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Sept. 29 2006

Lecture 7: Linear Algebra

Reading:
Kreyszig Sections: 13.1, 13.2, 13.5, 13.6 (pages602–606, 607–611, 623–626, 626–629)

Uniqueness and Existence of Linear System Solutions

It would be useful to use the Mathematica Help Browser and look through the section in
the Mathematica Book: Advanced Mathematics/ Linear Algebra/Solving Linear Equa-
tions

A linear system of m equations in n variables (x1, x2, . . . , xn) takes the form

A11x1 + A12x2 + A13x3 + . . . + A1nxn = b1

A21x1 + A22x2 + A23x3 + . . . + A2nxn = b2

... =
...

Ak1x1 + Ak2x2 + Ak3x3 + . . . + Aknxn = bk

... =
...

Am1x1 + Am2x2 + Am3x3 + . . . + Amnxn = bm

(7-1)

and is fundamental to models of many systems.
The coefficients, Aij , form a matrix and such equations are often written in an “index” short-hand

known as the Einstein summation convention:

Aijxi = bj (Einstein summation convention) (7-2)

where if an index (here i) is repeated in any set of multiplied terms, (here Aijxi) then a summation
over all values of that index is implied. Note that, by multiplying and summing in Eq. 7-2, the repeated
index i disappears from the right-hand-side. It can be said that the repeated index in “contracted”
out of the equation and this idea is emphasized by writing Eq. 7-2 as

xiAij = bj (Einstein summation convention) (7-3)

so that the “touching” index, i, is contracted out leaving a matching j-index on each side. In each case,
Eqs. 7-2 and 7-3 represent m equations (j = 1, 2, . . . ,m) in the n variables (i = 1, 2, . . . , n) that are
contracted out in each equation. The summation convention is especially useful when the dimensions
of the coefficient matrix is larger than two; for a linear elastic material, the elastic energy density can
be written as:

Eelast =
1
2
εijCijklεkl =

1
2
σpqSpqrsσrs (7-4)



MIT 3.016 Fall 2006 Lecture 7 c© W.C Carter 54

where Cijkl and εij are the fourth-rank stiffness tensor and second-rank elastic strain tensor; where
Sijkl and σij are the fourth-rank compliance tensor and second-rank stress tensor;

In physical problems, the goal is typically to find the n xi for a given m bj in Eqs. 7-2, 7-3, or 7-1.
This goal is conveniently represented in matrix-vector notation:

A~x = ~b (7-5)

Lecture 07 Mathematica R© Example 1

Solving Linear Sets of Equations

Download notebooks, pdfs, or html from http://pruffle.mit.edu/3.016-2006.

This example is kind of backwards. We will take a matrix

A =


1 2 1 1
−1 4 −2 0
1 2 4 5
1 0 1 1

 unknown vector ~x =


x
y
z
t

 and known vector ~b =


a
b
c
d

 (7-6)

and extract four equations for input to Solve to obtain the solution to ~x.

1: The coefficient matrix is a list of row-lists.
2: A unique solution will exist if the determinant, computed with Det, is

non-zero.
5: The left-hand-side is a column-vector with four entries.
6: This function creates logical equalities for each corresponding entry on the

left- and right-hand-sides.
8: Here, the function creates the input four equations and the myx contains

the unknowns.

Consider the set of equations
 x + 2y +  z  +  t  = a
-x + 4y - 2z         = b
 x + 3y + 4z + 5t = c
 x          +  z  +   t = d

We illustrate how to use a matrix representation to write these 
out and solve them…  

1

mymatrix = 8
81, 2, 1, 1<,
8-1, 4, -2, 0<,
81, 3, 4, 5<,
81, 0, 1, 1<<;

mymatrix êê MatrixForm

The system of equations will only have a unique solution if the 
determinant of mymatrix is nonzero.

