Contents

Lecture 1: Introduction and Course Description 11
Inecinire IHERrefacem: = wy. . oMl pwm. P et M .. P . Mot Uiy B 11
Lecture 1: 3.016 Mathematical Software 12
IrecinreSIESI01 6N Examination P hilosomp iy s e R 12
Wecinmel: .0l 6gHomewonke e TR - el - T T e 13
ILEeinnge 112 aLUIlE) IbRlom)deey omemst o o 8% o o o Ol ool o B b o olbic BIG o o ofg WMo ol & o ol 14
Iecture IREGradesull. N pas Sy B ol s TR T ST R Do i 15
Lecture 1: Homework Calendar and Weighting 16
lreeinedl atePPolicyy™ 3o - e o - - - - 95 FO-EE- Lo -l - B - B B - - 16 3.016 Home |
ectuneRl:Mliextbooks . . . T8 .. .0 0 0 LUF L L. L. SR . e TR e 17
Wecture B ILecturelNOTES NI RSN 0 I SR D 17
Lecture 1: Lecture and Laboratory Calendar 18
1-0.0.1 Week of 4-8 September 19
1-0.0.2 Week of 11-15 September Lo 20 —l—lﬂil
1-0.0.3 Week of 18-22 September e 20
1-0.0.4 Week of 25-29 Septembero e 21
-0t 0gomWEals @i OkEi o o o oo o B8 6 6 858 o0 olb o 08 o 0 6 ol 09 okt o ol 5804 o 3)
1-0.0.6 Week of 9-13 October 23 Full Screen |
1-0.0.7 Week of 16-20 October it e e e 23
1-010-88Weekso#23=2780 ctober - a1 e IR SIS SR R 24
1-0.0.9 Week of 30 Sept—3 NOV i i i e e e e e e e 25
1-0.0.10Week of 6-10 Novembero . 25 Close |
1-0.0.11Week of 13-17 November i it 26
IR0 0NP2Weeldot20S248Novemberss . g TE S SN T B S e A 27
12050 18Weeksof 27 NovalDecTn: . w0 e . - 2o - - - 27
1BOI0SWeekdof 4=8 Wecemibers M g Sy S8 il e e 29
1-0.0.15Week of 11-15 December e 29 Quit |
Lecture 1: Beginners to MATHEMATICA« ¢ v v v v v v v v o e e e e e e e e e e e e 29
Example 1-1: Common Mathematica Mistakes 29

Example 1-2: Common Mathematica Mistakes 31 @W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

Example 1-3: Common Mathematica Mistakes 32

Lecture 2: Introduction to Mathematica 33
Inectire 288 Expressions and Evaltlations. D™ o B . . B OB G L L Ul ST 33
1D5emolle, 2118 (Clafnings SIEIEIEEL o n Bigen omb-olo.o Blobadio 0o BN, M8 0 o o e S 33
Example 2-2: Basic Input and Assignment 35
Example 2-3: Built-in Functions and Operations on Expressions 36
ExampleR=4:8Calcnliskand TR1otimomime s I S s S 37
Example 2-5: Lists, Lists of Lists, and Operations on Lists 38
Example 2-6: Rules (—) and Replacement (/.) 39
Getting Help on Mathematicao L o 40 3.016 Home |
Lecture 3: Introduction to Mathematica II 41
Lecture 3: Functions and Rules 41
Example 3-1: Procedural Programming 42
Example 3-2: Plotting Lists of Data and Examples of Deeper MATHEMATICA®) Func- ﬂﬂﬂﬂ
oty o o o oMb NNt NN S o B o (o o o o SR . 44
Example 3-3: Making Variables Local and Using Switches to Control Procedures 45
Example 3-4: Operating with Patterns 47
Example 3-5: Creating Functions using Patterns and Delayed Assignment 49 Full Screen |
Example 3-6: Functional Programming with Rules and Pattern Restrictions 50
Lecture 4: Introduction to Mathematica 111 52
Lecture 4: Simplifying and Picking Apart Expression, Calculus, Numerical Evaluation 52
Example 4-1: Operations on Polynomials 52 Gz |
Example 4-2: A Second Look at Calculus: Limits, Derivatives, Integrals 54
Example =3 Solvinsflquationsis s S N e N e e Ol 55
Example 4-4: Numerical Algorithms and Solutions 56
Example 4-5: Interacting with the Filesystem 58 Quit |
Example BE6: MU sinodRa/Ckag eSS SN S S S - - R 30w 60

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

Lecture 5: Introduction to Mathematica IV 61

IeeGimnelbt Guaphics™ - Hyme R oE W -0 F - A N ° Sl o w- oE w-nme - 61
Example 5-1: Two-dimensional Plots T0.... 61
Example(5-228'wo-dimensionalNPlotsHIN . SIS i S BT S . 63
Example 5-3: Three Dimensional Graphics 64
Example 5-4: Graphics Primitives and Graphical Constructions 65
Bznan ol er /-5 WA alhagR o 95" o M5 o o o oo ae 4 ole oo BIOM o oo o Bo ML BS o o o olEi 66
Lecture 6: Linear Algebra I 67
LectureloaVectors Homms - b aomg) . B e R x K 67
Vectors as a list of associated information 67 3.016 Home |
Scalapmmiltiplication = 0 R SR L BRSSP 68
WVector MOFmMSE .S Siap . s SR e Lt BT BTSN DI e 68
UriaVeCtOLSE. ca B Bl - o e o e e o R s e e 69
Lecture 6: Matrices and Matrix Operations 69
Matrices as a linear transformation of a vector L. 70 ﬂﬂﬂﬂ
Matrix transpose Operations i e e e e e e e e e e e e e e e 7l
IMEiee WLl NG 6 wo oo 6 0 8 6 a8 0 86 66 3o 0o 6 GrEa o o olo ane o o oo amg ¢ 71
Bixample Gl Matricesmmmmr - i - o oo e s s e T e e 71
Matrix [nversiontm . B . 00 . o . v L B aalE . D e e 73 Full Screen |
I8 nmaplle (=28 verninn MEHIEE o 6 o a8 a o a 08 o 5o aoa o o ole oo dih ololny 73
Linear Independence: When solutions exist 75
Example 6-3: Eliminating redundant equations or variables 75
Lecture 7: Linear Algebra 77 Ll
Lecture 7: Uniqueness and Existence of Linear System Solutions 7
Example 7-1: Solving Linear Sets of Equations 78
Example 7-2: Inverting Matrices or Just Solving for the Unknown Vector 80
Uniqueness of solutions to the nonhomogeneous system 81 Quit |
Uniqueness of solutions to the homogeneous system 81
Adding solutions from the nonhomogeneous and homogenous systems 81
Lecture¥pDetermimantsl T me-mal 3 o o kT a- B 0 ramae - - B ol - 82

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

Example 7-3: Determinants, Rank, and Nullity 82

Properties and Roles of the Matrix Determinant 83
Example 7-4: Properties of Determinants 84
"Eheproperiiesiof determinam t SR, SIS SN i CUa S L. 86
llectiitep/: VectomSpaces - .0 - B 3m- X o B - - B o o 86
ILEeipugenfa Limern Thighciomn oG ale ol o o o o dla & o Bl o o ot o B8 & o o 4080 5 8 88
Example 7-5: Visualization of linear transformations 88
Lecture 8: Complex Numbers and Euler’s Formula 89
Lecture 8: Complex Numbers and Operations in the Complex Plane 89
Example 8-1: Operations on complex numbers 89 3.016 Home |
Complex Plane and Complex Conjugates oo v vt v v v o 91
Lecture 8: Polar Form of Complex Numbers 92
Multiplication, Division, and Roots in Polar Form 92
Example 8-2: Numerical Properties of Operations on Complex Numbers 92 ﬂ ﬂ ﬂ ﬂ
Lecture 8: Exponentiation and Relations to Trignometric Functions 94
Lecture 8: Complex Numbers in Roots to Polynomial Equations 94
Example 8-3: Complex Roots of Polynomial Equations 94
Lecture 9: Eigensystems of Matrix Equations 96 Full Screen |
Lecture 9: Eigenvalues and Eigenvectors of a Matrix 96
Example 9-1: Matrix eigensystems and their geometrical interpretation. 97
Lecture 9: Symmetric, Skew-Symmetric, Orthogonal Matrices 102
Oritilioymomel NI TN IR o o a o afe o 6 o o 6 oo o o GEENE 06 6 o ol oo @ &8 « 104
Example 9-2: Coordinate Transformations to The Eigenbasis 105 L'
Lecture 10: Real Eigenvalue Systems; Transformations to Eigenbasis 106
IWecimepld SimilarityaliramstormationsHaie S8 55 BB IR T i 106
Stnessestand Stinains il - SN CEEEE SUSIREIE L EElii N SUNR e B N 109 Quit |
EigenStrains and EigenStresses Lo o0 e e 112
Example 10-1: Principal Axes: Mohr’s Circle of Stress 112
LectureBll: d®uadravic Hormise . o SN I PR oo w1 8 DR 114

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

Iecture 12 EigenvectorBasis, MM Mot s SN Ny R S .

Lecture 11: Geometry and Calculus of Vectors
Lecture 11: Graphical Animation: Using Time as a Dimension in Visualization
Example 11-1: Introductory Animation Examples
IFectinreSiERAVecton Productsg Mot w0 E o' B0 g " s S —

Review: The Inner (dot) product of two vectors and relation to projection 119
Remilews” Mector (oicross-) productsg® ™. B " o0 S St U ot = 120
Example 11-2: Cross Product Example 121
Lecture™BlEaDerivativesSpVectors! caci e i e . 123
Example 11-3: Visualizing Time-Dependent Vectors and their Derivatives 123
Review: Partial and total derivatives L0000 125
Lecture 11: Time-Dependent Scalar and Vector Fields 126
Example 11-4: Visualizing a Solution to the Diffusion Equation 126

All vectors are not spatial oL 128
Lecture 12: Multivariable Calculus 129
Lecture 12: The Calculus of Curves o it it it et e 129
Example 12-1: Curves in Three Dimensions v v v v v v oo 130
Example 12-2: Embedding Curves in Surfaces 131
Using Arc-Length as a Curve’s Parameter 133
Example 12-3: Calculating arclength 0oL, 133
Lecture 12: Scalar Functions with Vector Argument 135
How Confusion Can Develop in Thermodynamics 135
Lecture 12: Total and Partial Derivatives, Chain Rule 136
Example 12-4: Total Derivatives and Partial Derivatives: A Mathematica Review 137
iaylor Schics, WM e L S0 ST W OBUTE BN S e . 139
Example 12-5: Approximating Surfaces at Points 140
Lecture 12: Gradients and Directional Derivatives 144
Hinding: thie. Gradieniiie: SEps S P Speiy Fipaes i S . N ey 145
RotentialstandbEonce®Bields 1 W B S B SRR B B 145

3.016 Home

PRI

Full Screen

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

Lecture 13: Differential Operations on Vectors
Lecture 13: Generalizing the Derivative0 0 o oo . .
Example 13-1: Gradients and Laplacians on Scalar Potentials

ecture 13" Divergence and.lts Interpretation . .= 8 8 B BEES JEEE
Coordinate Systemsl: - - ‘i E o -0 - el e e
Example 13-2: Coordinate Transformations

Example 13-3: Gradient and Divergence Operations in Other Coordinate Systems . . . 151
Lecture 13: Curl and Its Interpretation v v i v v it e e e 152
Example 13-4: Computing and Visualizing Curl Fields 152
Lecture 14: Integrals along a Path 156
ectinep “antecralstalonofaf@urvel S E RS RS R S P 156
Path-Independence and Path-Integration 157

Example 14-1: Path Dependence of Integration of Vector Function: Non-Conservative
Bxample -gma- - - -G - - iR R B O 157

Example 14-2: Examples of Path-Independence of Curl-Free Vector Fields and Curl-Free
Sullospaces. SRS S L 0BRSS L e e 159
Lecture 14: Multidimensional Integrals00, 160
Lecture 14: Using Jacobians to Change Variables in Thermodynamic Calculations 161
14-0.0.1IExample of a Multiple Integral: Electrostatic Potential above a Charged Region 162
Example 14-3: Potential near a Charged and Shaped Surface Patch: Brute Force 162
Lecture 15: Surface Integrals and Some Related Theorems 164
Lecture 15: Green’s Theorem for Area in Plane Relating to its Bounding Curve 164
Example 15-1: Turning an integral over a domain into an integral over its boundary . . 167
Iectmire 15:8Representationsiof Surfaces . . 081 00 0 DU L B0 B0 e 168
Example 15-2: Representations of Surfaces. 172
eciePlhielTterralionToVer DILIACES! A Ty . Sl B N T 174
Example 15-3: Example of an Integral over a Parametric Surface 174
Lecture 16: Integral Theorems 176
ILectuuello:Miicherfdimensional Inteonalsi BN IR PR - IS 0l S SR 176

3.016 Home

PRI
Full Screen

Bt
Close |
e

Quit

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

lEecimre l 6 iieiWiversence fltheOrenMesININENNEN RNy SIS Sy T T
Example 16-1: London Dispersion Interaction between a point and Closed Volume
Efficiency and Speed Issues: When to Evaluate the Right-Hand-Side of a Function in

IVIATHEMATTEAR), SISy S B S e | e e

Example 16-2: To Evaluate or Not to Evaluate when Defining Functions
Example 16-3: London Dispersion Potential of a Finite Cylinder
Example 16-4: Visualizing the London Potential of a Finite Cylinder
Pecture®6:BStokesii Theorem™ =0 USRS L B 0L DR R oy e
Lecture 16: Maxwell’s equations L Lo e e e

|l eenenil®; Avnmipene SHLEN7 I8 o dio o oBic o o o 5156 dlo o o S MG ol o0 o JEEY o b o ol 3 187
[Wecimnedl 6:8Ganuss’ Waw MBS SRS . L DR BT BT e SR 187 M'
Lecture 17: Function Representation by Fourier Series 188
Lecture 17: Periodic Functions e e e 188
Example 17-1: Playing with Audible Periodic Phenomena 188 ﬂ ﬂ ﬂ ﬂ
Example 17-2: Using “Mod” to Create Periodic Functions 190
Wectnre 17:80ddland Even Functions o0 0 88 00 o0 192
Lecture 17: Representing a particular function with a sum of other functions 192
{byeG{rE) 1L 7l XOWIHIEIP (SIEIHES) 6 o o o @ o @ 0 8 5 0 888 oot ocBcobabdonob ool saE s 193
Example 17-3: Orthogonality of Trignometric Functions 194 Full Screen |
Lecture 17: Other forms of the Fourier coefficients 196
Example 17-4: Calculating Fourier Series Amplitudes 197
Example 17-5: Using the Calculus‘FourierTransform‘ package 199
Example 17-6: Visualizing Convergence of the Fourier Series: Gibbs Phenomenon 200 Close |
Lecture 17: Complex Form of the Fourier Series 201
Lecture 18: The Fourier Transform and its Interpretations 202
IWecieBliS ieFouriemgiliianSIoTTSy: 8 -« B mma - - B B T N T 202
Higher Dimensional Fourier Transforms 204 Quit |
Lecture 18: Properties of Fourier Transforms 205
irac bElval RinctionsH M 5 8 W B 5o B B SR B B 205
Rarseyalls JIEeoneml miue: - cu ot B B e e e - e E - 205

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

Convolutiomiiicorem. o5 SR S s . EESN Sy T CESae
Example 18-1: Creating Images of Lattices for Subsequent Fourier Transform
Fast Fourier Transforms and Simulated Diffaction
Example 1852 Discrete Fourier Transforms *5 8 8 B B L L S o .
Example 18-3: Visualizing Diffraction Patterns
Example 18-4: Diffraction Patterns of Defective Lattices
Example 18-5: Diffraction Patterns from Lattices with Thermal ‘Noise’.
Example 18-6: Using an Aperature to Select Particular Perioidicities in a Diffraction

RSN o b 11 okt CEo T S EC cBo G o o Boss B o o o o 213

Example 18-7: Visualizing Simulated Selected Area Diffraction 214
Example 18-8: Discrete Fourier Transforms of Real Images 215
Example 18-9: Selected Area Diffraction on Image Data 216
Example 18-10: Visualizing Selected Area Diffraction on Image Data 217
Lecture 19: Ordinary Differential Equations: Introduction 218
Lecture 19: Differential Equations: Introduction 218
Example 19-1: Iteration: First-Order Sequences 219
Example 19-2: First-Order Finite Differences 221
Example 19-3: Nested Operations o v v i i it e e 223
Lecture 19: Geometrical Interpretation of Solutions 224
Example 19-4: The Geometry of First-Order ODES 224
Iectize®.0-8S eparableN B i atiom s R L 226

Example 19-5: Using MATHEMATICA®) ’s Built-in Ordinary Differential Equation Solver 226

Lecture 20: Linear Homogeneous and Heterogeneous ODEs 229
Lecture 20: Ordinary Differential Equations from Physical Models 229
Grain Growth WS e B T TS N BT B e e N 229
iecteR20 el nicoratin e NactonSy ixact BOTmsit S S Tl " L o e 233
18p:xxe gtk IROIHI0E) o Bilc o 6 o ofig's olo o Mol dik oo dk Bl o o o e SRS B 5 ol o - 233
Integrating Factors and Thermodynamics 234

Lecture 20: Homogeneous and Heterogeneous Linear ODES 234
Example 20-1: Using DSolve to solve Homogeneous and Heterogeneous ODEs 236

3.016 Home

PRI
Full Screen

Bt
Close |
e

Quit

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

Lecture 20: Example: The Bernoulli Equation
Example 20-2: Numerical Solutions to Non-linear First-Order ODEs

Lecture 21: Higher-Order Ordinary Differential Equations
Lecture 21: Higher-Order Equations: Background
Example 21-1: A Second-Order Forward Differencing Example
Linear Differential Equations; Superposition in the Homogeneous Case
Basis Solutions for the homogeneous second-order linear ODE
Lecture 21: Second Order ODEs with Constant Coefficients
Example 21-2: Solutions to the Homogeneous Linear Second Order ODE with Constant

Coellicients gemme B - - - - 30 3 - ol - 5a: sy k. 243
Example 21-3: Characterizing the Solution Behavior for the Second-Order ODE with
@onstant:CoellicicntSIRINENNREE SR R R S 245
Lecture 21: Boundary Value Problems 247
Example 21-4: Determining Solution Constants from Boundary Values 247
Lecture 21: Fourth Order ODEs, Elastic Beams 249
Example 21-5: Visualizing Beam Deflections 251
Lecture 22: Differential Operators, Harmonic Oscillators 253
Lecture 22: Differential Operators L L e 253
Oroeeinone)l selinnter S ron@IBITE N, 578 0 68 o 06 56 5 5 a8 0 00 006 ot o o dl - lams ¢ 255
Example 22-1: Use of Fourier Transform for Solution to the Damped-Forced Harmonic
@scillator _NLCTEE SRS NS S I I D 256
(O)pXeriiiones) (o) IHNEONEIE 3 8o o aa ke o 6 o a6 o0 o o BEoEE o5 6 o ol oo @ 8 o aE 258
Example 22-2: Functionals: Introduction to Variational Calculus by Variation of Pa-
ramerers I . PN CAC . W O o FE SOEE N N W P RPN 260
Ilecuiies22 L Harmon'cR@scillatorssiuiass S SuSiRy S R B SRR BN O 262
Simple Undamped Harmonic Oscillator 263
Lecture 23: Resonance Phenomena, Beam Theory 267
Lecture 23: Resonance Phenomena 267
Example 23-1: Simulating Harmonic Oscillation with Biased and Unbiased Noise 267

3.016 Home

PRI
Full Screen

Bt
Close |
e

Quit

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

General Solutions to Non-homogeneous ODEs
IModalSANalysSiS s e ot m- 5 A Y T AR Ao . e . -
Example 23-3: Visualizing Forced and Damped Harmonic Oscillation

Lecture 24: Systems of Ordinary Differential Equations
Lecture 24: Systems of Ordinary Differential Equations
Example: The Spread of a MIT Joke 0....
Example 24-1: Iterative Example of Predator-Prey Simulation.
Example 24-2: Visualizing the Spread of Jokes at MIT

Lecture 24: Reduction of Higher Order ODEs to a System of First Order ODEs
Lecture 24: Linearization of Systems of ODEs
Example 24-3: Analyzing the Stability for the MIT Joke

Lecture 25: Phase Plane Analysis and Critical Points
Lecture 25: Phase Plane and Critical Points
Lecture 25: Stability of Critical Points
Example 25-1: Functions to Analyze Fixed Points for Two-Dimensional Systems . . .
UnistableMViamiteoldsE SR SRESRENET 0 0 0 R R S R

Lecture 26: Separation of Variables and Solutions to Common ODEs
Lecture 26: Special Functions: Solutions to Common ODEs
Example 26-1: Visualizing special functions. Lo L.
Lecture 26: Partial Differential Equations: Separation of Variables
Special Functions in the Eigenfunctions of the Hydrogen Atom
Example 26-2: Visualizing the Hydrogen atom eigenfunctions

285
285
287

. 289

292

293
293
294
296
299
302

3.016 Home

PRI

Full Screen

Close

o

Quit

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

Lecture 1: Introduction and Course Description

These notes and all course materials will available at http://pruffle.mit.edu/3.016-2006. Students
should bookmark this site use it to download lecture notes, homework assignments, and reading as-
signments for laboratories and lectures.

