Lecture 6: Linear Algebra I

Reading:
Kreyszig Sections: 7.5, 7.6, 7.7, 7.8, 7.9 (pages302-305, 306-307, 308—-314, 315-323, 323-329)

Vectors

Vectors as a list of associated information

number of steps to the east
Z = | number of steps to the north (6-1)
number steps up vertical ladder

3 Zeast
=1 24 determines position oy (6-2)
1.5 Tup

The vector above is just one example of a position vector. We could also use coordinate systems
that differ from the Cartesian (z,y, z) to represent the location. For example, the location in cylindrical
coordinate system could be written as

x rcosf
=1y | =| rsinf (6-3)
z z

as a Cartesian vector in terms of the cylindrical coordinates (r, 0, z).
The position could also be written as a cylindrical, or polar vector

r V2 + 42

= L _= =il

| | tan—~ £ (6-4)
z z
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for other coordinate systems like spherical, elliptic, etc.

where the last term is the polar vector in terms of the Cartesian coordinates. Similar rules would apply I I I N -
However, vectors need not represent position at all, for example: = I

number of Hydrogen atoms =
number of Helium atoms
number of Lithum atoms

- (6-5)
number of Plutonium atoms
Scalar multiplication
nu%ber of H
numgg? gdf He moles of H ﬂﬂﬂﬂ
Navag. moles of He
1 number of Li moles of Li
= Navag. — | = (6-6)
Navag. :
humber of Pu moles of Pu Full Sereen
Navag.

|Z|| =23 + 23 + ... 22 = euclidean separation (6-7

|72|| =ngg + nge + - - - M1327 = total number of atoms (6-8)

Vector norms Glose
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Unit vectors

unit direction vector mole fraction composition
. 7 . m

db= =g M= ==

1] 772

Extra Information and Notes
Potentially interesting but currently unnecessary

If R stands for the set of all real numbers (i.e., 0, —1.6, w/2, etc.), then can use a shorthand
to specify the position vector, & € RN (e.g., each of the N entries in the vector of length N
must be a real number—or in the set of real numbers. ||Z|| € R. M
For the unit (direction) vector: & = {% € R3 | ||Z|| = 1} (i.e, the unit direction vector is the
set of all position vectors such that their length is unity—-or, the unit direction vector is
the subset of all position vectors that lie on the unit sphere. T and & have the same number
of entries, but compared to &, the number of independent entries in & is smaller by one. ﬂﬂﬁﬂ
For the case of the composition vector, it is strange to consider the case of a negative
number of atoms, so the mole fraction vector i € (%Jr)elements (RT is the real non-negative

numbers) and m € (RT) (elements-1)

Full Screen

Matrices and Matrix Operations

Consider methane (CHy), propane (C3Hg), and butane (C4Hjo).

o

H-column C-column Close
number of H number of C -
th 1 th I methane row
Egm TR R Tl s B (6-11)
propane molecule  propane molecule B
number of H number of C butane row
butane molecule butane molecule @i
4 1 Miw Mo
Muc=| 8 3 |=| Ma M (6-12)
10 4 M3z M3z ©W. Craig Carter
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Matrices as a linear transformation of a vector

Nuc = (number of methanes, number of propanes, number of butanes)
= (NeC ms NHC pr NHC b)
= (Nuc1,NHC 2, NHC 3)

3
NucMpe = NuoiMuci; =N (6-17)
=1

The “summation” convention is often used, where a repeated index is summed over all its possible
values:

p
Z Nuc iMyc ij = Nuc iMuc i = Nj (6-18)
=i

For example, suppose

Nac = (1.2 x 10'? molecules methane, 2.3 x 10'3 molecules propane, 3.4 x 10** molecules butane)

(6-19)
NgcMuc =
4 atoms H 1 atoms C
methaniLI methane
(1.2 x 10* methanes, 2.3 x 10'® propanes, 3.4 x 10'? butanes) pai'tooplglsle p%%oprgﬁe
10 atoms H atoms C
butane butane
=(7.0 x 10'* atoms H, 2.0 x 10' atoms C)
(6-20)
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Matrix transpose operations