2 Det@mymatrixD

Now define vectors for x”÷ and b”÷ in Aêêê x”÷ = b”÷

3 myx = 8x, y, z, t<;
4 myb = 8a, b, c, d<;

and the left-hand side of all four equations will be

5 lhs = mymatrix.myx;
lhs êê MatrixForm

Now define an indexed variable linsys with four entries, each 
being one of the equations in the system of interest:

6 linsys@i_IntegerD := lhs@@iDD == myb@@iDD

7 linsys@2D

Solving the set of equations for the unknowns x
Ø

8 linsol = Solve@8linsys@1D, linsys@2D, linsys@3D, linsys@4D<, myxD

http://pruffle.mit.edu/3.016-2006/Notebooks/L07/Lecture-07.nb
http://pruffle.mit.edu/3.016-2006/pdf/L07/Lecture-07-1.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-07/HTMLLinks/index_1.html
http://pruffle.mit.edu/3.016-2006
http://pruffle.mit.edu/3.016-2006/html/Lecture-07/HTMLLinks/index_1.html
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Lecture 07 Mathematica R© Example 2

Inverting Matrices or Just Solving for the Unknown Vector

Download notebooks, pdfs, or html from http://pruffle.mit.edu/3.016-2006.

Continuing the last example, it is much more compact to invert a matrix symbolically or numerically. If a
matrix inverse is going to be used over and over again, it is probably best to compute and store the inverse once.
However, if a one-time only solution for ~x in A~x = ~b is needed, then computing the inverse is computationally
less efficient than using an algorithm designed to solve for ~x directly. Here is an example of both methods.

3: LinearSolve can take two arguments, A and ~b, and returns ~x that solves
A~x = ~b. It will be noticibly faster than the following inversion method,
especially for large matrices.

4: The matrix inverse is obtained with Inverse and a subsequent multipli-
cation by the right-hand-side gives the solution.

Doing the same thing a different way, using Mathematica's 
LinearSolve function:

1

mymatrix = 8
81, 2, 1, 1<,
8-1, 4, -2, 0<,
81, 3, 4, 5<,
81, 0, 1, 1<<;

mymatrix êê MatrixForm

2 myx = 8x, y, z, t<;
myb = 8a, b, c, d<;

3 LinearSolve@mymatrix, mybD
And yet another way, based on x”÷ = Aêêê

-1  Aêêê x”÷ = Aêêê
-1  b”÷  

4 Inverse@mymatrixD.myb êê MatrixForm

Uniqueness of solutions to the nonhomogeneous system

A~x = ~b (7-7)

Uniqueness of solutions to the homogeneous system

A ~xo = ~0 (7-8)

http://pruffle.mit.edu/3.016-2006/Notebooks/L07/Lecture-07.nb
http://pruffle.mit.edu/3.016-2006/pdf/L07/Lecture-07-2.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-07/HTMLLinks/index_2.html
http://pruffle.mit.edu/3.016-2006
http://pruffle.mit.edu/3.016-2006/html/Lecture-07/HTMLLinks/index_2.html
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Adding solutions from the nonhomogeneous and homogenous systems

You can add any solution to the homogeneous equation (if they exist there are infinitely many of them)
to any solution to the nonhomogeneous equation and the result is still a solution to the nonhomogeneous
equation.

A(~x + ~xo) = ~b (7-9)

Determinants
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Lecture 07 Mathematica R© Example 3

Determinants, Rank, and Nullity

Download notebooks, pdfs, or html from http://pruffle.mit.edu/3.016-2006.

Several examples of determinant calculations are provided to illustrate the properties of determinants. When a
determinant vanishes (i.e., detA = 0, there is no solution to the inhomogeneous equation detA = ~b, but there
will be an infinity of solutions to det A = 0; the infinity of solutions can be characterized by solving for a number
rank of the entries of ~x in terms of the nullity of other entries of ~x

1: A matrix is created where the third row is the sum of p × first row,
q × second row, and r × fourth row. In other words, one row is a lin-
ear combination of the others.

2: The determinant is computed with Det.
3: An attempt to solve the linear inhomogeneous equation should fail.
4: When the determinant is zero, there may still be some linearly indepen-

dent rows or columns. The rank gives the number of linearly independent
rows or columns and is computed with MatrixRank.

5: The null space of a matrix, A, is a set of linearly independent vectors that,
if left-multiplied by A gives a zero vector. The nullity is how many linearly
independent vectors there are in the null space. Sometimes, vectors in the
null space are called killing vectors.

9: Here, an attempt to use Solve for the heterogeneous system is attempted,
but of course it is bound to fail. . .

10: However, this is the solution the singular homogeneous problem (A~x = ~0,
where detA = 0. The solution is three (the rank) dimensional surface
embedded in four dimensions (the rank plus the nullity). Notice that the
solution is a multiple of the null space.