The web materials for 3.016 are revised each year. This year I am doing substantial revision on how
the lecture notes are designed and some revision on lecture content. The site will develop throughout
the semester.

Previous years’ notes are available at http://pruffle.mit.edu/3.016 and may be useful to you.

Preface

The subject is for undergraduate materials scientists and engineers who wish to learn about the math-
ematics that is essential to their chosen field.

Materials science and engineering is a discipline that combines knowledge of chemistry, mechanics,
and physics and then applies them to the study of materials and their properties. It is a challenging
and diverse enterprise—obtaining expertise in a large set of diverse subjects—but a career devoted to
diverse study and applications will be very rewarding and fulfilling.

Mathematics is the language that binds together disparate topics in physics, engineering, and chem-
istry.

While it is possible to become an excellent materials scientist and engineer without some working
knowledge of a large subset of mathematical topics, it is much easier to master this discipline with
mathematics to guide you. Through mathematics, you will discover that some topics have similarities
that are not obvious—and not taught to you as being similar. Such similarities and analogies will make
learning much, much easier—and I think much more enjoyable.

MIT’s Department of Materials Science and Engineering has determined that students benefit from
a background and a working knowledge of many more mathematics topics that pertain specifically to
MS&E than are taught in a one-semester subject in the mathematics department. It is reasonable to
ask, “Is this subject a substitute for a mathematics subject such as linear algebra or partial differential
equations taught by a mathematics professor as part of the mathematics department?” No, this is not
a replacement for such a subject and I encourage you to take subjects in mathematics in the future.

3.016 Home

PRI

Full Screen

Quit

Bt
Close
e

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2006
http://pruffle.mit.edu/3.016
http://dmse.mit.edu

This subject is designed to be very broad in scope and therefore its depth in any one topic is limited.
I do believe very strongly that you will enjoy studying math more after taking this introduction
and that the mathematical background you will receive this semester will make your materials science
education richer and more rewarding.
I have designed this subject to help you learn as much essential mathematics as possible in a short
time. To this end, this subject has several unusual aspects that you will need to know.

3.016 Mathematical Software

Symbolic mathematical computer software is a tool used by almost every applied scientist. Such
software helps produce results quickly, visualizes and documents the results, and minimizes the silly
errors that creep into complicated mathematical manipulations. Although there are many other good
choices, I have decided to use MATHEMATICA®) as a vehicle for learning and doing mathematics.
It has a fairly steep learning curve, but it probably repays the time investment with powerful (once
learned) language syntax and packages. Such symbolic mathematical software is an aid to help you
think about and perform mathematics—it is not a replacement for mathematical understanding.

MATHEMATICA®) is available for all MIT students, both on Athena (free) and via licenses for per-
sonal laptop and desktop machines ($30 for students, a useful investment for other subjects). The pro-
cess to access MATHEMATICA®R) on Athena and the steps to download a license will be explained to you;
the pertinent website is http://web.mit.edu/is/products/vsls/ http://web.mit.edu/is/products/vsls/.
You will need MATHEMATICA®) for your first homework set and laboratory; you should try to get it
working someplace very soon. If you have a laptop, I suggest that you install MATHEMATICA®) on it
as soon as possible.

Laboratory assignments must be completed during the laboratory period and are to be emailed as
an electronic copy of a MATHEMATICA@® notebook to the instructor and the TA.

3.016 Examination Philosophy

Tests and exams are powerful motivators to get students to take a subject seriously but I think that
working through homework problems better promotes learning, particularly for self-motivated students.

Therefore, there will be no exams, tests, or quizzes in 3.016. Your grade will be based on your
homeworks and laboratories. These will graded carefully (described below) and there will be about one

3.016 Home

PRI

Full Screen

Quit

Bt
Close
e

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/
http://web.mit.edu/is/products/vsls/

homework set every week and a half while the subject is meeting (i.e., no homework will be assigned
during the weeks that the laboratory 3.014 meets).

3.016 Homework

The purpose of the homework is to help you solidify your understanding of mathematics applied to
engineering and science problems by working through examples. Some examples may be exercises in
mathematics; others will be exercises in application of mathematics to solving engineering and science
problems. I encourage you to use MATHEMATICA® to solve your homework problems, and you may
turn in solutions as printed MATHEMATICA@® notebooks. Nevertheless to appreciate what symbolic
mathematics programs can do for you, there will be some exercises that I will ask you to do with pencil
and paper. However, there is no harm in checking your “by-hand” results with MATHEMATICA®) .

Of course when you do homework, you are not under the potentially menacing eyes of an exam
proctor. This means that you can receive help in the form of:

Books Go to the library and find solutions to problems. It is good practice and you will learn quite a
bit by doing so. I recommend that you attempt to find a solution before going to the library—mnot
only will it help you appreciate the solution, it will also make your search a bit easier!

Experts By all means, consult with experts on your homework. It is a good idea as long as you
understand what you turn in.

Classmates This is the best choice of all. I think it is both inevitable and beneficial to give and
receive help. Cooperating on homework will help you learn to communicate your ideas and begin
to appreciate the difficulties and rewards of teamwork.

As explained below, the homework assignments in 3.016 will be, in part, cooperative.

You will find that you are more busy some weeks than others and relying on a classmate during
a busy week can be a life-saver. However, if you start slacking off and don’t hold up your end of
the bargain when you are able, you will engender resentment and endanger professional and friendly
relationships. I leave it to your own conscience to play fairly and contribute when you can—and, while
understanding that everyone experiences different kinds of pressures, to be forthright and honest with
others who do not contribute consistently.

3.016 Home

PRI

Full Screen

Quit

Bt
Close
e

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

It is fairly easy for the instructor to ascertain who is slacking and who is not. I can’t say that my
good opinion has any particular value, but keep in mind: it is possible, but slackers will have hard time
regaining my good opinion.

If you turn in work that youdid not do, and do not attribute the solution to its rightful
author(s), then you are plagiarizing. As a first assignment in this course, every one of you should
read MIT’s policy on academic integrity (html) or (pdf) immediately.

Homework cooperation has a potential downside because you all receive individual grades. We will
attempt to mitigate this downside by dividing the homework into two parts:

Group For each homework set, a few problems will be designated as Group FEzercises. For these
problems, the entire group will turn in one homework. Every member of the group who puts their
name on the turned-in assignment will receive exactly the same credit for the homework grade.

Homework groups will be assigned with each homework set. The groups will change from week
to week and the members will be assigned randomly. Each group will be assigned a homework
leader who will be responsible for arranging meetings and turning in the homework.

Individual Each problem set will contain a few problems for each student to complete individually.
These problems will come out of the textbook and tend to be a bit easier than the group exercises.
They are designed to maintain a sufficient amount of currency and emphasize that reading the
textbook is an essential part of this course.

By putting each individual’s name on a homework assignment, the group verifies that each indi-
cated person has contributed to the assignment. By putting your own name on the group’s turned-in
assignment, indicates that you have reviewed all of the assignment; if questioned, each person should
be able to describe how each problem was done. MIT’s policy on academic integrity is also the policy
for 3.016.

3.016 Laboratory

There will be a laboratory each week that 3.016 meets. The labs will be practical and focused on using
MATHEMATICA®) effectively.

There will be assigned reading from the MATHEMATICA®) help browser that comes with the
software. You should always do this reading before the laboratory, or you may not be able to FINISH

3.016 Home

PRI

Full Screen

Close

Quit

o

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/
http://web.mit.edu/academicintegrity/

YOUR ASSIGNMENT AND TURN IT IN BEFORE THE END OF THE LABORATORY IN ORDER TO GET
CREDIT.

If you stay current in the course material and do the homeworks, you should have no difficulty
doing the laboratory assignments if you do the pre-assigned reading.

It is not necessary, but if if you have your own laptop running MATHEMATICA®) , it will be helpful
to bring it to the lab with you.

Grades

As stated above, all of the final grade will depend on the homeworks and the laboratory assignments.
There is no fixed average grade for this course; the average will depend on the entire class performance.
However, if your homework grades and your laboratory reports are consistently within the top quartile,
then it is extremely likely that you will receive an A. Homeworks will be graded by ranking them in
order from Best Homework to Least Best Homework. A decision will be made regarding how many
points (out of a possible 100) the Least Best Homework deserves, and the homework scores will be
interpolated between a score of 99 for the Best Homework and that of the Least Best.
Homeworks will be evaluated on the basis of:

Accuracy The solution must be a reasonable and correct answer to the homework question.

Exposition The solution must clearly show the reasoning that was utilized to find it and the method
of solution should be clearly apparent. Exegetic solutions will be ranked higher.

Beauty Good solutions will often require graphics and, with care, graphics can often beautifully
explain the solution. The layout of the page, the quality of the supporting prose, the clarity of
the graphics, and all that “je ne sais quoi” is fairly subjective but very important. The reader
will include a judgment of your art in the ranking of homeworks.

Observation Supplemental observations provide aids in understanding and demonstrate mastery of a
topic. An example of a supplemental observation might be something like, “Note that in the limit
of long times, that the total concentration goes to zero. This is sensible because the boundary
condition on mass flux is directed outward everywhere on the finite domain.”

3.016 Home

PRI

Full Screen

Quit

Bt
Close
e

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

Laboratories will be graded on their completeness, demonstrated mastery of MATHEMATICA®) for
that assignment, and exposition.

Note that there will be times when you have two homework sets pending—this is done so that you
can arrange your time conveniently.

Homework Calendar and Weighting

’ Homework Schedule

Homework | Available | Available | Due
Assignment After Date Date
Set Lecture Date Date
1 Lect. 1 6 Sept. 14 Sept.
2 Lect. 4 13 Sept. | 28 Sept.
3 Lect. 6 27 Sept. 12 Oct.
4 Lect. 13 23 Oct. 9 Nov.
) Lect. 17 8 Nov. 30 Nov.
6 Lect. 21 20 Nov. 7 Dec.

Late Policy

Students will be allowed to turn in one homework up to 3 days late, for the individual portion only. No
second late homework will be allowed without formal documentation about an unforeseeable emergency.
No late group homework portions will be accepted—no exceptions.

Laboratory assignments must be turned in during the laboratory period. You must show docu-
mentation of unforeseeable emergencies that prevent you from attending a laboratory period. Any
missed laboratories must be made up by special arrangement. If for some reason, you cannot complete
a laboratory during the laboratory period, you should send a paragraph explaining why you could not
finish.

It is your responsibility to do the assigned reading before the laboratory.

3.016 Home

PRI

Full Screen

Close

Quit

o

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

Textbook

We will use a fairly general textbook on applied mathematics (E. Kreyszig, Advanced Engineering
Mathematics, ninth ed., J.W. Wiley, ~ 1200 pages). You’ll notice that reading assignments do not follow
the table of contents—while I like the book, there are pedagogical reasons for studying mathematics in
the sequence we will follow in this subject. Extra material pertaining to materials science specifically
will be created and placed on the web.

I have identified 66 sections of the book (330 pages in total) as required reading. The readings for

each lecture will appear in the Lecture Notes and always posted on the web at: http://pruffle.mit.edu/3.016-

2006. I hope you will keep up with the reading—I think it would be wise to give the material a cursory
reading prior to the lecture and then read it more carefully before starting the homework.

This course is designated as a 12 (3-1-8) unit subject' Time spent awake at lectures and recitations
is less than half of your job—reading and doing homework is the greater part.

Lecture Notes

Lecture notes (like these) will be available for you to print out for each lecture. The lecture notes will
be available at: http://pruffle.mit.edu/3.016-2006. These will supplement (not replace) the textbook.
The lecture notes also serve as a guide to help the student understand what parts of the text are
considered more relevant or important.

The specific purpose of the notes is to provide neatly typeset equations and graphics that will be
used in the lecture along with a few observations. This will eliminate the time required to write and
draw, perhaps a bit sloppily, for you in your notes and for me on the blackboard.

The lecture notes will have reading assignments printed at the beginning of each lecture; they will

look like this:
Kreyszig 6.1, 6.2, 6.3, 6.4 (pages: 304-309, 312-318, 321-323, 331-336). Part of the units for this
course involve reading. You are receiving an expensive education—you should strive to make your
education valuable by doing all the required reading. Your intellect will profit even more by doing
outside reading.

LUnits at MIT are assigned under the following schema: lec-lab-out where lec is the number of lecture/recitation hours,
lab is the number of laboratory hours, and out is the number of outside (reading, preparation, homework) hours per week.
One MIT unit represents about 14 hours of semester work on the average.

KIRIEE

Full Screen

Quit

Bt
Close
e

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2006
http://pruffle.mit.edu/3.016-2006
http://pruffle.mit.edu/3.016-2006

Those concepts that are fundamental to this course will be presented in lectures by the lecturer
(or in the form of welcome questions and points of clarification by the students) and some explanatory
notes will be written upon the blackboard.

The notes will have places for you to fill in auxiliary discussion and explanation. Those places will
look like this: You can use these notes in several ways. You could print them out before lecture and
write your own lecture notes directly during the lecture. You could take lecture notes on your own
paper and then neatly copy them onto a printout later. You could print them before lecture and write
on them rapidly and then copy—mneatly and thoughtfully—notes onto a freshly printed set of lecture. I
recommend the latter for effective learning and the creation of a set of notes that might provide future
reference material—but do whatever works for you.

The lecture notes will also refer to MATHEMATICA® notebooks available on the 3.016 website
for downloading. These notebooks will be used as MATHEMATICA®) sessions during the lectures to
illustrate specific points and provide examples for you to help solve homework problems.

References to MATHEMATICA®) notebooks look like the ones given at the end of this lecture’s
notes in section 1-0.0.15.

These examples will serve as place-holders in the lecture note when we switch from chalkboard
and/or projected display of the notes to a live MATHEMATICA®) session.

Lecture and Laboratory Calendar

This calendar will be updated throughout the semester: students should consult this calendar weekly
to obtain the required reading assignments for the laboratory.

3.016 Home

PRI

Full Screen

Quit

Bt
Close
e

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

. Week of 4-8 September

Lectures

Topics Reading
M 09/04 Labor Day, No Lectures
W 09/06 Course organization and introduction | Mathematica Notes I
Lect. 1 to Mathematica
F 09/08 Introduction to Mathematica, assign- | Mathematica Notes I
Lect. 2 ment and evaluation, rules and re-

placement, procedural and functional

programming

Laboratory

F 09/08 Getting started with Mathematica Mathematica Help Browser
Lab 1 (Not Online Tutorial
Graded)

3.016 Home

PRI

Full Screen

Close

Quit

o

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

. Week of 11-15 September

Lectures
Topics Reading
M 09/11 Mathematica graphics: basic plotting, | Mathematica Notes II1
Lect. 3 data, two- and three-dimensional plot-
ting, graphics primitives, formatting
W 09/13 Mathematica: symbolic and numeric | Mathematica Notes IV
Lect. 4 calculations, linear algebra, roots of
equations
F 09/15 Mathematica: functional program- | Mathematica Notes V 3.016 Home
Lect. 5 ming, packages, and file input/output
Laboratory
F 09/15 Symbolic calculations and plotting Mathematica Help Browser
Lab 2 Mathematica Book: sec-
tions 1.4.2, 1.7.1; Func- ﬂﬂﬁﬂ
tions: Integrate, Simplify,
NlIntegrate, Plot, Plot3D,
ContourPlot

Full Screen

Close
. Week of 18-22 September

3.014 Laboratory Week: 3.016 does not meet.

Quit

o

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

. Week of 25-29 September

Lectures
Topics ‘ Reading
M 09/25 MIT Holiday, No Lectures
W 09/27 Linear algebra: matrix operations, | Kreyszig 7.1, 7.2, 7.3, 7.4
Lect. 6 interpretations of matrix operations, | (pages: 272-276, 278-286, 287—
multiplication, transposes, index no- | 294, 296-301)
tation
F 09/29 Linear algebra: solutions to linear sys- | Kreyszig 7.5, 7.6, 7.7, 7.8,
Lect. 7 tems of equations, determinants, ma- | 7.9 (pages: 302-305, 306-307,
trix inverses, linear transformations | 308-314, 315-323, 323-329)
and vector spaces
Laboratory
F 09/29 Solving linear systems of equations Mathematica Help Browser
Lab 3 Mathematica Book Section
1.8.3, Functions: Inverse,
Transpose, Eigensystem,
matrix multiplication “.”

3.016 Home

PRI

Full Screen

Quit

Bt
Close
e

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

. Week of 2-6 Oct.

Lectures
Topics Reading
M 10/02 Complex numbers: complex plane, | Kreyszig 13.1, 13.2, 13.5,
Lect. 8 addition and multiplication, complex | 13.6 (pages: 602-606, 607611,
conjugates, polar form of complex | 623-626, 626-629)
numbers, powers and roots, exponen-
tiation, hyperbolic and trigonometric
forms
W 10/04 Matrix eigenvalues: eigen- | Kreyszig 8.1, 8.2, 8.3 (pages:
Lect. 9 value/eigenvector definitions, in- | 334-338, 340-343, 345-348)
variants, principal directions and
values, symmetric, skew-symmetric,
and orthogonal systems, orthogonal
transformations
F 10/06 Hermitian forms, similar matrices, | Kreyszig 8.4, 8.5 (pages: 349
Lect. 10 eigenvalue basis, diagonal forms 354, 356-361)
Laboratory
F 10/06 File input/output, plotting data Mathematica Help Browser
Lab 4 Mathematica Book 2.12.7,
2.12.8; Functions: Dimen-
sions, Append. AppendTo,
Do, Mean, StandardDe-
viation, ListPlot, Table,
Graphics‘MultipleListPlot,
Fit

3.016 Home

PRI
Full Screen

Bt
Close
e

Quit

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

. Week of 9-13 October

Lectures
Topics ‘ Reading
M 10/09 Holiday, No Lectures
W 10/11 Vector calculus: vector algebra, in- | Kreyszig 9.1, 9.2, 9.3, 9.4
Lect. 11 ner products, cross products, determi- | (pages: 364-369, 371-374, 377—
nants as triple products, derivatives of | 383, 384-388)
vectors
F 10/13 3.014 Laboratory, no 3.016 lecture

. Week of 16—20 October

Lectures
Topics ‘ Reading
M 10/16 3.014 Laboratory, no 3.016 lecture
W 10/18 3.014 Laboratory, no 3.016 lecture
F 10/20 Multi-variable calculus: curves and | Kreyszig 9.5, 9.6, 9.7 (pages:
Lect. 12 arc length, differentials of scalar func- | 389-398, 400-403, 403-409)
tions of vector arguments, chain rules
for several variables, change of vari-
able and thermodynamic notation,
gradients and directional derivatives
Laboratory
F 10/20 Statistics, fitting data, error analysis | Mathematica Help Browser
Lab 5 Mathematica Book: 3.8.2;
Functions: Fit, Find-
Fit; Package: Statis-
tics‘NonlinearF'it

3.016 Home

PRI

Full Screen

Bt
Close
e

Quit

http://pruffle.mit.edu/3.016-2006/

. Week of 2327 October

Lectures

Topics Reading
M 10/23 Vector differential operations: diver- | Kreyszig 9.8, 9.9 (pages: 410—
Lect. 13 gence and its interpretation, curl and | 413, 414-416)

its interpretation
W 10/25 Path integration: integral over a | Kreyszig 10.1, 10.2, 10.3
Lect. 14 curve, change of variables, multidi- | (pages: 420-425, 426-432, 433~

mensional integrals 439)
F 10/27 Multidimensional forms of the Funda- | Kreyszig 10.4, 10.5, 10.6,
Lect. 15 mental theorem of calculus: Green’s | 10.7 (pages: 439-444, 445-448,

theorem in the plane, surface repre- | 449-458, 459-462)

sentations and integrals

Laboratory
F 10/27 Graphical representations in three and | Mathematica Help Browser
Lab 6 higher dimensions Mathematica Book:
1.9.1—1.9.7, 1.9.9—1.9.11

3.016 Home

PRI
Full Screen

Bt
Close
e

Quit

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

. Week of 30 Sept—3 Nov

Lectures

Topics

Reading

M 10/30
Lect 16

Multi-variable calculus: triple inte-
grals and divergence theorem, appli-
cations and interpretation of the di-
vergence theorem, Stokes’ theorem.