Above the lists (or vectors) of atoms were stored as rows, often it is convenient to store them as
columns. The operation to take a row to a column (and vice-versa) is a “transpose”.

methane-column propane-column butane-column

T number of H number of H number of H
Muc™ = methane molecule propane molecule butane molecule hydrogen row  (6-21)
number of C number of C number of C carbon row

methane molecule propane molecule butane molecule

- number of methanes Nucom
Npyc = | number of propanes | = | Ngcp (6-22)
number of butanes Nuco
number of methanes
T~ T =p( 4 8 10 number of H-atoms
Myc' Ngeg =N < e number of propanes R (6-23)

number of butanes

Matrix Multiplication

The next example supposes that some process produces hyrdocarbons and be modeled with the pressure
P and temperature T'. Suppose (this is an artificial example) that the number of hydrocarbons produced
in one millisecond can be related linearly to the pressure and temperature:

number of methanes = aP + BT
number of propanes = yP + 6T (6-24)
number of butanes = eP + ¢T

or

« B
Rt A (?) (6-25)
¢ o
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Lecture 06 MATHEMATICA®) Example 1

Matrices

notebook (non-evaluated)

pdf (evaluated)

html (evaluated)

Here is an example operation that takes us from the processing vector (P,T)7 to the number of hydrogens and
carbons.

1:

The matrix (Eq. 6-12) is entered as a list of sublists. The sub-lists are the
rows of the matrix. The first elements of each row-sublist form the first
column; the second elements are the second column and so on.

The Length of a matrix-object gives the number of row, and the second
member of the result of Dimensions gives the number of columns.

All sublists of a matrix must have the same dimensions.

It is good practice to enter a matrix and then display it separately us-
ing MatrixForm. Otherwise, there is a risk of defining a symbol as a
MatrixForm-object and not as a matrix which was probably the intent.

This command will generate an error.

Matrix multiplication in MATHEMATICA® is produced by the "dot” .
operator. For matrix multiplication, A.B, the number of columns of A
must be equal to the number of rows of B.

The Transpose “flips” a matrix by producing a new matrix which has the
original’s i'" row as the new matrix’s i column (or, equivalently the jtb
column as the new jth row). In this example, a 3 x 2-matrix (PTmatriz)
is being left-multiplied by a a 2 x 3-matrix.

The resulting matrix would map a vector with values P and 7" to a vector
for the rate of production of C and H.

Myc = {

R

1},

3},
1 {10, 4]
}

)

Myc // MatrixForm

PTmatrix = {
{e, B},
(v, 6},
{e, 6}

13
PTmatrix // MatrixForm

3.016 Home

3[ MPT = Myc. PTmatrix

4[ClearlMPTI

MPT = Transpose[Myc]. PTmatrix;
MPT // MatrixForm
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Matrix multiplication is defined by:

AB = Z Ak Bij (6-26)

The indices of the matrix defined by the multiplication AB = C are Cj;.

Matrix Inversion

Sometimes what we wish to know, “What vector is it (Z), when transformed by some matrix (A) gives

us a particular result (b = AT)?”
3.016 Home

AT =1b
AltAz— A (6-27)
2475 PRI

The inverse of a matrix is defined as something that when multiplied with the matrix leaves a
product that has no effect on any vector. This special product matrix is called the identity matriz.
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Lecture 04 MATHEMATICA®) Example 2

Inverting Matrices

notebook (non-evaluated) pdf (evaluated) html (evaluated)
Our last example produced a linear operation that answered the question, “given a particular P and 7', at what
rate will C and H be produced?”

To answer the converse question, “If I want a particular rate of production for C and H, at what P and T should
the process be carried out?”

To invert the question on linear processes, the matrix is inverted.

