

3: LinearSolve can take two arguments, A and 5, and returns Z that solves  [mymarx =
AZ = b. It will be noticibly faster than the following inversion method, |, E}Cif;z: o,
especially for large matrices. - a‘:ri:xo/:/}\/:l ;t)r‘)i;(Form

4: The matrix inverse is obtained with Inverse and a subsequent multipli- 2|my>l; <ty a |
cation by the right-hand-side gives the solution. ot

3| LinearSolve[mymatrix, myb] |

And yet another way, basedon X =A"' AX = A”' b

4| Inverse[mymatrix].myb // MatrixForm |

Uniqueness of solutions to the nonhomogeneous system

A =1b (7-7)

Uniqueness of solutions to the homogeneous system

A, =0 (7-8)
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Adding solutions from the nonhomogeneous and homogenous systems

You can add any solution to the homogeneous equation (if they exist there are infinitely many of them)
to any solution to the nonhomogeneous equation and the result is still a solution to the nonhomogeneous
equation.

A +2)=0b (7-9)

Determinants
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Lecture 07 MATHEMATICA® Example 3

Determinants, Rank, and Nullity

Download notebooks, pdfs, or html from http://pruffle.mit.edu/3.016-2006.

Several examples of determinant calculations are provided to illustrate the properties of determinants. When a
determinant vanishes (i.e., det A = 0, there is no solution to the inhomogeneous equation det A = g, but there
will be an infinity of solutions to det A = 0; the infinity of solutions can be characterized by solving for a number
rank of the entries of Z in terms of the nullity of other entries of ¥

When determinants are zero

Create a matrix with one row as a linear combination of the

1: A matrix is created where the third row is the sum of p x first row, e

q x second row, and r x fourth row. In other words, one row is a lin- myzeromatrx =
{mymatrixtl11],

ear combination of the others. W mymatixial,
p*mym_ai[r[ix][]h” + q=mymatrixl[2]] + r=mymatrix([4]],
2: The determinant is computed with Det. BT .
3:  An attempt to solve the linear inhomogeneous equation should fail. 2| Detimyzeromatix]

3| LinearSolve[myzeromatrix, myb]

4: When the determinant is zero, there may still be some linearly indepen-
dent rows or columns. The rank gives the number of linearly independent
rows or columns and is computed with MatrixRank.

MatrixRank[myzeromatrix]

NullSpace[mymatrix]

4 MatrixRank[mymatrix] |
NullSpace[myzeromatrix] |

5: The null space of a matrix, A, is a set of linearly independent vectors that, T soving this inhomogeneous system of equations using

Solve:

if left-multiplied by A gives a zero vector. The nullity is how many linearly  s[zewms = myzeromatrcmy«
independent vectors there are in the null space. Sometimes, vectors in the  7[zewinsysiineger = zerolnsliill = mybill

null space are called killing vectors. 8 Tablelzerolinsyslil, i, 11 / MalrixForm
9: Here, an attempt to use Solve for the heterogeneous system is attempted, —©lzeroinsohet - SobvelTablefzeroinsysli, . 41, myx
b . . . No solution, as expected, Let's see what happens if we ask
ut of course it is bound to fail. .. Mathematica to solve the homogeneous problem:

zerolinsolhom = Solve[Table[

10: However, this is the solution the singular homogeneous problem (AZ = 0, 0™ eyl tav 0,60, 00, d -0, i 41, myx]
where det A = 0. The solution is three (the rank) dimensional surface  intiscase, Matrematioagives a relationship between the
variables, but because there are fewer equations than

embedded in four dimensions (the rank plus the nullity). Notice that the  variables, there s stil no unique solution.
solution is a multiple of the null space.

Properties and Roles of the Matrix Determinant

In example 07-1, it was stated (item 2) that a unique solution exists if the matrix’s determinant was

non-zero. The solution,
2a+2b—4c+18d
det A
Ta—T7d

11
Il

det A
13a—81§i27—23d (7-10)

det A
—15a+6b+2c+19d

det A
indicates why this is the case and also illustrates the role that the determinant plays in the solution.
Clearly, if the determinant vanishes, then the solution is undetermined unless b is a zero-vector 0 =
(0,0,0,0). Considering the algebraic equation, ax = b, the determinant plays the role for matrices that
the condition a = 0 plays for algebra: the inverse exists when a # 0 or det A # 0.