Kreyszig 10.8, 10.9 (pages:
463-467, 468-473)

W 11/01
Lect. 17

Periodic functions: Fourier series, In-
terpretation of Fourier coefficients,
convergence, odd and even expansions

Kreyszig 11.1, 11.2, 11.3
(pages: 478-485, 487-489, 490—
495)

F 11/03
Lect. 18

Fourier theory: complex form of
Fourier series, Fourier integrals,
Fourier cosine and sine transforms,
the Fourier transforms

Kreyszig 11.4, 11.7, 11.8,
11.9 (pages: 496-498, 506512
513-517, 518-523)

Laboratory

F 11/03
Lab 7

Review of Mathematica functions and
graphics

Mathematica Help Browser
Mathematica Book: 1.9.1—
1.9.9, 2.1.1, 2.2.1. 2.3.1,
2.4.1, 2.5.1, 2.6.1, 2.7.1

. Week of 6-10 November

3.016 Home

PRI
Full Screen

Bt
Close
e

Quit

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

Lectures

M 11/06 Ordinary differential equations: phys- | Kreyszig 1.1, 1.2, 1.3 (pages:
Lect 19 ical interpretations, geometrical inter- | 2-8, 9-11, 12-17)

pretations, separable equations
W 11/08 ODEs: derivations for simple models, | Kreyszig 1.4, 1.5 (pages: 19—
Lect. 20 exact equations and integrating fac- | 25, 26-32)

tors, the Bernoulli equation
F 11/10 Holiday, no 3.016 lecture

3.016 Home

. Week of 13—-17 November

PRI

3.014 Laboratory Week: 3.016 does not meet.

Full Screen

Quit

Bt
Close
e

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

. Week of 2024 November

Lectures

Topics Reading
M 11/20 Higher order differential equations: | Kreyszig 2.1, 2.2 (pages: 45—
Lect. 21 homogeneous second order, initial | 52, 53-58)

value problems, second order with

constant coefficients, solution behav-

ior
W 11/22 Differential operators, damped and | Kreyszig 2.3,2.4, 2.7 (pages:
Lect. 22 forced harmonic oscillators, non- | 59-60, 61-69, 78-83)

homogeneous equations
F11/24 Holiday, no 3.016 lecture

. Week of 27 Nov—1 Dec

3.016 Home

PRI

Full Screen

Quit

Bt
Close
e

http://pruffle.mit.edu/3.016-2006/

Lectures

Topics Reading
M 11/27 Resonance phenomena, higher order | Kreyszig 2.8, 2.9, 3.1, 3.2,
Lect. 23 equations, beam theory 3.3 (pages: 84-90, 91-96, 105—

111, 111-115, 116-121)

W 11/29 Systems of differential equations, lin- | Kreyszig 4.1, 4.2 (pages: 131-
Lect. 24 earization, stable points, classification | 135, 136-139)

of stable points
F 12/01 Linear differential equations: phase | Kreyszig 4.3, 4.4 (pages: 139-
Lect. 25 plane analysis and visualization 146, 147-150)

Laboratory

F 12/01 Solutions to ordinary differential | Mathematica Help Browser
Lab 8 equations Mathematica Book: 1.5.9,

3.5.11; Function: DSolve,
NDSolve, NIntegrate

3.016 Home

PRI
Full Screen

Bt
Close
e

Quit

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

. Week of 4-8 December

Lectures
Topics Reading
M 12/04 Solutions to differential equations: | Kreyszig 5.3, 5.5, 5.6 (pages:
Lect. 26 Legendre’s equation, orthogonality of | 177-180, 189-197, 198-202)

Legendre polynomials, Bessel’s equa-
tion and Bessel functions

W 12/06 Sturm-Louiville problems: eigenfunc- | Kreyszig 5.7, 5.8 (pages: 203—
Lect. 27 tion, orthogonal functional series, | 208, 210-216)

eigenfunction expansions 3.016 Home
F 12/08 3.014 Laboratory continues, No more Maths lectures

RURIE
. Week of 11-15 December
3.014 Laboratory Week: 3.016 does not meet.

Full Screen

Beginners to MATHEMATICA

Beginners to MATHEMATICA® tend to make the same kinds of mistakes. I've been collecting a list
of such mistakes and present them to you as a reference tool.

Quit

Bt
Close
e

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

Lecture 01 MATHEMATICA®) Example 1

Common Mathematica Mistakes

notebook (non-evaluated)
A list of common beginner MATHEMATICA mistakes. The entries here are typical mistakes. I welcome input

pdf (evaluated)

from others to might add to this list
1-4 are examples of confusing usages of parentheses (—), curlies {—}, and square brackets [—].

1:

Parentheses are used for logical grouping, not for function calls (first line)
or lists (lines 2-3).

Curlies usually group lists of things; in item two multiplcation of a list
of length 1 is left-multiplied by a list of length 3 which may not be what
was intended.

Single brackets are for function arguments—and not for list extraction as
in line 2 or grouping in line 3.

Double brackets are usually for list extraction, not function calls.
MATHEMATICA®) is case sensitive and functions are usually made by
concatenating words with their first letters capitalized.

Functions are usually created designed with patterns (i.e., x_, y_) for
variables. This is an error if x is a defined variable. This line is correct
in using the appropriate delayed assignment :=.

Here a function is defined with a direct assignemt (=) and not delayed
assignment :=.

In the first line, assignments (=) are used instead of the double equals
(==) which is a logical equality. In the second line, a logical equality is
queried and no value is assigned to 9.

Missing commas: Plot requires at least two arguments separated by
commas or it doesn’t know what to return.

html (evaluated)

Cos (kx)
1| Plot[Sinlx], (x, 0,)]
Sort[(x, y, 2)]

2 {\/72}{& b, c}

Somelist = {a, b, c, d};
3| SomelListl1]
[(Z® +y®c +by’la

I

[Expli1]]

arccosl1]
Arccosl1]

MyFunction[x, y, z] =
6| Sinlx]Sin[y] Sinlz]
MyFunction[z, 7/2, 0]

x=n/2;

AbsSin[x_] =
AbslSin[Abs[x]l]

Plot[AbsSinlzl, {z, -2 1, 2 }]

Solve[{8= 3p + 4q,
g| @=95p-a{p all

6=24

3.016 Home

PRI

Full Screen

Close

|

Quit

9| Plot[Sin[x + Expl-xI]{x, 0, Pi}]

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2006/Notebooks/L01/Lecture-01.nb
http://pruffle.mit.edu/3.016-2006/pdf/L01/Lecture-01-1.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-01/HTMLLinks/index_1.html
http://pruffle.mit.edu/3.016-2006/html/Lecture-01/HTMLLinks/index_1.html

Lecture 01 MATHEMATICA® Example 2

Common Mathematica Mistakes

notebook (non-evaluated)

pdf (evaluated)

html (evaluated)

(continued) list of common beginner MATHEMATICA® mistakes. The entries here are typical mistakes.

1:

Because x was defined above, it retains its value; so the function can’t
iterate over the z-coordinate. Also, because ContourPlot3D is defined in
the Graphics package, it is unknown to the system. Loading the packing
is the right thing to do, but because their are two symbols ContourPlot3D
defined, their will be ambiguity for which one to use.

Practical advice is to clear the variable definitions with Clear.

More powerful practical advice, but slight overkill, is to clear all user-
defined variables. As a last resort when everything seems awry, kill
the kernel with the menu and restart it. This starts up a new
MATHEMATICA®) session, but does not destroy the text in the Notebook.

Sometimes the form of an expression is part of its definition. In this case,

a MatrixForm of a matrix is not a matrix and so matrix operations are
not defined.

N

ContourPlot3D[
Cos[Sqrt[x"2 +yA2 + zA2]],
{x, -2, 2}, {y, 0, 2}, {z, -2, 2}]
<< Graphics'ContourPlot3D"
ContourPlot3D[
Cos[Sqart[x"2 + yAr2 + z"2]],
{x, -2, 2}, {y, 0, 2}, {z, -2, 2}]

Practical Advice 1:
Clear Variables

Clearlkl;
—-1.2
A = ¢k373

Practical Advice 2:
Second to last resort, clear
everything

Clearl"Global ="l
<< Graphics'ContourPlot3D’;
ContourPlot3D[
Cos[Sqrt[x"2 +yA2 + zA2]],
{x, -2, 2}, {y, 0, 2}, {z, -2, 2}]

Practical Advice 3:
Last resort, kill the kernel and
restart it Use menu: kernel

mymat = {
1,8, 7},
(3,2, 4},
{7, 4, 3}
} // MatrixForm
Eigenvalues|mymat]

3.016 Home

PRI

Full Screen

Close

o

Quit

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2006/Notebooks/L01/Lecture-01.nb
http://pruffle.mit.edu/3.016-2006/pdf/L01/Lecture-01-2.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-01/HTMLLinks/index_2.html
http://pruffle.mit.edu/3.016-2006/html/Lecture-01/HTMLLinks/index_2.html

H .
Lecture 01 MATHEMATICA® Example 3 I

Common Mathematica Mistakes

notebook (non-evaluated) pdf (evaluated) html (evaluated)
(continued) list of common beginner MATHEMATICA® mistakes. The entries here are typical mistakes.

1: Practical advice is to separate the definition from the display of the as-

Cos (kx)
signed variable. Here a matrix is defined; its MatrixForm is display, and 1| pjot[SinIx], (x, 0, 7)]
Eigenvalues of the matrix are calculated. Sort[(x, y, 2)]
2: Some functions, such as Plot, evaluate their arguments in a round-about V2 S (2715
way. Graphical output does not appear here, because Plot doesn’t bother g {_2“} {a, b, c}

evaluating the Table function first. i i
Practical advice,

3: If a computationally intensive function is not doing what you expect, then define and display with separate

try to wrap an expression in an Evaluate function. commands
RURIE
mymat = {
{1, 3, 7},
{3, 2, 4},
3 {7, 4, 3}

b
mymat // MatrixForm

Eigenvalues[mymat] Full Screen

Plot[Table[LegendrePli, z],
{i, 1,11, 2}, {z, -1, 1}]

N

Practical advice:
Use

Evaluate in Plot when in doubt Close
Evaluate[Table[LegendrePli, z],

(%)

Plot[
{i, 1, 11, 2}]1], {z, -1, 1}]

Quit

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2006/Notebooks/L01/Lecture-01.nb
http://pruffle.mit.edu/3.016-2006/pdf/L01/Lecture-01-3.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-01/HTMLLinks/index_3.html
http://pruffle.mit.edu/3.016-2006/html/Lecture-01/HTMLLinks/index_3.html

Lecture 2: Introduction to Mathematica

Expressions and Evaluation

There are very many ways to learn how to use MATHEMATICA®) . Nearly all of the best ways involve
performing examples from the very beginning. That is how we are going to start—with examples.
Using MATHEMATICA®) s FrontEnd you may execute a command by pressing Shift-Enter); simply
pressing [Enter] tells MATHEMATICA®) ’s that you merely wish to have a “carriage return” on the
screen.

Mathematica’s syntax will feel fairly natural after a while. Use the following notebook to get started.
Execute a few commands until you get a sense for what output MATHEMATICA®) will produce; try
editing the commands; try to make MATHEMATICA® do something strange—just try playing with it
and you will soon get the hang of what is going on.

One way to use MATHEMATICA®) is simply as a calculator that allows symbols to get carried
along. MATHEMATICA® will usually try to resolve every symbol and return precise information
about it. If something is undefined to MATHEMATICAQ®) , it simply returns it as a symbolic expression.

A number is not returned until all of the symbols in an expression are defined as numbers.
MATHEMATICA®) will try to be exact—it does not calculate % + % by adding 0.33333--- 4+ 0.5 =
0.83333.. ., it has an algorithm for adding rational numbers and gives %

3.016 Home

PRI

Full Screen

Quit

Close
e

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

Lecture 02 MATHEMATICA®) Example 1

Getting Started

notebook (non-evaluated) pdf (evaluated)

html (evaluated)

There are a variety of ways to get MATHEMATICA®R) started and these are specific to the operating system
your computer uses. A license must be purchased to run MATHEMATICA®) code, but free MATHEMATICAR)

-display tools can be obtained from Wolfram.

The FrontEnd is the graphical interface between the user and
MATHEMATICA®R) —you arrange your MATHEMATICA®) input, some-
times with text-like comments, in the FrontEnd. The user must request
the FrontEnd to pass something to MATHEMATICA®) ’s kernel, by press-
ing ShiftHEnterd. The kernel is the resident symbolic algebra software
engine behind MATHEMATICA) .

The appearance of the FrontEnd depends on either provided or user-
designed StyleSheets. The StyleSheet for this course can be downloaded
from the course website. The course style is particulary ugly—it is hoped
that this will provide an incentive for students to create their own style.

First you must locate or obtain Mathematica and permis-
sion to use it.

The colors on your sceen may not appear to be the
same as what is presented in the lectures. | use my own 3.016 Home
style sheet, you may download my style sheet from
http://pruffle.mit.edu/. Information on where to put the style

sheet can be found below. Let's get started with some
simple Mathematica commands.

If you are reading this in the Mathematica FrontEnd,
then you can go ahead and familiarize yourself with some
basics by executing the following lines which are Mathemat-
ica Input. Typically, Mathematica's FrontEnd asks Mathe- |
matica's Kernal to do its job of evaluating by hitting << 4 ’ }’
[si] — [evte] while the mouse in an "Input Cell." Input Cells
can be identified with the T-thingy at the right. One can
evaluate one or more cells by selecting their T-thingies
and hitting [sar| — e

Try executing the examples given below. Try to guess
what the output might be or represent—and observe
carefully whether Mathematica is doing what you would
anticipate. Notice that answers can depend on the history

of commands that precede it. Full Screen

Close

o

Quit

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2006/Notebooks/L02/Lecture-02.nb
http://pruffle.mit.edu/3.016-2006/pdf/L02/Lecture-02-1.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-02/HTMLLinks/index_1.html
http://www.wolfram.com/products/mathreader/
http://pruffle.mit.edu/3.016-2006/3016-Carter.nb
http://pruffle.mit.edu/3.016-2006/3016-Carter.nb
http://pruffle.mit.edu/3.016-2006/html/Lecture-02/HTMLLinks/index_1.html

Lecture 02 MATHEMATICA® Example 2

Basic Input and Assignment

notebook (non-evaluated)
The methods of assigning expressions (expr) to symbolic variables (SomeVariable) via expr =

pdf (evaluated)

html (evaluated)

SomeVariable.

Differences between exact (symbolic) objects and numerical objects. Logical equalities (==) and Clearing symbols.
Many bugs crawl into MATHEMATICA®) from “uncleared” symbols.

1:

A symbol is assigned to an expression with an equals sign =. Some
symbols, such as 7, are already defined—in MATHEMATICA®) it is exzactly
the ratio of a circle’s circumference to its diameter.

If a previously assigned symbol is used in a new assignment,
MATHEMATICA®) will usually incorporate the previously assigned sym-
bol’s properties. Here, the variable is given a descriptive and long name:
this is good practice if you want your code to self-document. Your defini-
tions can be recalled and used to build up more complicated expressions.

It is possible to assign symbols to numberical objects; here b is a different
kind of object (numerical) than the previously defined a (symbolic). There
are built-in object-types created from combinations of other types.

MATHEMATICA®) will to be exact—the ArcCos of —1 is exactly .

However, the ArcCos of —1.000 is a numerical approximation to m—the
result will be numerical (not exact).

A Rational expression is another type of MATHEMATICA®) object.
There are built-in rules to treat rational expressions exactly. The result
of applying N to the rational % is a numerical approximation to 5/6.

Assignment = is different from logical equality ==. For a logical equality,
the result is either True, False, or MATHEMATICA®R) cannot determine
and returns an expression.

It is possible to clear all user-made definitions. A last resort would be to
instruct the FrontEnd to kill MATHEMATICA®) ’s kernel and restart it.
clearing symbols.

4 |
a=—=~
3
2| UnitSphereVolume = a |
o[2a | 3.016 Home
4[ANewVariable = (2a + b2 |
5| ANewVariable"2 |
6lb 4(3.14159265358979) |
3
7| UnitSphereNumericalVolume = b |
ERIRI RS

8| ANewVariable

Differences between exact and numerical expressions

9| UnitSphereVolume — UnitSphereNumericalVolume

10| a-4ArcCosl-11/3

11[a-4ArcCosl-1.01/3

12[2Pi - 23141519

Distinction between Equality (= =) and Assignment (=)

13| o 4Arccsos[—1l

14| 0 4(3.134159)

Clearing Variables

15[2a

Full Screen

Close

16| Clearlal

17 2a

18| Clear["Global «"]

Quit

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2006/Notebooks/L02/Lecture-02.nb
http://pruffle.mit.edu/3.016-2006/pdf/L02/Lecture-02-2.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-02/HTMLLinks/index_2.html
http://pruffle.mit.edu/3.016-2006/html/Lecture-02/HTMLLinks/index_2.html

Lecture 02 MATHEMATICA® Example 3

Built-in Functions and Operations on Expressions

notebook (non-evaluated) pdf (evaluated) html (evaluated)
MATHEMATICA® has many, very many, built-in mathematical functions; it’s probably impossible to memorize
all of them. You can usually find what you need by using the Help Browser, or by querying ? with a wildcard

* such as in ?*Geomx.

Mathematica Functions

1:

MATHEMATICA®) has a fairly consistent function naming strategy The
first letter of a word is always captialized; compound words are con-
catenated together while maintaining the first letter capitalization; thus
InverseBetaRegularized. A function is just another symbol—if a sym-
bol is followed by square brackets [] the stuff inside the brackets become
the argument(s) for the function.

There are usually more than one way to do things. The operator // is a
short-hand way of applying the function that follows // to the expression
that proceeds it (e.g., (Pi/2)//Sin). You can also use @ to prefix a
function (e.g. 8in@(Pi/2)).

There are methods designed to improve or alter the appearance of com-
plicated expressions.

Spelling errors can be very difficult to spot and debug—as a matter of
practical advice, look for MATHEMATICA®) ’s spelling warnings. They
can be turned off with 0ff [General: :spell], but it is not generally a
good idea.

MATHEMATICA®) has a sophisticated symbolic integration algorithm. . .

even if sometimes it expresses it in special functions

1|a: 1/Explx]

2| b = Coslx]

3[c = @+br2

Alternative Syntax for Functions /

4| AnotherVersionofb = x // Cos

5[ANewVariablelx]

Mathematica Operations on expressions

6

c
AnotherVersionofC = Expandlc]

c
7| SimplifylAnotherVersionofCl

8[Simplifylc]

Calculus

9| IntegralofC = Integratelc, x]

10| Integratelc/x, x]

3.016 Home

PRI

Full Screen

Close

o

Quit

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2006/Notebooks/L02/Lecture-02.nb
http://pruffle.mit.edu/3.016-2006/pdf/L02/Lecture-02-3.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-02/HTMLLinks/index_3.html
http://pruffle.mit.edu/3.016-2006/html/Lecture-02/HTMLLinks/index_3.html

Lecture 02 MATHEMATICA® Example 4

Calculus and Plotting

notebook (non-evaluated)

pdf (evaluated)

html (evaluated)

The derivative and integration methods are introduced. Simple plotting methods are demonstrated with an

example of annotating a plot.

g

10:

16:

If MATHEMATICA®) can’t differentiate or integrate a function, it will be
left in a symbolic form.

MATHEMATICA®) applies the fundamental theorems of calculus. . .