[x Sinlx]1
1| AMessyExpression = w 3.016 Home

1: Inverting a matrix by hand is tedious and prone to error, Inverse does x
this in MATHEMATICA®) . In this example, Factor is called on the result LB
of Inverse. Factor is an example of a threadable function—it recursively
operates on all members of any argument that is a list-object.

i

3| DMess = D[AMessyExpression, x]

4| Integrate[DMess, x|

5| Integrate[DMess, {x, 0, e}] // N

2: The determinant of a matrix is fundamentally linked to the existance of e[aVessyExpression /x> e) - (AMessyExpression /.x - 0)
its inverse. In this example, it is observed that if the Det of a matrix 7|(AMe_ssyExpression/.x_ae)7
. . . . e . Limit{AMessyExpression, x - 0]
vanishes, then the entries of its inverse are indeterminant.

«| «|» ||

9| Integrate[Sin[x]/Sqrtl(xA2 + a*2)], x]

10| Integrate[Sinlx]/Sqrtl(xA2 + a*2)], x, Assumptions - a = 0]

Sinlx] Full Screen

1 Integrene[—, x, Assumptions - Rela’2] > 0]
va? +x?

UglyInfinitelntegral = Integrate[Sin(x]/Sartl(xA2 + ar2)],

12| {x, 0, oo}, Assumptions - Rela’2] > 0]

|
|
|
|
|
8| eLogle Sinlell //N |
|
|
|

13| N[UglyInfiniteIntegral /. a - 1]

The Taylor expansion capabilities in Mathematica are very useful

14| Series|[AMessyExpression, {x, 0, 4}] Close

Plot[{AMessyExpression, FitAtZero}, {x, 0, 3}, PlotStyle -

{{Thicknessl0.02], Huel 11}, {Thicknessl0.01], Huel0.51}}]

15| FitAtZero = Series[AMessyExpression, {x, 0, 4}] // Normal |
n |

o

Quit

©W. Craig Carter


http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2006/Notebooks/L04/Lecture-04.nb
http://pruffle.mit.edu/3.016-2006/pdf/L04/Lecture-04-2.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-04/HTMLLinks/index_2.html
http://pruffle.mit.edu/3.016-2006/html/Lecture-04/HTMLLinks/index_2.html

Linear Independence: When solutions exist
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No Solution One Unique Solution  Infinitely Many Solutions
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Figure 6-1: Geometric interpretation of solutions in two dimensions
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Lecture 06 MATHEMATICA®) Example 3

Eliminating redundant equations or variables

notebook (non-evaluated) pdf (evaluated) html (evaluated)

Consider liquid water near the freezing point—dipole interactions will tend to make water molecules form clusters
such as HoO and H4O5.
Then the mapping from molecules to the number of atoms becomes:

(2 2) (w8 )-(58) o

This example treats this case where the columns are not linearly independent.

1| watmat = {{2, 4}, {1, 2}};
watmat // MatrixForm

5: This equation is the same as the first row of AZ being set to the first entry 2[molves - (h20, o)

Of b fOI" A{E = b Slatomvec = {h, o}
7: This is an attempt to find the number of HyO- and H4Os-molecules, given 4[aomvec//MatixForm
the number of H- and O-atoms. Of course, it has to fail. [l = oo = et

6| eql2] = (watmat.molvec)l[2]] = atomvecll2]]

9: Eliminate produces a logical equality for each redundancy in a set of
equations. In this case, the result expresses the fact that 2 x (second row)
is the same as the (first row).

7| Solvelfeql1], eql2]}, molvec]

8[ 2Eliminate

9| Eliminate[{eql1], eg[2]}, molvec]
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10: The rank of a matrix, obtained with MatrixRank, gives the number of 10]MatixRankiwatmatl
linearly independent rows.

NullSpacelwatmat]
Length[NullSpacelwatmat]]

11: The null space of a matrix, A, is a linearly independent set of vectors &,
such that AZ is the zero-vector; this list can be obtained with NullSpace.
The nullity is the number of vectors in a matrix’s null space. The rank
and the nullity must add up to the number of columns of A
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matrix syntax
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Length, 48
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rank
matrix, 52
rows of a matrix, 48

summation convention, 46

threadable function, 50

Transpose, 48

transpose and matrix multiplication, 47
transpose of a matrix, 47

g 3.016 Home
unit vectors, 45

vector
composition, 44

multiplication by a scalar, 44 ﬂ ﬂJJ

polar form, 43
vector norm, 44
vectors, 43
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