The determinant is only defined for square matrices; it derives from the elimination of the n unknown

entries in Z using all n equation (or rows) of

A7 =0 (7-11)
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For example, eliminating  and y from

( @ dn > ( o > = ( 0 ) gives the expression
a1 a2 y 0
(7-12)
det < i 412 > = aj1a92 — a12a21 = 0
a1 a2

and eliminating x, ¥, and z from

aix a2 ais x 0
az1 Qa2 23 Yy = 0
asy asy ass z 0
gives the expression
detA = aira22a33 — ai1a32a23 + as1az2a13 — as1al2azz + azraizagz — agrazzaiz =0
(7-13)

The following general and true statements about determinants are plausible given the above expressions:

e The terms in the determinant’s sum are products of a terms; one term comes from each column.
e FEach term is one of all possible the products of an entry from each column.

e There is a plus or minus in front each term in the sum, (—1)P, where p is the number of neighbor
exchanges required to put the rows in order in each term written as an ordered product of their
columns (as in example Egs. 7-12 and 7-13).

These and the observation that it is impossible to eliminate & in Egs. 7-12 and 7-13 if the information
in the rows is redundant (i.e., there is not enough information—or independent equations—to solve for
the ¥) yield the general properties of determinants that are illustrated in the following example.
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Lecture 07 MATHEMATICA® Example 4

Properties of Determinants

Download notebooks, pdfs, or html from http://pruffle.mit.edu/3.016-2006.

Rules corresponding how det A changes when the columns of A are permuted, or multiplied by a constant are
demonstrated, along with det(AB) = det Adet B and AB # BA.

1[vli] == il = Table[Random[Real, (1, 1], j, 611 |
2: A matrix with random real entries between -1 and 1 is created. 2| RandMat = Table(rvli, (, 61 |
. . . RT 3| Det[RandMatl
5: Multiplying one column of a matrix by a constant a, multiplies the ma- 4:0 ———— :
. . et[{rvi2], rvi1], rvl3], rvi4], rv[5], rvl
trix’s determinant by one factor of a.
5[ Detlfa«rvi2], wi1l, vlal, vial, sl niel)] |
7: Because the matrix has one linearly-dependent column, its determinant [tiepves- ‘
. . . .. a1l + bxrvl2] + cxrvI3] + dxrvl4] + exrvi5]
should vanish. This example demonstrates what happens with limited -
. .. . . . 7[ DetlirvI1], vi2], rvial, 4], visl, LinDepVec)] |
numerical precision operations on real numbers. The determinant is not
. . Bl ChoplDetl{rv[1], rv[2], rv[3], rv[4], rv[5], LinDepVec}]] |
zero, but could be considered effectively zero.
9| SymVec = {a, a,a,¢,¢,c}; |
8: Problems with numerical imprecision can usually be alleviated with Chop ./ [Permuts - Permutationsisymveci |
. . Permuts // Dimensions
which sets small magnitude numbers to zero.
SymbMat = (Permuts[[[ﬂ],] Permuts[[[g 2]]],] Permuts[{eﬂj
. . . . 11 [18] [91l};
10: Using, Permutations, create all possible permutations of two sets of |symovat/amtam - omosit7l Pemutstiol;
three identical objects for subsequent construction of a symbolic matrix. 12[petsymbMat = SimpltyiDetSymbMat |
. : : : : : RandomMat = Table|
12: The symbolic matrix has a fairly simple determinant. - dom[llmegen croooon o
. . . . Random(l ,{=100, 100} " " L
13: A matrix with random rational numbers is created. .. e Th{ L
14: And, of course, its determinant is also a rational number. 14| DetRandomMat = DetlRandomMatl |
. A A 15[ CheckA = Det[SymbMat.RandomMat] // Simplify |
16: This demonstrates that determinant of a product is the product of
. 16[ DetRandomMat« DetSymbMat == CheckA |
determinants. . . 17| CheckB = Det[RandomMat.SymbMat] // Simplify |
18: And, this (reduntantly) shows that the order of matrix multiplication does 18[cheska=checis |
not affect the product rule for determinants. | T EL ST A — SN REEA R |
implify // MatrixForm
19: However, the result of multiplying two matrix does depend on the order

of multiplication: AB # BA, in general.