The calculus operations will often create long and complicated expres-
sions. That two expressions are equivalent can sometimes be shown with
built-in functions such as Simplify, FullSimplify, Factor, Expand,
Collect, etc., but sometimes it is an art to turn an expression into an
aesthetic form.

This is the simplest form of Plot. The second argument is a list giving
the variable and its bounds. The first argument should have a numerical
value at most of the points within the variable’s bounds.

To find all the possible options for a function with their default values, the

Options function provides a way to decipher what aspects of a plot can
be changed easily. Demonstration of a function that MATHEMATICA®)
does not know how to integrate or differentiate.

Here is an example with a plot title, axes labels, different colors and
thickness for the curves.

1 | ?ExplntegralEi

2[DiANewvariablelx], x|

3| Integrate[ANewVariablelx], x]

4[DiANewvariablelx], z|

5| tempvar = Integrate[ANewVariablelx], {x, 0, y}]

6| Dltempvar, x|

7| D[tempvar, y]

8| Factor[IntegralofC]

IntegralofC
9| AnotherVersionofintegralofC =
Integrate[AnotherVersionofC, x]

3.016 Home

«| «|» ||

c
10| D[IntegralofC, x]

Factorlc]
Simplify[D[IntegralofC, x]]

Plotting Functions

12[PlotlIntegralofC, (x, 0, 10}]

13[PlotiIntegralofC, c, {x, 0, 10}]

14| Plot[c, {x, 0, 10}, PlotRange - {0, 0.0001}]

1 5| Options!Plot]

Plot[{IntegralofC, c}, {x, 0, 10},
PlotStyle — {{RGBColor[1, 0, 01, Thickness[0.0051},
{RGBColor(1, 0, 1], Thickness[0.00751}},

16| PlotLabel —>

" A Function (Purple)\nand Its Integral (Red)\n",
AxesLabel - {"Value", "Argument"},
ImageSize - 800

TextStyle » {FontFamily —> "Helvetica", FontSize - 24},

Full Screen

Close

Quit

o

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2006/Notebooks/L02/Lecture-02.nb
http://pruffle.mit.edu/3.016-2006/pdf/L02/Lecture-02-4.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-02/HTMLLinks/index_4.html
http://pruffle.mit.edu/3.016-2006/html/Lecture-02/HTMLLinks/index_4.html

Lecture 02 MATHEMATICA® Example 5

Lists, Lists of Lists, and Operations on Lists

notebook (non-evaluated)

pdf (evaluated)

html (evaluated)

Lists are useful ways to keep related information together, and MATHEMATICA® uses them extensively. Lists
could be created in MATHEMATICA®) by using the List function, but they are usually entered in with curly-
brackets {}.

3:

Some functions, such as Cos here, are threadable functions; when called
on a list-argument, they will produce a list of that function applied to
each list element.

A list’s parts (or, elements) can be picked out in a variety of ways. The
Part function has a shorthand double-bracket form.

There are plenty of functions designed to operate on lists.

Logical operations, such as NumberQ, can be used to select elements by
their characteristics.

A list’s elements can be lists themselves. For example, a matrix is repre-
sented by list of a list. And their are higher-dimensional structures such
as tensors. Dimensions is a useful way of learning about such structures.

Here, the post-fix operator for a function is used to change the way a
matrix is displayed. Note, the result is not a matriz, but a DisplayForm
of a matriz.

This is a fairly advanced example of extracting the odd-numbered columns
of a matrix. The list IntList is simply the integers for each column; its
odd-numbered members are selected and become the second (i.e., column)
argument of the Part selection. The first argument is All, so the entire
row is captured for each selected column.

Lists {} and Matrices {{}} (Lists of Lists)

. n
1|AL|st E ‘a, b,2,7,9, 1.3, 2 0}

2[LengtnlAList

3.016 Home

3[CoslAList]

4[Aistll2]]

5[AListll(3, 6)1]

6[AListll-21]

7[sontlaList

8[Select/AList, NumberQ]

9| Reverse([Sort[Select[AList, NumberQl]]

10[SelectAList, EvenQl

11[SelectAList, PrimeQl

12| Perms = Permutations[Select[AList, ExactNumberQ]]

13| Dimensions[Perms]

14| TransposelPerms] // MatrixForm

15| TranPerms = TransposelPerms!;

16| TranPermsl(3]]

17| TranPerms|[[4, 1]]

18[TranPermsl(1, 411

19| TranPerms|[5, 111

20| TranPerms][{1, 2}1]

21| IntList = Tableli, {i, 1, Length[TranPermsl[1111})

22| TranPerms][[All, Select[IntList, OddQl]] // MatrixForm

PRI

Full Screen

Close

Quit

o

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2006/Notebooks/L02/Lecture-02.nb
http://pruffle.mit.edu/3.016-2006/pdf/L02/Lecture-02-5.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-02/HTMLLinks/index_5.html
http://pruffle.mit.edu/3.016-2006/html/Lecture-02/HTMLLinks/index_5.html

Lecture 02 MATHEMATICA®) Example 6

Rules (—) and Replacement (/.)

notebook (non-evaluated) pdf (evaluated) html (evaluated)

A rule leftvar — rightvar is similer to assignment in that it associates a new symbol (leftvar) with
something else, but it the value is not assigned—it does not effect future values of the left-hand-side symbol.
Rules are often used in conjunction with replacements. ~ Many of MATHEMATICA® functions, (e.g., Solve)
return rules as a result.

Rules - and Replacement /.

1: The rule a — w/3 is assigned to the symbol ARule q

ARule = a— =
3

A rule can be applied with the function Replace, but the syntax (.) is D |
typically used instead. 3|AList |

AlList /. ARule

4: Rules can be collected into lists.

& = L
SomeRules = {ARu\e, b—> 12}

5: Assigment of a is reflected in the form of ARule.

5| AList /. SomeRules

8: Rules are necessary for manipulations in MATHEMATICA® , but can |
be used to generate “mistakes.” Think of Rule and Replace acting on an |
expression as “What would the expression be if a certain rule were applied 7[Ais |

|

© a = SomeOtherSymbol;

to it?” If the rule is wrong, the resulting expression will be as well. 8|St,angeﬁu|e = (Rationalix_, y_1 = y/x)

9| (AList /. SomeRules) /. StrangeRule

3.016 Home

PRI

Full Screen

Close

o

Quit

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2006/Notebooks/L02/Lecture-02.nb
http://pruffle.mit.edu/3.016-2006/pdf/L02/Lecture-02-6.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-02/HTMLLinks/index_6.html
http://pruffle.mit.edu/3.016-2006/html/Lecture-02/HTMLLinks/index_6.html

Getting Help on Mathematica

MATHEMATICA®) ’s built-in help functions are very useful. This was true even before the whole
MATHEMATICA®) manual was incorporated into the Help Browser. In the old days, one would mem-
orize large portions of the MATHEMATICA®) book—which has grown continuously heavier since its
first publication in the early 1990’s—and rely on the useful ”?” and ”?77” operators. The use of ”?”
with the wildcard ”” enabled a beginning user to track down almost any MATHEMATICA®) function.
The Options function is also a very efficient way to discover alternative ways of getting results.

I would have recommended ‘scanning’ the entire MATHEMATICA® manual in a single three hour
sitting (about 600 pages per hour) as an effective way to acquire a working familiarity with the software,
but I don’t because the built-in browser is so easy to use.

I encourage you to idly explore the MATHEMATICA® Help Browser. You will not only learn about
MATHEMATICA®) , but also about mathematics.

3.016 Home

PRI

Full Screen

Quit

Bt
Close
e

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

Lecture 3: Introduction to Mathematica 11

Functions and Rules

Besides MATHEMATICA®) ’s large set of built-in mathematical and graphics functions, the most power-
ful aspects of MATHEMATICA®) are its ability to recognize and replace patterns and to build functions
based on patterns. Learning to program in MATHEMATICA®) is very useful and to learn to program,
the basic programmatic elements must be acquired.

The following are common to almost any programming language:

Variable Storage A mechanism to define variables, and subsequently read and write them from
memory.

Loops Program structures that iterate. A well-formulated loop will always be guaranteed to exit?.

Variable Scope When a variable is defined, what other parts of the program (or other programs) will
be able to read its value or change it? The scope of a variable is, roughly speaking, the extent to
which it is available.

Switches These are commands with outcomes that depend on a quality of variable, but it is unknown,
when the program is written, what the variable’s value will be. Common names are If, Which,
Switch, If ThenElse and so on.

Functions Reusable sets of commands that are stored away for future use.

All of the above are, of course, available in MATHEMATICAR®) .
The following are common to Symbolic and Pattern languages, like MATHEMATICA®) .

Patterns This is a way of identifying common structures and make them available for subsequent
computation.

2Here is a joke: “Did you hear about the computer scientist who got stuck in the shower?” “Her shampoo bottle’s
directions said, ‘wet hair, apply shampoo, rinse, repeat’.”

3.016 Home

PRI

Full Screen

Quit

Bt
Close
e

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

the Fibonacci number F,, = F,,_1+ F,,_2 (The value of F is equal to the sum of the two values that
preceded it.) F), cannot be calculated until earlier values have been calculated. So, a function
for Fibonacci must call itself recursively. It stops when it reaches the end condition F} = Fy = 1.

Recursion This is a method to define function that obtains its value by calling itself. An example is I I I = I

3.016 Home

PRI

Full Screen

Close

Quit

o

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

Lecture 03 MATHEMATICA® Example 1

Procedural Programming

notebook (non-evaluated)

pdf (evaluated)

Simple programs can be developed by sequences of variable assignment.

1:

Here is a simple program that is just a sequence of statements that re-
assigns a. In MATHEMATICA®) , a semicolon— ;—just indicates that
output should be suppressed.

However, it would be cumbersome and unaesthetic if the example had to
be typed many many times. This is where program loops come in. Do is
a simple way to loop over an expression a fixed number of times. This is
equivalent to item 1, but could be easily generalized to more iterations.

Here an equivalent example, but extra Print statements are added so
that intermediate output can be observed.

A For loop is another loop structure that enforces good programming
style: Its arguments provide: an initialization, an exit condition, an iter-
ation operator, and a function statement, and is equivalent to item 6.

The are many types of loop constructs; While is yet another.

Table is a very useful MATHEMATICA®) function. While it iterates, it
leaves intermediate results in a List structure.

Except for the intial iteration value of a, this is programmatically equiv-
alent to items 1, 4, 6, and 9, but each iteration’s result is a member of a
List.

Here we generalize, but putting a Table and a For together. The result
is a list of (lists of length 2). The first entry in each list is the initial
increment value and the second entry is the result of the For-loop after
four iterations. A special increment structure is utilized—it sets initial
and final values as well as the increment size.

html (evaluated)

a=1;
1| a=a+a; a=ara
a=a+a; a=a'a

2| Clearlal

3[2Do

4[a=1; Dola=2a;a=a’a, {i 1, 2)]

5|a

a=0.1; Dola=2a;a=a’a;
Print["iterationis ", i, "and ais ", al, {i, 1, 4}]

7| Clearlal

8[2For

Forla=0.1;i=1, i < 4, i++, a=2a;

2 a=a’a; Print["iterationis ", i, "and ais ", all

10[2while

11[2Table

12| Clearlal

a=0.25;

13| Tablelfi, a = 2a; a=atal, fi, 1, 411

a=0.75;

14| Tablelfi, a = 2a; a = atal, {i, 1, 411

3.016 Home

PRI

Full Screen

datatable =

15| Table[{dx, Forla=dx;i=1, i = 4, i++, a=2a; a=a"al;

Loglal}, {dx, 0.01, 0.5, 0.01}]

Close

b

Quit

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2006/Notebooks/L03/Lecture-03.nb
http://pruffle.mit.edu/3.016-2006/pdf/L03/Lecture-03-1.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-03/HTMLLinks/index_1.html
http://pruffle.mit.edu/3.016-2006/html/Lecture-03/HTMLLinks/index_1.html

Lecture 03 MATHEMATICA®) Example 2 I

Plotting Lists of Data and Examples of Deeper MATHEMATICA® Functionality

notebook (non-evaluated) pdf (evaluated) html (evaluated)
This demonstrates how visualizing data can be combined with other functions to perform analysis.

1| ListPlotldatatable]

1: The data produced from the last example can be plotted. It is apparent 2[Optonsliisri l
that there is a minimum between initial values of 0.1 and 0.3. But, it will [(S Pioioatatabl, Ploangs - (250, 5001 [
l |

difficult to see unless the visualization of the plot can be controlled. a7 Minimur
3: By specifying one of ListPlot’s option for the range of the y-like variable, s|Fioqnmuniolasoai=t. =4 1 a=2aiazatal 3.016 Home

the character of minimum can be approximately quantified. deew

5: FindMinimum is a fairly sophisticated function to obtain the minimum 7[f= Nesi@n"2n & x4 |
of an expression in a specified range, even if the function only returns a #[dx=Diixxi/Smpiy |
9[FindRoot[dfx, {x, .1, .3}] [

numerical result. Here FindMinimum is used, to find a very high precision =
approximation to the minimum observed in item 3. Wi | dd

7: This is a fairly advanced example—beginning students should not worry
about understanding it yet. Nest is a sophisticated method of repeated
application of a function (i.e., f(f(f(z))) is nesting the function f three
on an argument x). It is equivalent to the previous methods of producing
the iterative stucture. This concept uses Pure Functions.

Full Screen

8: The minimum of the function can be analyzed the standard way, here by
taking derivatives with D.

9: FindRoot is sophisticated numerical method to obtain the zero of an ex-
pression in a specified range. Close

o

Quit

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2006/Notebooks/L03/Lecture-03.nb
http://pruffle.mit.edu/3.016-2006/pdf/L03/Lecture-03-2.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-03/HTMLLinks/index_2.html
http://pruffle.mit.edu/3.016-2006/html/Lecture-03/HTMLLinks/index_2.html

Very complex expressions and concepts can be built-up by loops, but within MATHEMATICA®) the
complexity can be buried so that only the interesting parts are apparent and shown to the user.
Sometimes, as complicated expressions are being built up, intermediate variables are used. Consider
the value of i after running the program
FindMinimum([For[a = dx; i = 1, 1 < 4, i++, a = 2a; a = aAal; Loglal, {dx, 0.15, 0.25}]1F = = = =
the value of i (in this case 5) is has no useful meaning anymore. If you had defined a symbol such as
x = 2i previously, then now x would have the value of 10, which is probably not what was intended.
It is much safer to localize variables—in other words, to limit the scope of their visibility to only those
parts of the program that need the variable and this is demonstrated in the next example. Sometimes

this is called a “Context” for the variable in a programming language; MATHEMATICA®) has contexts
as well, but should probably be left as an advanced topic. M

PRI

Full Screen

Close

Quit

o

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

Lecture 03 MATHEMATICA®) Example 3

Making Variables Local and Using Switches to Control Procedures

notebook (non-evaluated) pdf (evaluated) html (evaluated)
Describes the use of Module to “hide” a variable: consider the variable a from the first item in the above
example, its intermediate values during iteration are not always important. Suppose you wish to use the symbol
a later—that it played an intermediate role and then was not used may easily be forgotten. It is good practice

to make such variables ‘local’ to their own functions.

A example of a logical switches is demonstrated for If.

118

The symbols dx and a are left over from the last example, even though
they played only an intermediate role for a final result.

This could lead us to mistakenly use its value later as though it might be
undefined. This is a common error.

The production of such errors can be reduced with a programming prac-
tion known as localized varibles (also known as scoping!of variables). The
idea is to hide the variable within its own structure—the variable is said
to have a limited scope. Module provides a function for doing this. Here
symbols dx and a have set values before the call to Module, but any value
that is changed inside of Module has no effect on its “global” value.

Even though Module changed symbols dx, a, and used solution, their
should be no effect outside of Module.

Here, a simple example of the use of If will be applied to a symbol which
is the sum of the 237%, 62"¢ and 104*" prime numbers.

Here is a simple program. First, it first checks if a is prime. If the check
is true, then it prints a message saying so, and then returns control to
the MATHEMATICA® kernel. If the check is false, then it prints out a
message and some more useful information about the fact it isn’t prime.

If the statement cannot be determined to be true or false, a message to
that effect is printed.

Local Variables

dx

a

2[CurrentValueofA = a;

dx = SnickerDoodle; a = HappyGoLucky;
Module[
{dx, a, maxiteration = 4, solution, i},
solution =
3 FindMinimum([For[a = dx;i=1,
i = maxiteration, i++, a=2a; a=a’al;
Loglal, {dx, 0.15, 0.25}]; Print[dx /. solution[[2]1]

dx
a
i solution

Switches: If, Which

s[i

6[a = Primel23] + Primel62] + Primel104]

7[2PrimeQ

If[PrimeQlal,
Print[a, "is a Prime Number"],
8| Print[a, "is not Prime, its divisors are ", Divisorslal],
Print["l have no idea what you are asking me to do!"]
1

3.016 Home

PRI

Full Screen

Close

o

Quit

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2006/Notebooks/L03/Lecture-03.nb
http://pruffle.mit.edu/3.016-2006/pdf/L03/Lecture-03-3.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-03/HTMLLinks/index_3.html
http://pruffle.mit.edu/3.016-2006/html/Lecture-03/HTMLLinks/index_3.html

Patterns are extremely important in mathematics and in MATHEMATICA®) . In MATHEMATICA®
, the use of the underscore, _, means “this is a placeholder for something that will be used later.” It is
a bit like teaching like teaching a dog to fetch—you cock an arm as if to throw _something_, and then
when something gets thrown your dog runs after the “something.” The first _something_ is a place
holder for an object, say anything from a stick to a ball to the morning paper. The second something
is the actual object that is actually tossed, that finally becomes the “something” your dog uses as the
actual object in the performance of her ritual response to the action of throwing.

Usually, one needs to name to call the pattern to make it easier to refer to later. The pattern gets
named by adding a head to the underscore, such as SomeVariableName_, and then you can refer to
what ever pattern matched it with the name SomeVariableName.

This is a bit abstract and probably difficult to understand without the aid of a few examples:

3.016 Home

PRI

Full Screen

Quit

Bt
Close
e

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

Lecture 03 MATHEMATICA®) Example 4

Operating with Patterns

notebook (non-evaluated)

pdf (evaluated)

html (evaluated)
Learning to use expression and variable patterns is the beginning of intermediate use of MATHEMATICA®) .

Patterns are identified by the underscore character _, the matched pattern can be named for later use (e.g.,

thematch_) and it can be further qualified as demonstrated below.

2:

Here a rule is applied to AList through the use of the operator /.
(short-hand for ReplaceAll). The pattern here is “two multiplied by
something.” The symbol a should a placeholder for something, but a was
already defined and so the behavior is probably not what was wanted.
Another (probably better) usage is the delayed ruleset :=>.

After a has been cleared, the symbol a is free to act as a placeholder; so
the effect of applying the rule is that 2xall somethings are replaced by
the pattern represented by a.

The types of things that get pattern-matched can be restricted by adding
a pattern qualifiers to the end of the underscore.

For a simple (incomplete) example of the use of patterns, an example
producing symbolic derivative of a polynomial will be developed. Here, a
polynomial PaulNoMealX in x is defined using Sum.

A rule is applied, which replaces patterns x to a power with a derivative
rule. Only the power is used later, so it is given a place-holder name n.
This technique would only work on polynomials in x.

To generalize, a place-holder is defined the dependent variable.
This will not work for the constant and linear terms in a polynomial. This

could be fixed, but the example would become too complicated and not
as good as MATHEMATICA®) ’s built-in differention rules.

Patterns can also be used in conjunction with Condition operator /;.
Here is an example of its use in Cases. The pattern is any two-member
list subject to the condition that teh first member is less than the second.