When determinants are zero

Create a matrix with one row as a linear combination of the 
others

1

myzeromatrix =
8mymatrix@@1DD,

mymatrix@@2DD,
p*mymatrix@@1DD + q*mymatrix@@2DD + r *mymatrix@@4DD,
mymatrix@@4DD<;

myzeromatrix êê MatrixForm

2 Det@myzeromatrixD
3 LinearSolve@myzeromatrix, mybD

4 MatrixRank@mymatrixD
MatrixRank@myzeromatrixD

5 NullSpace@mymatrixD
NullSpace@myzeromatrixD
Try solving this inhomogeneous system of equations using 
Solve:

6 zerolhs = myzeromatrix.myx

7 zerolinsys@i_IntegerD := zerolhs@@iDD == myb@@iDD

8 Table@zerolinsys@iD, 8i, 4<D êê MatrixForm

9 zerolinsolhet = Solve@Table@zerolinsys@iD, 8i, 4<D, myxD
No solution, as expected,  Let's see what happens if we ask 
Mathematica to solve the homogeneous problem:

10 zerolinsolhom = Solve@Table@
zerolinsys@iD ê. 8a Ø 0, b Ø 0, c Ø 0, d Ø 0<, 8i, 4<D, myxD

In this case, Mathematica gives a relationship between the 
variables, but because there are fewer equations than 
variables, there is still no unique solution.

Properties and Roles of the Matrix Determinant

In example 07-1, it was stated (item 2) that a unique solution exists if the matrix’s determinant was
non-zero. The solution,

~x =


2a+2b−4c+18d

det A
7a−7d
det A

13a−8b+2c−23d
det A

−15a+6b+2c+19d
det A

 (7-10)

indicates why this is the case and also illustrates the role that the determinant plays in the solution.
Clearly, if the determinant vanishes, then the solution is undetermined unless ~b is a zero-vector ~0 =
(0, 0, 0, 0). Considering the algebraic equation, ax = b, the determinant plays the role for matrices that
the condition a = 0 plays for algebra: the inverse exists when a 6= 0 or detA 6= 0.

The determinant is only defined for square matrices; it derives from the elimination of the n unknown
entries in ~x using all n equation (or rows) of

A~x = 0 (7-11)

http://pruffle.mit.edu/3.016-2006/Notebooks/L07/Lecture-07.nb
http://pruffle.mit.edu/3.016-2006/pdf/L07/Lecture-07-3.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-07/HTMLLinks/index_3.html
http://pruffle.mit.edu/3.016-2006
http://pruffle.mit.edu/3.016-2006/html/Lecture-07/HTMLLinks/index_3.html
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For example, eliminating x and y from(
a11 a12

a21 a22

) (
x
y

)
=

(
0
0

)
gives the expression

det
(

a11 a12

a21 a22

)
≡ a11a22 − a12a21 = 0

(7-12)

and eliminating x, y, and z from a11 a12 a13

a21 a22 a23

a31 a32 a33

  x
y
z

 =

 0
0
0


gives the expression

detA ≡ a11a22a33 − a11a32a23 + a21a32a13 − a21a12a33 + a31a12a23 − a31a22a13 = 0
(7-13)

The following general and true statements about determinants are plausible given the above expressions:

• The terms in the determinant’s sum are products of a terms; one term comes from each column.

• Each term is one of all possible the products of an entry from each column.

• There is a plus or minus in front each term in the sum, (−1)p, where p is the number of neighbor
exchanges required to put the rows in order in each term written as an ordered product of their
columns (as in example Eqs. 7-12 and 7-13).

These and the observation that it is impossible to eliminate ~x in Eqs. 7-12 and 7-13 if the information
in the rows is redundant (i.e., there is not enough information—or independent equations—to solve for
the ~x) yield the general properties of determinants that are illustrated in the following example.
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Lecture 07 Mathematica R© Example 4

Properties of Determinants

Download notebooks, pdfs, or html from http://pruffle.mit.edu/3.016-2006.

Rules corresponding how detA changes when the columns of A are permuted, or multiplied by a constant are
demonstrated, along with det(AB) = det A det B and AB 6= BA.

2: A matrix with random real entries between -1 and 1 is created.
5: Multiplying one column of a matrix by a constant a, multiplies the ma-

trix’s determinant by one factor of a.
7: Because the matrix has one linearly-dependent column, its determinant

should vanish. This example demonstrates what happens with limited
numerical precision operations on real numbers. The determinant is not
zero, but could be considered effectively zero.