The properties of determinants
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Vector Spaces

Consider the position vector

x I
=y | =1 =z (7-14)
z T3

The vectors (1,0,0), (0,1,0), and (0,0,1) can be used to generate any general position by suitable
scalar multiplication and vector addition:

T 1 0 0
=1y |=z| 0 |4+y|l 1 |+2] 0 (7-15)
z 0 0 1

Thus, three dimensional real space is “spanned” by the three vectors: (1,0,0), (0,1,0), and (0,0, 1).
These three vectors are candidates as “basis vectors for R3.”

Consider the vectors (a, —a,0), (a,a,0), and (0,a,a) for real a # 0.

a a
- —y+2
2a 2a 2a
z 0 0

So (a, —a,0), (a,a,0), and (0, a,a) for real a # 0 also are basis vectors and can be used to span R3.
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The idea of basis vectors and vector spaces comes up frequently in the mathematics of materials
science. They can represent abstract concepts as well as shown by the following two dimensional basis
set:

basis vector 1 basis vector 2
*—9 *—0
10 e | + 10 = e o1 e | + 1'OI:I :EI
*—o *—o
*—9 o0— 9 *—0 o—=
10 e [ + 05 =l e 05 e | + 0.7 =] o
*—o o—- *——o &—e
—9 *—o *—e
10[ o | * O.ZI:I =] e 00 e [ * 1.0 =
(¢ © *—0 *—

Figure 7-2: A vector space for two-dimensional CsCl structures. Any combination of center-
site concentration and corner-site concentration can be represented by the sum of two basis
vectors (or basis lattice). The set of all grey-grey patterns is a vector space of patterns.

Linear Transformations
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Lecture 07 MATHEMATICA®) Example 5

Visualization of linear transformations

Download notebooks, pdfs, or html from http://pruffle.mit.edu/3.016-2006.

An simple octagon with different colored faces is transformed by operating on all of it vertices with a matrix.
This example demonstrates how symmetry operations, like rotations reflections, can be represented as a matrix
multiplication, and how to visualize the results of linear transformations generally.

1 | << Graphics’Polyhedra”
1: The package Polyhedra contains Graphics Objects with the coordi- 2[ShovPolyhedroniOctahedronl

Show[Polyhedron[Octahedronl,
nates of many common polyhedra. 3| ViewPoint -5 10007, 1,695, ~0.135]

2: This demonstrates how an Octahedron can be drawn on the screen. 4[ PolynedronlOctahedronl / nputForm
3: The ViewPoint option to Show allows viewing from different points in OO elol ), Polygoni(,, 11, 1,0, 0., (0, 1, 01,
3D space. (oel2/al Payeenlo, 0.1 110,01 1. 1O,
5 {Huel3/8l, Polygonl{{0, 0, 1}, {0, -1, 0}, {1, 0, O}}]},
4: InputForm reveals how the coordinates of the polydra are stored. .. i (e s e S S
5: And, this can be mimicked to create a face-colored polyhedron with the )Jﬁﬁﬁi{ifﬁiﬁﬁlﬁiﬂﬁigi 3 00,01 (L7 b0

Hue graphics directive.

6[ ShowIColOct, Lighting - False] |

7: This is a matric which would create the mirror image across the z-axis of
any point it multiplies.

tmat = {{1, 0, 0}, {0, 1, 0}, {0, O, —1}};
tmat // MatrixForm

8 Show[ColOct /. {Polygon[{a_List, b_List, c_List}] -
Polygonl{tmat.a, tmat.b, tmat.c}]}, Lighting - False]

8: This is a moderately sophisticated example of rule usage: it looks for
. . . . seetrans[tranmat_] :=
triangles ( Polygons with three points); names the points; and then mul- | showcoloct/. Polygontia_List, b_List, o List -
Polygon[{tranmat.a, tranmat.b, tranmat.c}]},

tiplies a matrix by each of the points. The result in this case is a mirror Lighting — False]

operation. 10[ seetransl(1, 0, 0}, 0, 1, 0}, {0, 0, 1)} |
seetrans[{{Cosl[Pi/4l, SinlPi/ 4], 0}, |

M| ™ (Sinl-Pi/4l, CoslPi/al, 01, (0, 0, 1]

9: This generalizes the previous example, by creating a function that takes
a matrix as an argument. 12| seetransl{(~1, 0, 0}, {0, -1, 0}, (0, 0, 5] |

11: This visualizes a rotation of w/4 around the z-axis.

12: This mirrors across the x- and y-axis and performs a linear expansion by
a factor of 5 along the z-direction. The octagon volume increases by the
determinant of the transformation matrix.
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