Patterns (_)

[AList {first, second, third = 2first, fourth = 2 second}

2| AList/. {2a_ - a}

3| Clearlal

4| AList/.{2a_ - a}

5[AList/.{p_, q_, r_, s_} > {p, pq, par, pqrs}

7| AList /. _ — AppleDumplings

8| PaulieNoMealX = Sumblil xAi, {i, 2, 6}]

3.016 Home

«| «|»|m]

l
l
l
l
6[(2 0.667, a/b, Pi}/. {p_Integer - p One}
l
l
9[PaulieNoMealX /. xAn_ - nxA(n—1)

10[DerivRule = g_*n_ - ngA(n—1);

11[PaulineOMealY = Sumlclil i, {i, 2, 6}

PaulineOMealY /. DerivRule

12 PaulieNoMealX /. DerivRule

13| PaulENoMiel = Sum(clil HoneyBee*i, {i, 0, 6}]

Full Screen

15

14] PaulENoMiel /. DerivRule
[?Cases

Casesl{{1, 2}, {2, 1}, {a, b}, {2, 84}, 5},

e {first_, second_} /; first < second]

Close
e

Quit

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2006/Notebooks/L03/Lecture-03.nb
http://pruffle.mit.edu/3.016-2006/pdf/L03/Lecture-03-4.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-03/HTMLLinks/index_4.html
http://pruffle.mit.edu/3.016-2006/html/Lecture-03/HTMLLinks/index_4.html

Lecture 03 MATHEMATICA® Example 5

Creating Functions using Patterns and Delayed Assignment

notebook (non-evaluated)

pdf (evaluated)

functions are presented.

1:

Here is an example of a pattern: a symbol f is defined such that if it is
called as a function with a pattern of two named arguments x_ and a_,
then the result is what ever z® evaluated to be when the function was
defined. Don’t emulate this example—it is not usually the best
way to define a function.

This example shows why this can be a bad idea. f with two pattern-
arguments, is assigned when it is defined, and therefore if either x or a
was previously defined, then the definition will permanently reflect that
definition.

Calling the function now, doesn’t produce the result the user probably 7|*=

expected.

For beginning users to MATHEMATICA®) , this is the best way to define
functions. This involves use delayed assignment. In a delayed assignment,
the right-hand-side is not evaluated until the function is called and then
the patterns become transitory until the function returns its result. This
is usually what we mean when we write y(x) = az? mathematically—if
y is given a value z, then it operates and returns a value related to that
x and not any other x that might have been used earlier. This is the
prototype for function definitions.

html (evaluated)

The real power of patterns and replacement is obtained when defining functions. Examples of how to define

Defining Functions with Patterns

fix_, a_] = x*a;
1| («+This is not a good way to define a function,
we will see why laters)

fl2, 3]
fly. z]

3.016 Home

3[x=4

fix_, a_] = x"a;
(«This is not a good way to define a function,
we will see why laters)

IS

5 f[2, 3] (+should now be 473,
which is probably not what the programmer had in mind:)

6| fly, z]

Delayed Assignmet (:=)

X
a = ScoobyDoo

Slﬂxf, a_] := xAa

9[fi2, 5]

10[fly, 2]

PRI

Full Screen

11[flx al

12[fla, x]

13| Clearlf]

Close

b

Quit

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2006/Notebooks/L03/Lecture-03.nb
http://pruffle.mit.edu/3.016-2006/pdf/L03/Lecture-03-5.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-03/HTMLLinks/index_5.html
http://pruffle.mit.edu/3.016-2006/html/Lecture-03/HTMLLinks/index_5.html

It is probably a good idea to define all function with delayed assignment (:=) instead of immediate
assignment (=). With delayed assignment, MATHEMATICA® does not evaluate the right-hand-side
until you ask it to perform the function. With immediate assignment, the right-hand-side is evaluated
when the function is defined making it much less flexible because your name for the pattern may get
“evaluated away.”

Defining functions are essentially a way to eliminate repetitive typing and to “compactify” a concept.
This “compactification” is essentially what we do when we define some function or operation (e.g.,
cos() or [f(z)dz) in mathematics—the function or operation is a placeholder for something perhaps
complicated to describe completely, but sufficiently understood that we can use a little picture to
identify it.

Of course, it is desirable for the function to do the something reasonable even if asked to do
something that might be unreasonable. No one would buy a calculator that would try to return a very
big number when division by zero occurs—or would give a real result when the arc-cosine of 1.1 is
demanded. Functions should probably be defined so that they can be reused, either by you or someone
else. The conditions for which the function can work should probably be encoded into the function. In
MATHEMATICA®) this can be done with restricted patterns.

3.016 Home

PRI

Full Screen

Quit

Bt
Close
e

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

Lecture 03 MATHEMATICA®) Example 6 I

Functional Programming with Rules and Pattern Restrictions

notebook (non-evaluated) pdf (evaluated) html (evaluated)
Demonstration of increasingly careful factorial function defintions which will result with something sensible for
non-integer or negative arguments.

Functional Programming with Rules

1: This is a functional definition that will produce the factorial function by 1[facwrain] = nfactoraln 1]
recursion because (n+1)! = (n+ 1)n!. However, trying this function now Lol -1
will not give a satisfactory result because. ..

3| $RecursionLimit

3.016 Home

|

1 l

1 l

4[$RecursionLimit = 2424 [

2: It is necessary to define a place for the recursion to stop. This is done by & [Timinglfactoralz000/111] [
1 l
1 |
|

deﬁnlng the factorial of zero to be unlty~ 6| factorialln_] := factoriallnl = nxfactorialln - 1]

3: So that recursive functions don’t run for ever, leaving no way to get con- 7|Timinglfactoriail2000l(L11}

tact MATHEMATICA® ’s kernel, a sensible limit is placed on the number &[Tmngliactoaizoor/ii1}
Functions and Patterns with Restricted Rules 44 | 4 | ’ | ” |

of times a function can call itself.

9[Clearlfactoriall

5: Consider using the function to find the factorial of 2000, the currently- %
defined function must call itself about 2000 times to return a value. Sup- | | [
pose a short time later, value of 2001! is requested. The function must 12 factoralo 1 factoraln_inegerl = n-factorln—11_ |

l |

10[factoriallol = 1; factorialln_] := n«factorialln — 1]

Clearlfactoriall

again call itself about 2000 times, even though all the factorials less than is[rgenairi
2001’s were calculated previously. Unless computer memory is scarce, it
seems like a waste of effort to repeat the same calculations over and over.

Full Screen

factoriallo] = 1;

W factorial[n_Integer ? Positive] := n«factorialln — 1]

HeyWhatsYourSignlol = 0;

6: Here is an example where computation speed is purchased at the cost of '*|fe/irastoudion2Rostel = 1

memory. When the function is called, it makes an assigment as well as
the computation.

o

Close
12: However, what if the previously-defined function were called on a value
such as 7?7 It would recursively call (w7 — 1)! which would call (7 — 2)!
and so on. This potential misuse can be eliminated by placing a pattern
restriction on the argument of factorial so that it is only defined for
integer arguments. Quit

LH

14: To prevent unbounded recursion with a call on the previous definition for
negative integers, a case switch on the pattern restriction is used.

15: An example of a function that returns the Sign of a number if it can. ©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2006/Notebooks/L03/Lecture-03.nb
http://pruffle.mit.edu/3.016-2006/pdf/L03/Lecture-03-6.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-03/HTMLLinks/index_6.html
http://pruffle.mit.edu/3.016-2006/html/Lecture-03/HTMLLinks/index_6.html

Lecture 4: Introduction to Mathematica 111

Simplifying and Picking Apart Expression, Calculus, Numerical Evaluation

A great advantage of using a symbolic algebra software package like MATHEMATICA®) is that it
reduces or even eliminates errors that inevitably creep into pencil and paper calculations. However,
this advantage does come with a price: what was once a simple task of arranging an expression into
a convenient form is something that has to be negotiated with MATHEMATICA®) . In fact, there are
cases where you cannot even coerce MATHEMATICA®) into representing an expression the way that
you want it.

A MATHEMATICA®) session often results in very cumbersome expressions. You can decide to live
with them, or use one of MATHEMATICA® ’s many simplification algorithms. Section 1.4.5 (or Help
Browser/The Mathematica Book/A Practical Introduction/Algebraic Calculations/Advanced Topic:
Putting Expressions into Different Forms) of the MATHEMATICA® book has a good summary of
frequently used simplification algorithms. Another method is to identify patterns and replace them
with your own definitions.

MATHEMATICA® has its own internal representation for rational functions (i.e., Jramnerator expression_
) denominator expression

and has special operations for dealing with these. Generally, advanced simplification methods usually
require a working knowledge of of MATHEMATICA®) ’s internal representations.

3.016 Home

PRI

Full Screen

Quit

Bt
Close
e

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

Lecture 04 MATHEMATICA®) Example 1

Operations on Polynomials

notebook (non-evaluated) pdf (evaluated)

html (evaluated)

There are built-in simplification operations, such as Simplify, but they will not always result in a form that

is most useful to the user. Crafting an expression into a pleasing form is an artform.

g

Expand performs all multiplication and leaves the result as a sum.

Factor has an algorithm to find common terms in a sum and write the
result of a factor and a cofactor.

Collect will turn in an expression into a polynomial in a user-selected
variable.

Coefficient picks out coefficients of user-specified powers of a variable.

This is an example of using Simplify to operate only upon on a polyno-
mial coefficients

Besides polynomial, other frequently encountered forms are rational
forms.

Apart will re-express a rational form as a sum.
Together will collect all terms in a sum into a single rational form.

MATHEMATICA®) is fastidious about simplifying roots and makes no
assumptions—unless they are specified— about whether a variable is real,
complex, positive, or negative.

Many users become frustrated that Simplify doesn’t do what the user
thinks must be correct. . .

Simplify will accept Assumptions.

This is brute force—and not really a good idea.

1| PaulENomeal = (1 + 2a + 3x + 42)"4

2[FatPEN = Expand|PaulENomeall

3[FactorlFatPEN]

4[PaulinX = Collect[FatPEN, x]

5| Coefficient[PaulinX, x, 0]

PaulSpiffedUp = Sum[
Simplify[Coefficient[PaulinX, x, i1l xAi, {i, 0, 20}]

7[Simplity[PaulSpittedUp]

(X+Y) x-y)
x-y) (Y +X)

8| RashENell =

9[ApartiRashENell]

3.016 Home

«| «|» ||

10[TogetherRashENell

11[Apart[Together[RashENelll]

12| Numerator[Together[RashENelll]

13| Simplify[RashENelll

14 FactorlRashENell]

15| RootBoy = v/ (x +y)?

16[SimplitylRootBoy]

17| Simplify[RootBoy, x € Reals && y € Reals]

18[SimplifylRootBoy, x= 0 && y = 0]

19| RootBoy /. Sqrt[(expr_)"2] - expr

Full Screen

Close

Quit

o

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2006/Notebooks/L04/Lecture-04.nb
http://pruffle.mit.edu/3.016-2006/pdf/L04/Lecture-04-1.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-04/HTMLLinks/index_1.html
http://pruffle.mit.edu/3.016-2006/html/Lecture-04/HTMLLinks/index_1.html

Lecture 04 MATHEMATICA® Example 2

A Second Look at Calculus: Limits, Derivatives, Integrals

notebook (non-evaluated) pdf (evaluated)

Examples of Limit and calculus with built-in assumptions

208

This would be a challenging limit to find for most first-year calculus stu-
dents.

This definite integral results in a fairly complicated symbolic form which
should be real because it should be the value of AMessyExpression at
x = e but not obviously so by inspection. Looking at the numerical
version gives a hint. (n.b. Chop is a useful way to remove small numerical
inaccuracies.)

It took some effort, but this gives an aesthestic form for the solution.

Some indefinite do not have closed-form solutions, even with extra
assumptions. . .

But, in some cases, the definite integral will have a closed-form solution.
Series is one of the most useful and powerful MATHEMATICA®) func-

tions; especially to replace a complicated function with a simpler approx-
imation in the neighborhoodSeries of a point.

Normal converts a SeriesData form by chopping off the trailing order
function 0.

html (evaluated)

Loglx SinlxI]
1| AMessyExpression = w

x

2| LimitfAMessyExpression, x — 0]

Sl DMess = D[AMessyExpression, x]

4| Integrate[DMess, x]

5| Integrate[DMess, {x, 0, e}] // N

6| (AMessyExpression /. x — €) — (AMessyExpression /. x — 0)

(AMessyExpression /. x - e) —
Limit{AMessyExpression, x - 0]

9| Integrate[Sin[x] /Sqrtl(xA2 + a*2)], x]

10| Integrate[Sinlx]/Sqrtl(xA2 + a*2)], x, Assumptions - a = 0

Sinlx]

11| Integrate| x, Assumptions — Rela’2] > 0]

+x2

Uglylnfinitelntegral = Integrate[Sinlx] /Sqrtl(xA2 + ar2)],

12| {x, 0, oo}, Assumptions — Rela*2] > 0]

|
|
|
|
|
8[< Logle Sinlell // N |
|
1|
|

13[NUglyInfinitelntegral /.a - 1]

The Taylor expansion capabilities in Mathematica are very useful

3.016 Home

PRI

Full Screen

14| Series|[AMessyExpression, {x, 0, 4}] |

15| FitAtZero = Series|[AMessyExpression, {x, 0, 4}] // Normal |

16

Plot[{AMessyExpression, FitAtZero}, {x, 0, 3}, PlotStyle —
{{Thicknessl0.02], Huel11}, {Thicknessl0.01], Huel0.51}}]

Close

Quit

b

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2006/Notebooks/L04/Lecture-04.nb
http://pruffle.mit.edu/3.016-2006/pdf/L04/Lecture-04-2.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-04/HTMLLinks/index_2.html
http://pruffle.mit.edu/3.016-2006/html/Lecture-04/HTMLLinks/index_2.html

Lecture 04 MATHEMATICA® Example 3

Solving Equations

notebook (non-evaluated) pdf (evaluated)

Solve, its resulting rules, and how to extract solutions from the rules.

D

Solve takes a logical equality (or logical equalities) as a first argument.
It returns a list of solutions in the form of rules. Here, the list of ruls is
assigned to TheZeroes.

If the resulting solution rules are applied original equation, the zeroes
specified in the logical equality in item 2 should result.

The zeroes of a quintic polynomial do not have general closed forms. Here
MATHEMATICA® will return a symbolic representation of the solution
rules. This representation indicates that the solution doesn’t have a closed
form, but the form is suitable for subsequent numerical analysis.

This is an example of a solution to coupled quadratic equations: there are
four solutions.

html (evaluated)

1|TheEquation =ax"2+bx+c

Note the use of Equal (==) rather than Set (=) in the following;

using "=" will produce an error message.

2| TheZeroes = Solve[TheEquation == 0, x]

Note that the roots are given as Rules. Now we ask
Mathematica to verify that the solutions it found are indeed roots
to the specified equation. Here is a prototypical example of using

Replace (/.) to accomplish this:

3| TheEquation /. TheZeroes

4[simplify[TheEquation /. TheZeroes]

More examples of using Solve:

5[ali] = i+1

6| TheQuinticEquation = Sumlalil xi, {i, 0, 5}1

3.016 Home

«| «|» ||

7| Solve[TheQuinticEquation = 0, x]

Quad! = ax"2 +y + 3
Quad2 = ay"2 +x + 1

9[Solvel(Quad1 =0, Quad2 =0}, {x,)l

Full Screen

Close

Quit

o

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2006/Notebooks/L04/Lecture-04.nb
http://pruffle.mit.edu/3.016-2006/pdf/L04/Lecture-04-3.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-04/HTMLLinks/index_3.html
http://pruffle.mit.edu/3.016-2006/html/Lecture-04/HTMLLinks/index_3.html

Sometimes, no closed form solution is possible. MATHEMATICA® will try to give you rules (in
perhaps a very strange form) but it really means that you don’t have a solution to work with. One
usually resorts to a numerical technique when no closed form solution is possible— MATHEMATICA®)
has a large number of built-in numerical techniques to help out. A numerical solution is an approxi-
mation to the actual answer. Good numerical algorithms can anticipate where numerical errors creep
in and account for them, but it is always a good idea to check a numerical solution to make sure it
approximates the solution the original equation.

Of course, to get a numerical solution, the equation in question must evaluate to a number. This
means if you want to know the numerical approximate solutions z(b) that satisfy % + 322 + bz = 0,
you have to iterate over values of b and “build up” your function x(b) one b at a time.

Sections 1.6.1-1.6.7 (or Help Browser/The Mathematica Book/A Practical Introduction/Algebraic
Calculations/Numerical Mathematics) of the MATHEMATICA® book have an overview of frequently
used numerical algorithms.

3.016 Home

PRI

Full Screen

Quit

Bt
Close
e

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

Lecture 04 MATHEMATICA® Example 4

Numerical Algorithms and Solutions

notebook (non-evaluated) pdf (evaluated)
Examples of numerical algorithms NIntegrate FindRoot

3:

NIntegrate can find solutions in cases where Integrate cannot find a
closed-form solutions. It is necessary that the integrand should evaluate
to a number at all points in the domain of integration (it is possible that
the integrand could have singularities at a limited set of isolated points).

NSolve will find roots to polynomial forms, but not for more general
expressions.

FindRoot will operate on general expressions and find solutions, but ad-
ditional information is required to inform where to search.

html (evaluated)

Numerical Solutions

1| Integrate[Sin[x]/Sqrtl(xA2 + ar2)], x]

2| Integrate[Sin[x]/Sqrtl(xA2 + ar2)], {x, 0, 1}]

3| Nintegrate[(Sin[x]/Sqrtl(xA2 + a*r2)]) /.a - 1, {x, 0, 2Pi}]

Plot[
Nintegrate[Sinl x]/Sqrtl(xA2 + ar2)], {x, 0, 2Pi}], {a, 0, 10}]

3.016 Home

Plot[{AMessyExpression, FitAtZero}, {x, 0, 3}, PlotStyle -

2 {{Thickness[0.02], Huel11}, {Thicknessl0.01], Huel0.51}}]

6| NSolve[AMessyExpression = 0, x|

7| FindRoot[AMessyExpression =0, {x, .5, 1.5}]

8| FindRoot[FitAtZero =0, {x, .5, 1.5}]

9| FindRoot[AMessyExpression = 0, {x, 2.5, 3}]

PRI

Full Screen

Close

o

Quit

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2006/Notebooks/L04/Lecture-04.nb
http://pruffle.mit.edu/3.016-2006/pdf/L04/Lecture-04-4.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-04/HTMLLinks/index_4.html
http://pruffle.mit.edu/3.016-2006/html/Lecture-04/HTMLLinks/index_4.html

1. You will want to save your work.
2. You will want to modify your old saved work
3. You will want to use your output as input to another program

4. You will want to use the output of another program as input to MATHEMATICA®) .

You have probably learned that you can save your MATHEMATICA®) notebook with a menu. This is
one way to take care of the first two items above. There are more ways to do this and if you want to do
something specialized like the last two items, then you will have to make MATHEMATICA®) interact
with files. Because an operating system has to allow many different kinds of programs interact with
its files, the internal operations to do input/output (I/O) seem somewhat more complicated than they
should be. MATHEMATICA®) has a few simple ways to do I/O-—and it has some more complex ways
to do it as well.

It is useful to have a few working examples that you can modify for your purposes. The examples
will serve you well about 90% of the time. For the rest of the 10%, one has to take up the task of
learning the guts of 1/O—hopefully, beginners can ignore the gory bits.

3.016 Home

PRI

Full Screen

Quit

Bt
Close
e

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

Lecture 04 MATHEMATICA® Example 5

Interacting with the Filesystem

notebook (non-evaluated) pdf (evaluated)

html (evaluated)

Reading and writing data directly and through the use of a file stream. A user should check (and sometimes)

change the working directory to interact with files using Directory or SetDirectory. Otherwise, the full path

to a file must be given.

1:

Simple redirection of an expression into a file is acheived with >> The
working directory must be writable. Selected symbols can be saved in files
all at once using Save.

A file containing a MATHEMATICA®) expression can be read in with <<
The file must be readable.

The contents of a file can be displayed using !!.

This opens a filestream for subsequent use. The use of filestreams is useful
for cases where data is written incrementally during a calculation and this
method can be generalized to different kinds of devices. Another use of
file streams is when the user wants to have the program compute the file
name.

An example of writing with a file stream.

It is good practice to close open file streams when writing is finished.