8: Problems with numerical imprecision can usually be alleviated with Chop
which sets small magnitude numbers to zero.

10: Using, Permutations, create all possible permutations of two sets of
three identical objects for subsequent construction of a symbolic matrix.

12: The symbolic matrix has a fairly simple determinant.
13: A matrix with random rational numbers is created. . .

14: And, of course, its determinant is also a rational number.
16: This demonstrates that determinant of a product is the product of

determinants. . .
18: And, this (reduntantly) shows that the order of matrix multiplication does

not affect the product rule for determinants.
19: However, the result of multiplying two matrix does depend on the order

of multiplication: AB 6= BA, in general.

1 rv@i_D := rv@iD = Table@Random@Real, 8-1, 1<D, 8j, 6<D
2 RandMat = Table@rv@iD, 8i, 6<D
3 Det@RandMatD
4 Det@8rv@2D, rv@1D, rv@3D, rv@4D, rv@5D, rv@6D<D
5 Det@8a* rv@2D, rv@1D, rv@3D, rv@4D, rv@5D, rv@6D<D

6 LiDepVec =
a * rv@1D + b* rv@2D + c* rv@3D + d* rv@4D + e* rv@5D

7 Det@8rv@1D, rv@2D, rv@3D, rv@4D, rv@5D, LinDepVec<D
8 Chop@Det@8rv@1D, rv@2D, rv@3D, rv@4D, rv@5D, LinDepVec<DD
9 SymVec = 8a, a, a, c, c, c<;

10 Permuts = Permutations@SymVecD
Permuts êê Dimensions

11
SymbMat = 8Permuts@@1DD, Permuts@@12DD, Permuts@@6DD,

Permuts@@18DD, Permuts@@17DD, Permuts@@9DD<;
SymbMat êêMatrixForm

12 DetSymbMat = Simplify@Det@SymbMatDD

13

RandomMat = TableA
TableA Random@Integer, 8-100, 100<D

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
Random@Integer, 8-100, 100<D , 8i, 6<E, 8j, 6<E;

RandomMat êêMatrixForm
14 DetRandomMat = Det@RandomMatD
15 CheckA = Det@SymbMat.RandomMatD êê Simplify
16 DetRandomMat*DetSymbMat == CheckA

17 CheckB = Det@RandomMat.SymbMatD êê Simplify
18 CheckAã CheckB

19 HRandomMat.SymbMat - SymbMat.RandomMatL êê
Simplify êêMatrixForm

The properties of determinants

http://pruffle.mit.edu/3.016-2006/Notebooks/L07/Lecture-07.nb
http://pruffle.mit.edu/3.016-2006/pdf/L07/Lecture-07-4.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-07/HTMLLinks/index_4.html
http://pruffle.mit.edu/3.016-2006
http://pruffle.mit.edu/3.016-2006/html/Lecture-07/HTMLLinks/index_4.html


MIT 3.016 Fall 2006 Lecture 7 c© W.C Carter 60

Vector Spaces

Consider the position vector

~x =

 x
y
z

 =

 x1

x2

x3

 (7-14)

The vectors (1, 0, 0), (0, 1, 0), and (0, 0, 1) can be used to generate any general position by suitable
scalar multiplication and vector addition:

~x =

 x
y
z

 = x

 1
0
0

 + y

 0
1
0

 + z

 0
0
1

 (7-15)

Thus, three dimensional real space is “spanned” by the three vectors: (1, 0, 0), (0, 1, 0), and (0, 0, 1).
These three vectors are candidates as “basis vectors for <3.”

Consider the vectors (a,−a, 0), (a, a, 0), and (0, a, a) for real a 6= 0.

~x =

 x
y
z

 =
x + y

2a

 a
−a
0

 +
x− y

2a

 a
a
0

 +
x− y + 2z

2a

 0
a
a

 (7-16)

So (a,−a, 0), (a, a, 0), and (0, a, a) for real a 6= 0 also are basis vectors and can be used to span <3.
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The idea of basis vectors and vector spaces comes up frequently in the mathematics of materials
science. They can represent abstract concepts as well as shown by the following two dimensional basis
set:

basis vector 1 basis vector 2

+ +

+ +

+ +

= =

= =

= =

1.0 1.0

0.5 0.7

0.2 1.0

1.0 0.1

1.0 0.5

1.0 0.0

Figure 7-2: A vector space for two-dimensional CsCl structures. Any combination of center-
site concentration and corner-site concentration can be represented by the sum of two basis
vectors (or basis lattice). The set of all grey-grey patterns is a vector space of patterns.