File Input and Output

1|AMessyExpression >> AFile.m

2| Clear[AMessyExpression]

3| << Afile.m

4| AMessyExpression

5| AMessyExpression = << AFile.m

6| AMessyExpression

7[1 Afie.m

8| Closel"ANewFileName"]

3.016 Home

«| «|» ||

9 AFileHandle =
OpenWrite["ANewFileName", FormatType — OutputForm]

10| RandomPairs = Table[{Randomll, Randomll}, {i, 20}]

1 | Write[AFileHandle, RandomPairs]

12| ' ANewFileName

13| Write[AFileHandle, MatrixForm[RandomPairs]]

Full Screen

14| ' ANewFileName

15[CloselAFileHandle]

Close

Quit

b

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2006/Notebooks/L04/Lecture-04.nb
http://pruffle.mit.edu/3.016-2006/pdf/L04/Lecture-04-5.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-04/HTMLLinks/index_5.html
http://pruffle.mit.edu/3.016-2006/html/Lecture-04/HTMLLinks/index_5.html

Lecture 04 MATHEMATICA® Example 6

Using Packages

notebook (non-evaluated) pdf (evaluated) html (evaluated)
There are a number of packages that come with MATHEMATICA® (and more that can be bought for special
purposes). You should look through the various packages in the help browser to get an idea of what is there—it
is also a good idea to take a look at the inside of a package by editing a package file with an editor. By doing this,
you will see some of internal structure of MATHEMATICA®) and good examples of professional programming.

Fortunately, others have gone to the trouble of writing files full of
. . . N 1 useful stuff--and you can load this stuff into Mathematica for your
1: A package is read in using the input operator << or with Needs. After veryownuse. Some people produce useful stuff and you can SO Intewe
. R . . X R buy it, which is nice if you find it valuable--and you can write stuff
reading a bit about a package, it is straightforward to construct simple andgainvalue by seling it, which might be even more nice.
d i . Mathematica comes with a group of Standard Packages, that
examples such as in this example of the WorldPlot subpackage in the youcanioadintodo specil tasks. The Packages are listed
q under "Add-ons & Links" in the Help Browser. For example, take
Ml sce 1 1ane ous paCkage . a look at the specialized package under "Miscellaneous" called
"World Plot"...

1[<< Miscellaneous WorldPlot | « <« | >
WorldPlot[("USA", "France", "Germany", "ltaly", "Belgium",

"Luxembourg", "Switzerland"}, {RGBColor(1, 0, 0],
2 RGBColorl[0, 0.5, 0], RGBColor[0.5, 0, 01,
RGBColor(0, 0, 0], RGBColor(0.4, 0.4, 0.1],
RGBColor[0, 0, 0.5], RGBColor([0.9, 0.6, 0.61}}]

WorldPlot[{{"USA", "France", "Germany", "Italy", "Belgium",
"Luxembourg", "Switzerland"}, {RGBColor(1, 0, 0],
RGBColor(0, 0.5, 0], RGBColor([0.5, 0, 01,
RGBColor(0, 0, 0], RGBColor(0.4, 0.4, 0.1],
RGBColor[0, 0, 0.5], RGBColor(0.9, 0.6, 0.61}), Full Screen

WorldProjection —> Mollweide]

W

WorldPlot[{{"USA", "France", "Germany", "ltaly", "Belgium",
"Luxembourg", "Switzerland"}, {RGBColor(1, 0, 0],
RGBColor(0, 0.5, 0], RGBColor{0.5, 0, 01,
RGBColor[0, 0, 0], RGBColor[0.4, 0.4, 0.1],
RGBColor[0, 0, 0.5], RGBColor[0.9, 0.6, 0.61}},

WorldProjection - LambertAzimuthal]

IS

Close

Quit

o

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2006/Notebooks/L04/Lecture-04.nb
http://pruffle.mit.edu/3.016-2006/pdf/L04/Lecture-04-6.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-04/HTMLLinks/index_6.html
http://pruffle.mit.edu/3.016-2006/html/Lecture-04/HTMLLinks/index_6.html

Lecture 5: Introduction to Mathematica IV

Graphics

Graphics are an important part of exploring mathematics and conveying its results. An informative
plot or graphic that conveys a complex idea succinctly and naturally to an educated observer is a
work of creative art. Indeed, art is sometimes defined as “an elevated means of communication,” or
“the means to inspire an observation, heretofore unnoticed, in another.” Graphics are art; they are
necessary. And, I think they are fun.

For graphics, we are limited to two- and three-dimensions, but, with the added possibility of an-
imation, sound, and perhaps other sensory input in advanced environments, it is possible to usefully
visualize more than three dimensions. Mathematics is not limited to a small number of dimensions; so,
a challenge —or perhaps an opportunity—exists to uses artfulness to convey higher dimensional ideas
graphically.

The introducetion to basic graphics starts with two-dimensional plots.

3.016 Home

PRI

Full Screen

Quit

Bt
Close
e

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

Lecture 05 MATHEMATICA® Example 1

Two-dimensional Plots I

notebook (non-evaluated)

pdf (evaluated)

Examples of simple z-y plots and how to decorate them.

1:

When Plot gets a list of expressions as it first argument, it will superpose
the curves obtained from each. In this example, the y-variable’s display
is controlled with PlotRange, and the curves’ colors and thicknesses are
controlled with a list for PlotStyle. Note that the rule PlotStyle is a
list of descriptions such as Hue, RGBColor, Thickness, Dashing, etc.

To plot a curve of the form, (z(t),y(t)) as a function of a parameter ¢,
ParamatricPlot is called with its first argument being a list of z- and
y-functions.

Superposition of parametric plots is obtained with a list of two-member
lists.

With the physical constants package loaded, a function to convert degrees-
Celcius to degrees Kelvin, and a function to calculate the Arrhenius func-
tion, an Arrhenius plot can be obtain with ParametricPlot.

By naming a plot, it can referenced and combined with more Graphics
Objects with Show. In this case, a specialized “tick-scheme” is employed
with “smart” labels for the 1/T axis.

LogPlot needs Needs[” Graphics’”]|. Here is an example of a annually
compounded bank account.

html (evaluated)

Plot[{Sin[x]/x, Tanlx]/x}, {x, -5 Pi, 5 Pi},
1| PlotRange — {-0.25, 1.25}, PlotStyle —
{{Thicknessl0.01], Huel1l}, {Thickness[0.005], Huel2/31}}]

LuckyClover[t_ , n_] :=
2| (1/(n+1){Cosl(n+1t - Pi/4l — (n+1)Coslt — Pi/4l,
Sinl(n+ 1)t — Pi/4] — (n+ 1) Sinlt — Pi/4l}

3| ParametricPlot[LuckyCloverlt, 4], {t, 0, 2Pi}, AspectRatio - 1]|

4

ParametricPlot[Evaluate[Table[LuckyCloverlt, il, {i, 2, 7}]],
{t, 0, 2Pi}, AspectRatio - 1]

ParametricPlot[Evaluate[Table[LuckyCloverlt, i], {i, 2, 7}]],
5| f{t,0, 2Pi}, AspectRatio - 1, PlotStyle —
Tablel{Thicknessl[0.005], Huel(2/3) =i —2)/5l}, {i, 2, 7}1]

6| << Miscellaneous’ PhysicalConstants’ |

7| Kelvin[TempCelcius_] := 273.15 + TempCelcius |

Arrhenius[EnergyEV_, TempCelcius_] =
Exp[—(EnergyEV = Joule = ElectronCharge) /
(Kelvin[TempCelcius] =
BoltzmannConstant x Kelvin « Coulomb)]

®

ParametricPlot {1/Kelvin[T], Log[Arrhenius[1.0, T11},
{T, 0, 1000}]

arrhenplot = ParametricPlot[
Evaluate[Table[{1/Kelvin[T], Log[Arrhenius[ev, T},
{ev, 1, 5, 1}]1, {T, —200, 1000}, PlotStyle - Table[
{Thickness[0.005], Huel(2/3) « (5 —)/4l}, {i, 1, 5, 1}1]

Show[arrhenplot,
Ticks - (Table[(1/Kelvin[T], StringJoin["1/", ToString[T]]},
{T, —200, 500, 100}], Automatic}]

BankAccount[Initialinvestment_,
Annuallnterest_, NYears_] :=
Initiallnvestment (1 + Annuallnterest/100)ANYears
Plot[BankAccount[100, 8.5, t], {t, 0, 50}]
Needs|["Graphics™]
LogPlot[BankAccount[100, 8.5, 1], {t, 0, 50}]

3.016 Home

PRI

Full Screen

Close

Quit

o

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2006/Notebooks/L05/Lecture-05.nb
http://pruffle.mit.edu/3.016-2006/pdf/L05/Lecture-05-1.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-05/HTMLLinks/index_1.html
http://pruffle.mit.edu/3.016-2006/html/Lecture-05/HTMLLinks/index_1.html

Lecture 05 MATHEMATICA® Example 2

Two-dimensional Plots 11

notebook (non-evaluated)
Examples of incorporating data into z-y plots.

pdf (evaluated)

html (evaluated)

Sometimes you will want to plot numbers that come from

elsewhere—otherwise known as data. Presumably, data will be imported with file I/O.

2:

The chemical elements and information about them is accessible via the
package Miscellaneous‘ChemicalElements‘. Here, this data will be
used to make plots for the 1°¢~90*" elements.

Subsequent to extracting the melting points by Maping the function

MeltingPoint onto the element-list, the trends in melting point with
atomic number is visualized. Using PlotJoined set to true in ListPlot,
makes the trend more visible.

Dens and mps are each lists with 90 number-like objects. Therefore {Dens,

mps} is a list of two lists—it has dimensions 2 x 90. ListPlot will take

data of the form {{z1,v1}, {z2,y2},...,{zN,yn}}, i.e., dimensions 90 x 2.
Transform will convert the data to the correct form for ListPlot.

By joining the data points with line-segments, a relationship between
density and melting point becomes visible.

ListPlot, PieChart, Histogram, Barchart, etc

1| << Miscellaneous’ChemicalElements’

2| Elements

|
|
3[[190 = Elements([Tablel, (i, 1, 90/11 |
|

4| mps = Map[MeltingPoint[#] &, e190] /. Kelvin - 1

The next plot illustrates the variation of melting temperature as a
function of atomic number...

5| ListPlot[mps] |

6[ListPlot[mps, PlotJoined - True] |

7| Dens = Map[Density[#] &, e190] /. {Kilogram - 1, Meter - 1} |

The next line matches up values of density with melting
temperature...

8[dmdata = Transpose((Dens, mps}] |

9 ListPiotldmdatal |

10[ListPlotidmdata, PlotJoined - True] |

3.016 Home

PRI

Full Screen

Quit

Bt
Close
e

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2006/Notebooks/L05/Lecture-05.nb
http://pruffle.mit.edu/3.016-2006/pdf/L05/Lecture-05-2.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-05/HTMLLinks/index_2.html
http://pruffle.mit.edu/3.016-2006/html/Lecture-05/HTMLLinks/index_2.html

Lecture 05 MATHEMATICA®) Example 3

Three Dimensional Graphics

notebook (non-evaluated)

pdf (evaluated)

It would be better to say, 3D graphics projected onto a 2D screen.

html (evaluated)

Using different ViewPoints and perspective, one can obtain informative 3D information on a screen. Unfor-
tunately, MATHEMATICA®) ’s front end does not have the capability of spinning or flying-around 3D graphics
(yvet). But, such things are possible by exporting this information into other formats. An example of such can
be found here: http://pruffle.mit.edu/ccarter/talks/Stuttgart INCEMS /node68.html

2

This is a function that computes the electrostatic potential over a 11 x 11
square-lattice of point-charges centered on the z-plane as a function of
x, y, and z. In this example, some simpler methods of visualizing this
four-dimensional object will be examined.

With sufficiently many PlotPoints the structure of the potential at a

fixed distance z = 0.25 is made apparant.

Without recomputing all the data, the ViewPoint can be changed if the
SurfaceGraphics object is assigned to a symbol that can be passed to
Show. There is a handy 3D ViewPoint Selector in MATHEMATICA®) s

Input menu.

By computing isopotentials or contours of constant potential for z = 0.25,
and using color. The ContourPlot function produces something like a
topographic map.

The ContourPlot can be easily colorized by setting the ColorFunction-
option to Hue...

But, the Hue cycles from red to green to blue—and then back to red
again. Here is a method to remove redundant colors.

Plot3D, ContourPlot, DensityPlot, etc

3.016 Home

EPot[x_, y_, z_, 1xo,, yo_] =

VX=x0)A2 + (y—yo)A2 + zA2

SheetOLatticeChargel[x_, z]:=
Sum|[EPot[x, y, z, X0, yo] (xo -5, 5}, {yo, -5, 5}]

SheetOLatticeCharge represents the electric field produced by
an 11 by 11 array of point charges arranged on the x-y plane at z
=0. The following command evaluates and plots the field
variation in the plane z = 0.25:

Plot3D[Evaluate[SheetOLatticeChargel[x, y, 0.25]],
{x, -6, 61, ly, -6, 6}]

Note below how theplot is set to contain the output of the Plot3D
command.

theplot = Plot3D[Evaluate[SheetOLatticeCharge(x, y, 0.25]],
{x, -6, 6}, {y, -8, 6}, PlotPoints - 120]

PRI

Full Screen

Now we can adjust the viewpoint of theplot, without
recalculating the entire plot, using the Show command:

5[Showitheplot, ViewPoint - {0, =5, 2}] |

theconplot =
6 ContourPlot[Evaluate[SheetOLatticeCharge(x, y, 0.25]],
{x, -6, 6}, {y, -8, 6}, PlotPoints - 120]

theconplot =
ContourPlot[Evaluate[SheetOLatticeChargel[x, y, 0.25]],
{x, —4, 4}, ly, —4, 4}, PlotPoints - 120,
ColorFunction - Hue, Contours — 24]

~

thedenplot =
DensityPlot[Evaluate[SheetOLatticeChargel[x, y, 0.25]],
{x, —4, 4}, ly, —4, 4}, PlotPoints - 120,
ColorFunction - (Huel1 - #:0.66] &)]

©

9[Showithedenplot, Mesh - False] |

Close

Quit

i L

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2006/Notebooks/L05/Lecture-05.nb
http://pruffle.mit.edu/3.016-2006/pdf/L05/Lecture-05-3.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-05/HTMLLinks/index_3.html
http://pruffle.mit.edu/~ccarter/talks/Stuttgart_INCEMS/node68.html
http://pruffle.mit.edu/3.016-2006/html/Lecture-05/HTMLLinks/index_3.html

Lecture 05 MATHEMATICA®) Example 4

Graphics Primitives and Graphical Constructions

notebook (non-evaluated) pdf (evaluated) html (evaluated)
Examples of placing Graphics Primitives onto the display are developed and a tidy graphical demonstration of a
Wulff construction is presented. Because PostScript is one of the graphics primitives, you can draw anything that
can be imaged in another application. You can also import your own drawing and images into MATHEMATICA®)

It can be useful to be able to build up arbitrary graphics objects

. y : - .) e piece-by-piece using simple "graphics primitives" like Circle:
3: A Circle is a graphics primitive. Graphlc.:s takgs graphics primitives | [SroviGreaelCobiZ 21 181 | 3.016 Home
as arguments and converts them to a graphics object. Show takes the 2[ShowlGraphicslCirlel2, 2 .51, Axes — True] |
graphics object and sends it to the display. As MATHEMATICA®) will pick
an intersection for the axis display and a convenient scaling for both axes,
AxesOrigin and AspectRatio should be specified in order to obtain the

N N 4| cosplot = Plot[Coslx], {x, 0, 4 Pi}] |
desired renderlng' and overlay some text in places of our own choosing... 4] < > | 44

5: Graphics primitives, such as Text, can be combined with two-dimensional _|showicospiot, GraphicsiTexti'one wavelength, (2 i, 1.11,
5[Graphics[Text["Two Wavelengths", {4 Pi, 1.1}]],

3

Show|[Graphics|Circle[{2, 2}, 1.5]1,
Axes —> True, AxesOrigin - {0, 0}, AspectRatio - 1]

Now we take a simple plot...

plots to improve their graphical content or exposition. PlotRange - Al
d o o 5 wulffline[{x_, y_}, wulfflength_] =
6: The Wulff construction is a famous thermodynamic construction that pre- Mokl e, wihaliong 1w fiovgih =05
. o1 x1, X2, y1, y2}, theta = Arclanlx, y];
dicts the equilibrium enclosing surface of an anisotropic isolated body. | 1 =x-wdifhatiengi. Coslinta + pir2)
J . e R A ’ X2 = x + wulffhalflength+ Cosltheta — Pi/2l; Full S
The anistropic surface tension, (1), is the amount of work (per unit y1 = y + wulthalength - Snltheta + Pi/2); ull Screen
. . N y2=y + wulffhalflength « Sinltheta — Pi/2];
area) required to produce a planar surface with outward normal 7. The GraphicsiLinel({x1, y1, (x2, y2J1]

1

construction proceeds by drawing a bisecting plane at each point of the
polar plot (n)7.. The interior of all bisectors is the resulting Wulff shape.

gammaplot[theta_, anisotropy_, nfold_] :=
7| {Coslthetal + anisotropy « Cosl(nfold + 1) « thetal,
Sinlthetal + anisotropy « Sinl(nfold + 1) « thetal}

. . . N 3 . o] GammaPlot = ParametricPlot[
8: This is an example () with the surface tension being smaller in the _ R S e et Close

<1 1>—directions. PlotStyle - {{Thickness[0.0051, RGBColor(1, 0, 01}}]

e o 0 o0 . n . Show|[Table[wulffline[gammaplot(t, 0.1, 4], 2],
9: By combining the graphics primitives from the wulffline function with 9| 1,0, 2Pi, 2Pi/100}], GammaPlot, AspectRatio - 11 |

the y-plot. the equilibrium shape is visualized.

o

Quit

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2006/Notebooks/L05/Lecture-05.nb
http://pruffle.mit.edu/3.016-2006/pdf/L05/Lecture-05-4.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-05/HTMLLinks/index_4.html
http://pruffle.mit.edu/3.016-2006/html/Lecture-05/HTMLLinks/index_4.html

Lecture 05 MATHEMATICA® Example 5

Animation

notebook (non-evaluated)

pdf (evaluated)

a 2D random walk process is developed.

1:

This is a recursive function that simulates a random walk pro-
cess. Each step in the random walk is recorded as a list structure,
{iteration number, {z,y}, and assigned to randomwalk [iteration num-
ber|. For each step (or iteration), a number between 0 and 1/2 is (for the
magnitude of the displacement) and an angle between 0 and 27 (for the
direction) are selected randomly from a uniform distribution.

This shows the history of a random walk after 50 iterations by using
graphics primitives.

This will produce a sequence of images which can be grouped together
and then collapsing the cell by double-clicking it. The collapsed cell can
be animated by using a menu item under the Cell-menu. Here, the step
is depicted with a number at the current position and a line segment to
the subsequent position.

This is a similar animation, but the history of each previous step is in-
cluded in the graphical display.

html (evaluated)
A random walk process is an important concept in diffusion and other statistical phenomena. An animation of

randomwalkl0] = {0, {0, O}};
randomwalk[nstep_Integer ? Positive| =

Random[Real, {0, 0.5}]
{Cosltheta = 2 PiRandomlll, Sinlthetal}}

randomwalk[nstep] = {nstep, randomwalk[nstep — 1)ll21] +
*

Show[
Table[Graphics[Text[ToStringlrandomwalklil[[111],
randomwalklill[211]], i, 0, 50}],
Table[Graphics|Line[{randomwalk[j — 1]([2]],
randomwalk(j]l[211}]], {j, 1, 50}],
PlotRange — All, AspectRatio - 1, AxesOrigin - {0, 0}]

N

<< Graphics' Animation®
ShowAnimation[
Table[
Graphics|
{Text[
ToStringlrandomwalklill[111],
randomwalklill[21]],
Line[{randomwalklill[2]], randomwalkli + 11[[2]1}]}

1
{i, 0, 49}
1,
PlotRange - {{-3, 3}, {-3, 3}},

AspectRatio - 1, AxesOrigin - {0, 0}
1

ShowAnimation[
Table[
Graphics|
Table[
{Text[
ToString[randomwalk(j]([11]],
randomwalk(j]([21]],
Line[{randomwalk[j]L[2]], randomwalk(j + 1]([2]}]

h .
15,0,)
]

1,
{i, 0, 49}
1

PlotRange - ((-3, 3}, (-3, 3)),
AspectRatio - 1, AxesOrigin - {0, 0}

1

3.016 Home

PRI

Full Screen

Close

o

Quit

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2006/Notebooks/L05/Lecture-05.nb
http://pruffle.mit.edu/3.016-2006/pdf/L05/Lecture-05-5.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-05/HTMLLinks/index_5.html
http://pruffle.mit.edu/3.016-2006/html/Lecture-05/HTMLLinks/index_5.html

Lecture 6: Linear Algebra I

Reading:
Kreyszig Sections: 7.5, 7.6, 7.7, 7.8, 7.9 (pages302-305, 306-307, 308—-314, 315-323, 323-329)

Vectors

Vectors as a list of associated information

number of steps to the east
Z = | number of steps to the north (6-1)
number steps up vertical ladder

3 Zeast
g =1 determines position oy, . (6-2)
1.5 Tup

The vector above is just one example of a position vector. We could also use coordinate systems
that differ from the Cartesian (z,y, z) to represent the location. For example, the location in cylindrical
coordinate system could be written as

x 7 cos 0
5 =S |/ RS (6-3)
Z z

as a Cartesian vector in terms of the cylindrical coordinates (r, 0, z).
The position could also be written as a cylindrical, or polar vector

r V2 + 42

= =
gl = tan—~ £ (6-4)
2 2

8
I

3.016 Home

PRI

Full Screen

Quit

Bt
Close
e

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

where the last term is the polar vector in terms of the Cartesian coordinates
for other coordinate systems like spherical, elliptic, etc.
However, vectors need not represent position at all, for example:

number of Hydrogen atoms
number of Helium atoms
number of Lithum atoms

= (6-5)
number of Plutonium atoms
Scalar multiplication
nurlr\lTber of H
numl?:e? %f He moles of H ﬂﬂﬂﬂ
Navag. moles of He
1 number of Li moles of Li
n= Navag. = = m (6-6)
Navag. :
humber of Pu moles of Pu Full Screen
Navag.

|Z|| =22 + 23 + ... 22 = euclidean separation (6-7)

|72]] =ng1 + npge + - - - M1327 = total number of atoms (6-8)

Vector norms Close

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

Unit vectors

unit direction vector mole fraction composition
N L A m

r = —= m = ——+

2] |

Extra Information and Notes
Potentially interesting but currently unnecessary
If R stands for the set of all real numbers (i.e., 0, —1.6, /2, etc.), then can use a shorthand

to specify the position vector, & € RY (e.g., each of the N entries in the vector of length N 3.016 Home
must be a real number—or in the set of real numbers. ||Z|| € R.
For the unit (direction) vector: & = {% € R3 | ||Z|| = 1} (i.e, the unit direction vector is the

set of all position vectors such that their length is unity—-or, the unit direction vector is
the subset of all position vectors that lie on the unit sphere. ¥ and T have the same number
of entries, but compared to &, the number of independent entries in & is smaller by one. ﬂﬂﬂﬂ
For the case of the composition vector, it is strange to consider the case of a negative
number of atoms, so the mole fraction vector 1 € (§R+)element8 (R is the real non-negative

numbers) and m € (RT) (elements-1)

Full Screen

Matrices and Matrix Operations

Consider methane (CHy), propane (C3Hg), and butane (C4Hjg).

o

H-column C-column Close
nﬁmber of H 1 nﬁmber of C 1 -
T t methane row
it = | R e SR Rl | T L B 6-11)
propane molecule propane molecule M
number of H number of C butane row
butane molecule butane molecule Quit
4 1 Miw Mo
Muc=| 8 3 |=| Ma M (6-12)
10 4 M3z Msy ©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

Matrices as a linear transformation of a vector

Nuc = (number of methanes, number of propanes, number of butanes)
= (NeC ms NHC pr NHC b)
= (Nuc1,NHC 2, NHC 3)

3
NucMpe = NuoiMuci; =N (6-17)
=1

The “summation” convention is often used, where a repeated index is summed over all its possible
values:

p
Z Nuc iMyc ij = Nuc iMuc i = Nj (6-18)
=i

For example, suppose

Nac = (1.2 x 10'? molecules methane, 2.3 x 10'3 molecules propane, 3.4 x 10** molecules butane)

(6-19)
NgcMuc =
4 atoms H 1 atoms C
methaniLI methane
(1.2 x 10* methanes, 2.3 x 10'® propanes, 3.4 x 10'? butanes) pai'tooplglsle p%%oprgﬁe
10 atoms H atoms C
butane butane
=(7.0 x 10'* atoms H, 2.0 x 10' atoms C)
(6-20)

3.016 Home

PRI

Full Screen

Quit

Bt
Close
e

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

Matrix transpose operations

Above the lists (or vectors) of atoms were stored as rows, often it is convenient to store them as
columns. The operation to take a row to a column (and vice-versa) is a “transpose”.

methane-column propane-column butane-column

T number of H number of H number of H
Muc™ = methane molecule propane molecule butane molecule hydrogen row (6-21)
number of C number of C number of C carbon row

methane molecule propane molecule butane molecule

- number of methanes Nucom
Npyc = | number of propanes | = | Ngcp (6-22)
number of butanes Nuco
number of methanes
T~ T =p(4 8 10 number of H-atoms
Myc' Ngeg =N < e number of propanes R (6-23)
number of butanes

Matrix Multiplication

The next example supposes that some process produces hyrdocarbons and be modeled with the pressure
P and temperature T'. Suppose (this is an artificial example) that the number of hydrocarbons produced
in one millisecond can be related linearly to the pressure and temperature:

number of methanes = aP + BT
number of propanes = P + 6T (6-24)
number of butanes = eP + ¢T

or

o« p
=N <§> (6-25)
¢ ¢

3.016 Home

PRI

Full Screen

Close

Quit

o

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

Lecture 06 MATHEMATICA®) Example 1

Matrices

notebook (non-evaluated)

pdf (evaluated)

html (evaluated)

Here is an example operation that takes us from the processing vector (P,T)7 to the number of hydrogens and
carbons.

1:

The matrix (Eq. 6-12) is entered as a list of sublists. The sub-lists are the
rows of the matrix. The first elements of each row-sublist form the first
column; the second elements are the second column and so on.

The Length of a matrix-object gives the number of row, and the second
member of the result of Dimensions gives the number of columns.

All sublists of a matrix must have the same dimensions.

It is good practice to enter a matrix and then display it separately us-
ing MatrixForm. Otherwise, there is a risk of defining a symbol as a
MatrixForm-object and not as a matrix which was probably the intent.

This command will generate an error.

Matrix multiplication in MATHEMATICA® is produced by the "dot” .
operator. For matrix multiplication, A.B, the number of columns of A
must be equal to the number of rows of B.

The Transpose “flips” a matrix by producing a new matrix which has the
original’s i'" row as the new matrix’s i column (or, equivalently the jtb
column as the new j* row). In this example, a 3 x 2-matrix (PTmatriz)
is being left-multiplied by a a 2 x 3-matrix.

The resulting matrix would map a vector with values P and 7" to a vector
for the rate of production of C and H.

Myc = {

R

1},

3},
1 {10, 4]
}

)

Myc // MatrixForm

PTmatrix = {
{e, B},
(v, 6},
{e, 6}

13
PTmatrix // MatrixForm

3.016 Home

3[MPT = Myc. PTmatrix

4[ClearlMPTI

MPT = Transpose[Myc]. PTmatrix;
MPT // MatrixForm

BRI

Full Screen

Close

o

Quit

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2006/Notebooks/L06/Lecture-06.nb
http://pruffle.mit.edu/3.016-2006/pdf/L06/Lecture-06-1.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-06/HTMLLinks/index_1.html
http://pruffle.mit.edu/3.016-2006/html/Lecture-06/HTMLLinks/index_1.html

Matrix multiplication is defined by:

AB = Z Ak Bij (6-26)

The indices of the matrix defined by the multiplication AB = C are Cj;.

Matrix Inversion

Sometimes what we wish to know, “What vector is it (¥), when transformed by some matrix (A4) gives

us a particular result (b= AZ)?”
3.016 Home

AT =1
AlAZ=AY (6-27)
F=A"S RURIE

The inverse of a matrix is defined as something that when multiplied with the matrix leaves a
product that has no effect on any vector. This special product matrix is called the identity matriz.

Full Screen

Close

Quit

o

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

Lecture 04 MATHEMATICA®) Example 2

Inverting Matrices

notebook (non-evaluated) pdf (evaluated) html (evaluated)
Our last example produced a linear operation that answered the question, “given a particular P and 7', at what
rate will C and H be produced?”

To answer the converse question, “If I want a particular rate of production for C and H, at what P and T should
the process be carried out?”

To invert the question on linear processes, the matrix is inverted.

[x Sinlx]1
1| AMessyExpression = w 3.016 Home

1: Inverting a matrix by hand is tedious and prone to error, Inverse does x
this in MATHEMATICA®) . In this example, Factor is called on the result LB
of Inverse. Factor is an example of a threadable function—it recursively
operates on all members of any argument that is a list-object.

i

3| DMess = D[AMessyExpression, x]

4| Integrate[DMess, x|

5| Integrate[DMess, {x, 0, e}] // N

2: The determinant of a matrix is fundamentally linked to the existance of e[aVessyExpression /x> e) - (AMessyExpression /.x - 0)
its inverse. In this example, it is observed that if the Det of a matrix 7|(AMe_ssyExpression/.x_ae)7
. . . . e . Limit{AMessyExpression, x - 0]
vanishes, then the entries of its inverse are indeterminant.

«| «|» ||

9| Integrate[Sin[x]/Sqrtl(xA2 + a*2)], x]

10| Integrate[Sinlx]/Sqrtl(xA2 + a*2)], x, Assumptions - a = 0]

Sinlx] Full Screen

1 Integrene[—, x, Assumptions - Rela’2] > 0]
va? +x?

UglyInfinitelntegral = Integrate[Sin(x]/Sartl(xA2 + ar2)],

12| {x, 0, oo}, Assumptions - Rela’2] > 0]

|
|
|
|
|
8| eLogle Sinlell //N |
|
|
|

13| N[UglyInfiniteIntegral /. a - 1]

The Taylor expansion capabilities in Mathematica are very useful

14| Series|[AMessyExpression, {x, 0, 4}] Close

Plot[{AMessyExpression, FitAtZero}, {x, 0, 3}, PlotStyle -

{{Thicknessl0.02], Huel 11}, {Thicknessl0.01], Huel0.51}}]

15| FitAtZero = Series[AMessyExpression, {x, 0, 4}] // Normal |
n |

o

Quit

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2006/Notebooks/L04/Lecture-04.nb
http://pruffle.mit.edu/3.016-2006/pdf/L04/Lecture-04-2.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-04/HTMLLinks/index_2.html
http://pruffle.mit.edu/3.016-2006/html/Lecture-04/HTMLLinks/index_2.html

Linear Independence: When solutions exist

apxtapy=bh X+ apy = by apx+ apy = by
3.016 Home
N \
\ AN
PRI
I
No Solution One Unique Solution Infinitely Many Solutions

Full Screen

Figure 6-1: Geometric interpretation of solutions in two dimensions

Bt
Close
e

Quit

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

Lecture 06 MATHEMATICA®) Example 3

Eliminating redundant equations or variables

notebook (non-evaluated) pdf (evaluated) html (evaluated)

Consider liquid water near the freezing point—dipole interactions will tend to make water molecules form clusters
such as HoO and H4O5.
Then the mapping from molecules to the number of atoms becomes:

(2 2) (w8)-(58) o

This example treats this case where the columns are not linearly independent.

1| watmat = {{2, 4}, {1, 2}};
watmat // MatrixForm

5: This equation is the same as the first row of AZ being set to the first entry 2[molves - (h20, o)

Of b fOI" A{E = b Slatomvec = {h, o}
7: This is an attempt to find the number of HyO- and H4Os-molecules, given 4[aomvec//MatixForm
the number of H- and O-atoms. Of course, it has to fail. [l = oo = et

6| eql2] = (watmat.molvec)l[2]] = atomvecll2]]

9: Eliminate produces a logical equality for each redundancy in a set of
equations. In this case, the result expresses the fact that 2 x (second row)
is the same as the (first row).

7| Solvelfeql1], eql2]}, molvec]

8[2Eliminate

9| Eliminate[{eql1], eg[2]}, molvec]

3.016 Home

PRI

Full Screen

10: The rank of a matrix, obtained with MatrixRank, gives the number of 10]MatixRankiwatmatl
linearly independent rows.

NullSpacelwatmat]
Length[NullSpacelwatmat]]

11: The null space of a matrix, A, is a linearly independent set of vectors &,
such that AZ is the zero-vector; this list can be obtained with NullSpace.
The nullity is the number of vectors in a matrix’s null space. The rank
and the nullity must add up to the number of columns of A

Close

b

Quit

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2006/Notebooks/L06/Lecture-06.nb
http://pruffle.mit.edu/3.016-2006/pdf/L06/Lecture-06-3.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-06/HTMLLinks/index_3.html
http://pruffle.mit.edu/3.016-2006/html/Lecture-06/HTMLLinks/index_3.html

Lecture 7: Linear Algebra

Reading:
Kreyszig Sections: 13.1, 13.2, 13.5, 13.6 (pages602-606, 607-611, 623-626, 626—629)

Uniqueness and Existence of Linear System Solutions

It would be useful to use the Mathematica Help Browser and look through the section in
the Mathematica Book: Advanced Mathematics/ Linear Algebra/Solving Linear Equa-
tions

A linear system of m equations in n variables (z1,z2,...,z,) takes the form

Az + Aoz + A1zzs + ...+ Az, = b1
A1y + A2exo + Agzxs + ... + Agpxy = bo

Ap1x1 + Agoxo + Apszz + ... + Appzy = by

s B A b SR - e - AL e —

and is fundamental to models of many systems.
The coeflicients, A;;, form a matrix and such equations are often written in an “index” short-hand
known as the Einstein summation convention:

A;jz; =b; (Einstein summation convention) (7-2)

where if an index (here i) is repeated in any set of multiplied terms, (here Aj;jx;) then a summation
over all values of that index is implied. Note that, by multiplying and summing in Eq. 7-2, the repeated

3.016 Home

PRI

Full Screen

Quit

Bt
Close
e

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

index ¢ disappears from the right-hand-side. It can be said that the repeated index in “contracted”
out of the equation and this idea is emphasized by writing Eq. 7-2 as

zjAjj = b; (Einstein summation convention) (7-3)

so that the “touching” index, 7, is contracted out leaving a matching j-index on each side. In each case,
Egs. 7-2 and 7-3 represent m equations (j = 1,2,...,m) in the n variables (i = 1,2,...,n) that are
contracted out in each equation. The summation convention is especially useful when the dimensions
of the coefficient matrix is larger than two; for a linear elastic material, the elastic energy density can
be written as:

1 1
Eelast = ieijcijklekl = io'pqqurso'rs (7'4)
where Cj;; and €;; are the fourth-rank stiffness tensor and second-rank elastic strain tensor; where
Sijk and o;; are the fourth-rank compliance tensor and second-rank stress tensor;

In physical problems, the goal is typically to find the n x; for a given m b; in Egs. 7-2, 7-3, or 7-1.
This goal is conveniently represented in matrix-vector notation:

AT =5 (7-5)

3.016 Home

PRI

Full Screen

Quit

Bt
Close
e

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

Lecture 07 MATHEMATICA®) Example 1

Solving Linear Sets of Equations

notebook (non-evaluated) pdf (evaluated) html (evaluated)
This example is kind of backwards. We will take a matrix

2 1 _ 1 az a

A= " =g Tl unknown vector # = | 7 and known vector b = ’ (7-6)
1 2 4 5 Z c
1 0 1 1 t d

3.016 Home

and extract four equations for input to Solve to obtain the solution to 7.

Consider the set of equations
X+2y+ z+t=a

X +4y-2z =b
Xx+3y+4z+5t=c

+2z+ t=d

2: A unique solution will exist if the determinant, computed with Det, is We llusirate how o Use & malrix representaton 0 e these RIS |»

1: The coefficient matrix is a list of row-lists.

out and solve them...

NON-Zero. =
5: The left-hand-side is a column-vector with four entries. 1 f?ﬁé}'&:’f{:m’
6: This function creates logical equalities for each corresponding entry on the mymari MaicForm
e L ont Hatiggsides, S O ST
8: Here, the function creates the input four equations and the myx contains 2[Petimymatix | Full Screen
the unknowns. Now define vectors forx andbinA% = b

3[myx = (x,y, 2 th; |

4[myb = (a, b, c,dj; |

and the left-hand side of all four equations will be

5 lhs = mymatrix.myx;
Ihs // MatrixForm Close
Now define an indexed variable linsys with four entries, each

being one of the equations in the system of interest:

6| linsys[i_Integer] := Ihsllill == mybllill |

7[linsysl2] |

Solving the set of equations for the unknowns X

8 linsol = Solvel(linsys[1], linsysl2], linsysl3l, linsyslal}, myx] | Quit
ul

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2006/Notebooks/L07/Lecture-07.nb
http://pruffle.mit.edu/3.016-2006/pdf/L07/Lecture-07-1.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-07/HTMLLinks/index_1.html
http://pruffle.mit.edu/3.016-2006/html/Lecture-07/HTMLLinks/index_1.html

N N
Lecture 07 MATHEMATICA®) Example 2 I

Inverting Matrices or Just Solving for the Unknown Vector

notebook (non-evaluated) pdf (evaluated) html (evaluated)

Continuing the last example, it is much more compact to invert a matrix symbolically or numerically. If a
matrix inverse is going to be used over and over again, it is probably best to compute and store the inverse once.
However, if a one-time only solution for & in AZ = b is needed, then computing the inverse is computationally
less efficient than using an algorithm designed to solve for Z directly. Here is an example of both methods.

Doing the same thing a different way, using Mathematica's

= LinearSolve function:
3: LinearSolve can take two arguments, A and b, and returns & that solves [mymarx = 0100 cme
- - J)) . . 1,2,1,1),
AZ = b. It will be noticibly faster than the following inversion method, ,| 1,320,
. . 1,3, 4,5},
especially for large matrices. 1,0, 1, 1)i;
mymatrix // MatrixForm

4: The matrix inverse is obtained with Inverse and a subsequent multipli- Z‘myx “xy.zu
myb = {a, b, ¢, d};

cation by the right-hand-side gives the solution. s [ﬂ ﬂ ﬁ ﬂ
|

And yet another way, basedon X =A"' AXx = A"'b

4[Inverse[mymatrix].myb // MatrixForm

Full Screen

Close

o

Quit

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2006/Notebooks/L07/Lecture-07.nb
http://pruffle.mit.edu/3.016-2006/pdf/L07/Lecture-07-2.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-07/HTMLLinks/index_2.html
http://pruffle.mit.edu/3.016-2006/html/Lecture-07/HTMLLinks/index_2.html

Uniqueness of solutions to the nonhomogeneous system

AZ =1 (7-7)

Uniqueness of solutions to the homogeneous system

Az, =0 (7-8)

Adding solutions from the nonhomogeneous and homogenous systems

You can add any solution to the homogeneous equation (if they exist there are infinitely many of them)
to any solution to the nonhomogeneous equation and the result is still a solution to the nonhomogeneous 3.016 Home
equation.

AZ+5,)=b (7-9)

PRI

Full Screen

Quit

Bt
Close
e

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

Determinants

Lecture 07 MATHEMATICA®) Example 3

Determinants, Rank, and Nullity

notebook (non-evaluated)

pdf (evaluated)

html (evaluated)
Several examples of determinant calculations are provided to illustrate the properties of determinants. When a

determinant vanishes (i.e., det A = 0, there is no solution to the inhomogeneous equation det A = 5, but there
will be an infinity of solutions to det A = 0; the infinity of solutions can be characterized by solving for a number

rank of the entries of Z in terms of the nullity of other entries of ¥

1:

A matrix is created where the third row is the sum of p X first row,
q % second row, and r X fourth row. In other words, one row is a lin-
ear combination of the others.

The determinant is computed with Det.
An attempt to solve the linear inhomogeneous equation should fail.

When the determinant is zero, there may still be some linearly indepen-
dent rows or columns. The rank gives the number of linearly independent
rows or columns and is computed with MatrixRank.

The null space of a matrix, A, is a set of linearly independent vectors that,
if left-multiplied by A gives a zero vector. The nullity is how many linearly
independent vectors there are in the null space. Sometimes, vectors in the
null space are called killing vectors.

Here, an attempt to use Solve for the heterogeneous system is attempted,
but of course it is bound to fail. . .

However, this is the solution the singular homogeneous problem (AZ = 0,
where det A = 0. The solution is three (the rank) dimensional surface
embedded in four dimensions (the rank plus the nullity). Notice that the
solution is a multiple of the null space.