Linear Transformations
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Lecture 07 Mathematica R© Example 5

Visualization of linear transformations

Download notebooks, pdfs, or html from http://pruffle.mit.edu/3.016-2006.

An simple octagon with different colored faces is transformed by operating on all of it vertices with a matrix.
This example demonstrates how symmetry operations, like rotations reflections, can be represented as a matrix
multiplication, and how to visualize the results of linear transformations generally.

1: The package Polyhedra contains Graphics Objects with the coordi-
nates of many common polyhedra.

2: This demonstrates how an Octahedron can be drawn on the screen.
3: The ViewPoint option to Show allows viewing from different points in

3D space.
4: InputForm reveals how the coordinates of the polydra are stored. . .

5: And, this can be mimicked to create a face-colored polyhedron with the
Hue graphics directive.

7: This is a matric which would create the mirror image across the z-axis of
any point it multiplies.

8: This is a moderately sophisticated example of rule usage: it looks for
triangles ( Polygons with three points); names the points; and then mul-
tiplies a matrix by each of the points. The result in this case is a mirror
operation.

9: This generalizes the previous example, by creating a function that takes
a matrix as an argument.

11: This visualizes a rotation of π/4 around the z-axis.
12: This mirrors across the x- and y-axis and performs a linear expansion by

a factor of 5 along the z-direction. The octagon volume increases by the
determinant of the transformation matrix.

1 << Graphics`Polyhedra`

2 Show@Polyhedron@OctahedronDD

3 Show@Polyhedron@OctahedronD,
ViewPoint -> 8-0.007, -1.995, -0.135<D

4 Polyhedron@OctahedronD êê InputForm

5

ColOct =Graphics3D@8
8Hue@0 ê8D, Polygon@880, 0, 1<, 81, 0, 0.<, 80, 1, 0.<<D<,
8Hue@1 ê8D, Polygon@880, 0, 1<, 80, 1, 0<, 8-1, 0, 0<<D<,
8Hue@2 ê8D, Polygon@880, 0, 1<, 8-1, 0, 0<, 80, -1, 0<<D<,
8Hue@3 ê8D, Polygon@880, 0, 1<, 80, -1, 0<, 81, 0, 0<<D<,
8Hue@4 ê8D, Polygon@881, 0, 0<, 80, -1, 0<, 80, 0, -1<<D<,
8Hue@5 ê8D, Polygon@881, 0, 0<, 80, 0, -1<, 80, 1, 0<<D<,
8Hue@6 ê8D, Polygon@880, 0, -1<, 80, -1, 0<, 8-1, 0, 0<<D<,
8Hue@7 ê8D, Polygon@880, 1, 0<, 80, 0, -1<, 8-1, 0, 0<<D<

<D
6 Show@ColOct, LightingØ FalseD

7 tmat = 881, 0, 0<, 80, 1, 0<, 80, 0, -1<<;
tmat êêMatrixForm

8 Show@ColOct ê. 8Polygon@8a_List , b_List , c_List<DØ
Polygon@8tmat.a, tmat.b, tmat.c<D<, LightingØ FalseD

9
seetrans@tranmat_D :=
Show@ColOct ê. 8Polygon@8a_List , b_List , c_List<DØ

Polygon@8tranmat.a, tranmat.b, tranmat.c<D<,
LightingØ FalseD

10 seetrans@881, 0, 0<, 80, 1, 0<, 80, 0, 1<<D

11 seetrans@88Cos@Pi ê4D, Sin@Pi ê4D, 0<,
8Sin@-Pi ê4D, Cos@Pi ê4D, 0<, 80, 0, 1<<D

12 seetrans@88-1, 0, 0<, 80, -1, 0<, 80, 0, 5<<D

http://pruffle.mit.edu/3.016-2006/Notebooks/L07/Lecture-07.nb
http://pruffle.mit.edu/3.016-2006/pdf/L07/Lecture-07-5.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-07/HTMLLinks/index_5.html
http://pruffle.mit.edu/3.016-2006
http://pruffle.mit.edu/3.016-2006/html/Lecture-07/HTMLLinks/index_5.html
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