When determinants are zero

Create a matrix with one row as a linear combination of the
others

myzeromatrix =
{mymatrix[[11],
mymatrix[[2]],

mymatrixl[411};
myzeromatrix // MatrixForm

p=mymatrix[[11] + q+mymatrix[[2]] + r+mymatrix[4]],

3.016 Home

«| «|»|m]

2[Det[myzeromatrix]

3[LinearSolve[myzeromatrix, myb]

MatrixRank[mymatrix]
MatrixRank[myzeromatrix]

IS

NullSpace[mymatrix]

s NullSpace[myzeromatrix]

Try solving this inhomogeneous system of equations using
Solve:

6| zerolhs = myzeromatrix.myx

7| zerolinsysli_Integer] := zerolhsllill == mybllill

8[Table[zerolinsyslil, {i, 4}] // MatrixForm
9[zerolinsolhet = Solve[Table[zerolinsyslil, {i, 4}], myx]

No solution, as expected, Let's see what happens if we ask
Mathematica to solve the homogeneous problem:

zerolinsolhom = Solve[Table[

e zerolinsyslil /. {a— 0, b -0, ¢ >0, d - 0}, {i, 4}], myx]

In this case, Mathematica gives a relationship between the
variables, but because there are fewer equations than
variables, there is still no unique solution.

Full Screen

Close

Quit

LH

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2006/Notebooks/L07/Lecture-07.nb
http://pruffle.mit.edu/3.016-2006/pdf/L07/Lecture-07-3.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-07/HTMLLinks/index_3.html
http://pruffle.mit.edu/3.016-2006/html/Lecture-07/HTMLLinks/index_3.html

Properties and Roles of the Matrix Determinant

In example 07-1, it was stated (item 2) that a unique solution exists if the matrix’s determinant was

non-zero. The solution,
2a+2b—4c+18d
det A
Ta—7d
det A
13a—8b+2c—23d (7-10)
det A
—15a+6b-+2c+19d
det A

8y
|

indicates why this is the case and also illustrates the role that the determinant plays in the solution.
Clearly, if the determinant vanishes, then the solution is undetermined unless b is a zero-vector 0 =
(0,0,0,0). Considering the algebraic equation, ax = b, the determinant plays the role for matrices that
the condition a = 0 plays for algebra: the inverse exists when a £ 0 or det A # 0.

The determinant is only defined for square matrices; it derives from the elimination of the n unknown
entries in & using all n equation (or rows) of

AZ =0 (7-11)

For example, eliminating x and y from

< ai1 012 > < i > = < 0) gives the expression
azr a2 Y 0 >

ail a2
det = a11a22 — Q12021 = 0
a1 a2

(7-12)

and eliminating x, y, and z from

ail1 a2 ai3 7 0
a21 Q22 a23 Yy = 0
az1 asz as3 % 0

gives the expression

detA = a11a22a33 — a11a32a23 + aziaz2a13 — az1alass + asjaizazz — azrazaiz =0

3.016 Home

PRI

Full Screen

Quit

Bt
Close
e

(7_13) ©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

The following general and true statements about determinants are plausible given the above expressions:

e The terms in the determinant’s sum are products of a terms; one term comes from each column.
e Each term is one of all possible the products of an entry from each column.

e There is a plus or minus in front each term in the sum, (—1)?, where p is the number of neighbor
exchanges required to put the rows in order in each term written as an ordered product of their
columns (as in example Eqgs. 7-12 and 7-13).

These and the observation that it is impossible to eliminate & in Eqgs. 7-12 and 7-13 if the information
in the rows is redundant (i.e., there is not enough information—or independent equations—to solve for
the &) yield the general properties of determinants that are illustrated in the following example.

3.016 Home

PRI

Full Screen

Quit

Bt
Close
e

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

Lecture 07 MATHEMATICA® Example 4

Properties of Determinants

notebook (non-evaluated)

pdf (evaluated)

html (evaluated)

Rules corresponding how det A changes when the columns of A are permuted, or multiplied by a constant are
demonstrated, along with det(AB) = det Adet B and AB # BA.

2:
5:

T

A matrix with random real entries between -1 and 1 is created.

Multiplying one column of a matrix by a constant a, multiplies the ma-
trix’s determinant by one factor of a.

Because the matrix has one linearly-dependent column, its determinant
should vanish. This example demonstrates what happens with limited
numerical precision operations on real numbers. The determinant is not
zero, but could be considered effectively zero.

Problems with numerical imprecision can usually be alleviated with Chop
which sets small magnitude numbers to zero.

Using, Permutations, create all possible permutations of two sets of
three identical objects for subsequent construction of a symbolic matrix.

The symbolic matrix has a fairly simple determinant.
A matrix with random rational numbers is created. . .
And, of course, its determinant is also a rational number.

This demonstrates that determinant of a product is the product of
determinants. . .

And, this (reduntantly) shows that the order of matrix multiplication does
not affect the product rule for determinants.

However, the result of multiplying two matrix does depend on the order
of multiplication: AB # BA, in general.

1[vli_1 = rlil = Table[Random(Real, (-1, 1}1, {, 61]

2[RandMat = Table{rvlil, f, 6]

3| Det[RandMat]

4[Detfirvi2], 1], rvia), vl4l, visl, rvi6l)]

5[Detlfaxrvi2], vi1], Vi3], 4], rvis], rvisl)]

LiDepVec =

8] "aunli] + barvi2l + carvi3l + dirvidl + exrvis]

7| Detl{rv[1], rvl2], rvI3], rv[4], rvI5], LinDepVec}]

8| ChoplDet({rv[1], rv[2], rv[3], rv[4], rv5], LinDepVec}]]

9 symVec = (a, a,a, ¢, ¢, cl;

Permuts = Permutations[SymVec]

1o Permuts // Dimensions

SymbMat = {Permuts([11], Permuts[[12]], Permutsl[6]],

11 Permutsl[18]], Permutsl[171], Permutsl[911};

SymbMat // MatrixForm

)

| DetSymbMat = Simplify[Det[SymbMat]]

RandomMat = Table|
Random([Integer, {-100, 100}]

Random([Integer, {~100, 100}] "
RandomMat // MatrixForm

13 Table[i, 6)], {i» 6)]:

14| DetRandomMat = Det[RandomMat]

15[CheckA = Det[SymbMat.RandomMat] // Simplify

16| DetRandomMat = DetSymbMat == CheckA

17| CheckB = Det[RandomMat.SymbMat] // Simplify

3.016 Home

PRI

Full Screen

Close

18[CheckA = CheckB

(RandomMat.SymbMat — SymbMat.RandomMat) //

19| ™ Simplify // MatrixForm

Quit

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2006/Notebooks/L07/Lecture-07.nb
http://pruffle.mit.edu/3.016-2006/pdf/L07/Lecture-07-4.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-07/HTMLLinks/index_4.html
http://pruffle.mit.edu/3.016-2006/html/Lecture-07/HTMLLinks/index_4.html

The properties of determinants
Vector Spaces

Consider the position vector

X T
2= I R RSRI 22 (7-14)
z T3

The vectors (1,0,0), (0,1,0), and (0,0,1) can be used to generate any general position by suitable
scalar multiplication and vector addition:

7 1 0 0
Z=|y |=21 0 |+y| 1 |+2| O (7-15)
z 0 0 1

Thus, three dimensional real space is “spanned” by the three vectors: (1,0,0), (0,1,0), and (0,0, 1).
These three vectors are candidates as “basis vectors for R3.”
Consider the vectors (a, —a,0), (a,a,0), and (0, a,a) for real a # 0.

a a
— - 2
i, o i A R B i (7-16)
2a 0 2a 0 2a

So (a,—a,0), (a,a,0), and (0,a,a) for real a # 0 also are basis vectors and can be used to span R?.

The idea of basis vectors and vector spaces comes up frequently in the mathematics of materials
science. They can represent abstract concepts as well as shown by the following two dimensional basis
set:

3.016 Home

PRI

Full Screen

Quit

Bt
Close
e

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

basis vector 1 basis vector 2
*—0
10l @ | + 1.0I:I =] e 01 o | + 1.0I:I :EI e
@ @
e oo afio
—s RURI
® Q
10 o | t O.ZI I = | 00l o | + 1'OI:I :I:I
6 © Full Screen

Figure 7-2: A vector space for two-dimensional CsCl structures. Any combination of center-site
concentration and corner-site concentration can be represented by the sum of two basis vectors

(or basis lattice). The set of all grey-grey patterns is a vector space of patterns.

Close

Quit

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

Linear Transformations

Lecture 07 MATHEMATICA®) Example 5

Visualization of linear transformations

notebook (non-evaluated)

pdf (evaluated)

html (evaluated)
An simple octagon with different colored faces is transformed by operating on all of it vertices with a matrix.

This example demonstrates how symmetry operations, like rotations reflections, can be represented as a matrix

multiplication, and how to visualize the results of linear transformations generally.

1lg

The package Polyhedra contains Graphics Objects with the coordi-
nates of many common polyhedra.

This demonstrates how an Octahedron can be drawn on the screen.

The ViewPoint option to Show allows viewing from different points in
3D space.

InputForm reveals how the coordinates of the polydra are stored. ..

And, this can be mimicked to create a face-colored polyhedron with the

Hue graphics directive.

This is a matric which would create the mirror image across the z-axis of
any point it multiplies.

This is a moderately sophisticated example of rule usage: it looks for
triangles (Polygons with three points); names the points; and then mul-
tiplies a matrix by each of the points. The result in this case is a mirror
operation.

This generalizes the previous example, by creating a function that takes
a matrix as an argument.

This visualizes a rotation of 7/4 around the z-axis.

This mirrors across the z- and y-axis and performs a linear expansion by
a factor of 5 along the z-direction. The octagon volume increases by the
determinant of the transformation matrix.

1 | << Graphics’Polyhedra

2| Show[Polyhedron[Octahedronl]

3 Show[Polyhedron[Octahedronl,
ViewPoint —> {-0.007, -1.995, —-0.135}]

4| Polyhedron[Octahedronl // InputForm

ColOct = Graphics3D[{

{Huel0/8l, Polygonl{{0, 0, 1}, {1, 0, 0.}, {0, 1, 0.}}1},
{Huel1/8], Polygonl{{0, 0, 1}, {0, 1, 0}, {~1, 0, O}}1},
{Huel2/8l, Polygonl{{0, 0, 1}, {1, 0, 0}, {0, —1, O}}]},

5 {Huel3/8], Polygonl{{0, 0, 1}, {0. 0}, {1, 0, O}}1},
{Huel4/8l, Polygonl{{1, 0, 0}, {0, -1, 0}, {0, 0, —1}}1},
{Huel5/8], Polygonli{1, 0, 0}, {0, 0, -1}, {0, 1, O}}1},
{Huel6/8l, Polygonl({{0, 0, -1}, {0, -1, 0}, {1, 0, O}}1},
{Huel7/8], Polygonl{(0, 1, 0}, {0, 0, =1}, (-1, 0, O}1}

il

6| Show[ColOct, Lighting — False]

tmat = {{1,0, 0}, {0, 1, 0}, {0, 0, ~1}};
tmat // MatrixForm

8 Show[ColOct /. {Polygon[{a_List, b_List, c_List}] -»
Polygon([{tmat.a, tmat.b, tmat.c}]}, Lighting - False]

seetrans[tranmat_] :=
Show[ColOct /. {Polygonl{a_List, b_List, c_List}] -
Polygon[{tranmat.a, tranmat.b, tranmat.c}]},
Lighting - False]

10[seetransli(1, 0, 0}, (0, 1, 0}, {0, 0, 1}}]

seetransl{{CoslPi/4l, SinlPi/4l, 0},

i {Sinl-Pi/4l, CoslPi/4l, 0}, {0, 0, 1}}]

12| seetransl{(~1, 0, 0}, {0, -1, 0}, (0, 0, 511

3.016 Home

PRI

Full Screen

Close

o

Quit

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2006/Notebooks/L07/Lecture-07.nb
http://pruffle.mit.edu/3.016-2006/pdf/L07/Lecture-07-5.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-07/HTMLLinks/index_5.html
http://pruffle.mit.edu/3.016-2006/html/Lecture-07/HTMLLinks/index_5.html

Lecture 8: Complex Numbers and Euler’s Formula

Reading:
Kreyszig Sections: 8.1, 8.2, 8.3 (pages334-338, 340-343, 345-348)

Complex Numbers and Operations in the Complex Plane

Consider, the number zero: it could be operationally defined as the number, which when multiplied by
any other number always yields itself; and its other properities would follow.
Negative numbers could be defined operationally as something that gives rise to simple pat-

terns. Multiplying by —1 gives rise to the pattern 1,—1,1,—1,... In the same vein, a number, 2,
can be created that doubles the period of the previous example: multiplying by @ gives the pattern:
1,2,—1,—1,1,2,—1, —12,... Combining the imaginary number, 2, with the real numbers, arbitrarily long

periods can be defined by multiplication; applications to periodic phenonena is probably where complex
numbers have their greatest utility in science and engineering
With ¢+ = +/—1, the complex numbers can be defined as the space of numbers spanned by the

vectors:
<é> sl (?) (8-1)

so that any complex number can be written as

z:x<é>+y<?> (8-2)

Tl i (8-3)

or just simply as

where x and y are real numbers. Rez = x and Imz = y.

3.016 Home

PRI

Full Screen

Close

Quit

o

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

Lecture 08 MATHEMATICA®) Example 1

Operations on complex numbers

notebook (non-evaluated)

pdf (evaluated)

html (evaluated)

Straightforward examples of addition, subtraction, multiplication, and division of complex numbers are demon-

strated. An example that demonstrates that MATHEMATICA®) doesn’t make a priori assumptions about

whether a symbol is real or complex. An example function that converts a complex number to its polar form is

constructed.

2: Just like Pi is a mathematical constant, the imaginary number is defined
in MATHEMATICA®) as something with the properties of ¢

3: Here, two numbers that are potentially, but not necessarily complex are
defined.

4: Addition and multiplication are defined as for any symbol; here the results
do not appear to be very interesting because the other symbols could
themselves be complex. . .

5: And, Simplify doesn’t help much even with assumptions.

6: The real and imaginary parts of a complex entity can be extracted with

Re and Im. This demonstrates that MATHEMATICA®) hasn’t made
assumptions about a, b, c, and d.

8-12 However, ComplexExpand does make assumptions that symbols are real
and, here, demonstrate the rules for addition, multiplication, division,
and exponentiation.

13: Abs calculates the magnitude (also known as modulus or absolute value)

and Arg calculates the argument (or angle) of a complex number. Here,
they are used to define a function to convert and expression to an equiv-
alent polar form of a complex number.

1| imaginary = Sqrtl-1]

2| (~imaginary)*2

z1 =a+ib;
z2=c +id;

4| compadd = z1 + z2;

5| compmult = z1422;

6 Simplify[compmult,

ac Reals & b e Reals &&c € Reals && d € Reals|

Mathematica doesn't assume that symbols are necessarily real...

Re[compadd]
Im[compadd]

However, the ica function C
assume that the variables are real....

does

8[ComplexExpand|Relcompaddi]

9| ComplexExpand[Im[compadd]]

10| ComplexExpand[Relz1/z2l1

11 | ComplexExpand[compmult]

5 ComplexExpand[Relz143]]
ComplexExpandliml(z143]]

Function to convert to Polar Form

13[Pformiz_] = Abslz] Expli Arglz])

14[Plormlz1]

15[Pormiz1 /. {a > 2, b - —xl]

16| ComplexExpand[Pformlz1]]

3.016 Home

PRI

Full Screen

Close

Quit

o

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2006/Notebooks/L08/Lecture-08.nb
http://pruffle.mit.edu/3.016-2006/pdf/L08/Lecture-08-1.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-08/HTMLLinks/index_1.html
http://pruffle.mit.edu/3.016-2006/html/Lecture-08/HTMLLinks/index_1.html

Complex Plane and Complex Conjugates

Because the complex basis can be written in terms of the vectors in Equation 8-1, it is natural to plot
complex numbers in two dimensions—typically these two dimensions are the “complex plane” with
(0,1) associated with the y-axis and (1,0) associated with the z-axis.

The reflection of a complex number across the real axis is a useful operation. The image of a
reflection across the real axis has some useful qualities and is given a special name—“the complex
conjugate.”

A(0,1) N 3.016 Home
XA 1y Xt 1y
i S TN PRI
(17 O) _.""
.A'
—z=—X — 1y

Full Screen

Figure 8-3: Plotting the complex number z in the complex plane: The complex conjugate
(2) is a reflection across the real axis; the minus (—z) operation is an inversion through the
origin; therefore —(Z) = (—z) is equivalent to either a reflection across the imaginary axis or an
inversion followed by a reflection across the real axis.

The real part of a complex number is the projection of the displacement in the real direction and
also the average of the complex number and its conjugate: Rez = (z+2)/2. The imaginary part
is the displacement projected onto the imaginary axis, or the complex average of the complex Quit
number and its reflection across the imaginary axis: Imz = (z — 2) /(22).

Close

o

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

Polar Form of Complex Numbers

There are physical situations in which a transformation from Cartesian (z,y) coordinates to polar (or
cylindrical) coordinates (r,#) simplifies the algebra that is used to describe the physical problem.

An equivalent coordinate transformation for complex numbers, z = x 4 1y, has an analogous sim-
plifying effect for multiplicative operations on complex numbers. It has been demonstrated how the
complex conjugate, z, is related to a reflection—multiplication is related to a counter-clockwise
rotation in the complex plane. Counter-clockwise rotation corresponds to increasing 6.

The transformations are:

T = rcosf
(z,y) — (r,0) { P &% 3.016 Home
(r,0) — (:c,y){ e

6 = arctan ¥
where arctan € (—m, 7). ﬂ ﬂﬁﬂ

Multiplication, Division, and Roots in Polar Form

One advantage of the polar complex form is the simplicity of multiplication operations:

DeMoivre’s formulas: Full Screen

2" = r"(cosnb + 1sinnf) (8-5)

0 + 2k 0 + 2k
Yz = {/2(cos # + 1sin %) (8-6)

Quit

Bt
Close
e

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

Lecture 08 MATHEMATICA®) Example 2

Numerical Properties of Operations on Complex Numbers

notebook (non-evaluated) pdf (evaluated)

html (evaluated)

Several examples demonstrate issues that arise when complex numbers are evaluated numerically.

1: The relationship e?™ = 1 is exact.

2.0m7

2: However, e is numerically 1.

3: Chop removes small evalues that are presumed to be the result of numerical
imprecision; it operates on complex numbers as well.
5-8 Here, the difference between something that is exactly ¢ and is numerically
1.0z is demonstrated. . .
9-12 And, this is similar demostration for 1+ using its polar form as a starting
point.

1| ExactlyOne = Expl2ril

2| NumericallyOne = Exp[N[2 7]l

3| Chop[NumericallyOne]

4| Round[NumericallyOne]

5| Exactlyl = Explri/2]

6| Numericallyl = ExpIN[ri/2]]

7| Round[Numericallyl]

8| Chop[Numericallyl]

9| ExactlyOnePlusl = ComplexExpand[v2 Explr i/4]]

10| NumericallyOnePlusl = ComplexExpand[v2 Exp[Nlr i/411]

11 | Chop[NumericallyOnePlusl]

3.016 Home

«| «|» ||

12| Round[NumericallyOnePlusl]

13[Round[1.5 - 3.5Sqrtl-1])

14| Re[NumericallyOnePlusl]

15| Im[NumericallyOnePlusl]

Full Screen

Close

Quit

o

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2006/Notebooks/L08/Lecture-08.nb
http://pruffle.mit.edu/3.016-2006/pdf/L08/Lecture-08-2.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-08/HTMLLinks/index_2.html
http://pruffle.mit.edu/3.016-2006/html/Lecture-08/HTMLLinks/index_2.html

Exponentiation and Relations to Trignometric Functions
Exponentiation of a complex number is defined by:
e* = "W = e%(cosy + 1siny)

Exponentiation of a purely imaginary number advances the angle by rotation:

e =cosy +siny (8-8)
combining Eq. 8-8 with Eq. 8-7 gives the particularly useful form:

z=x+wy=re¥ (8-9)
and the useful relations (obtained simply by considering the complex plane’s geometry)

—T

2™ =1 eM=_1 e ™=_1 e2'=1¢ e 2= —g (8-10)

Subtraction of powers in Eq. 8-8 and generalization gives known relations for trigonometric functions:

e¥ + e ¥ e — efiz
COSzZ = f sin z = 27
7
e? e~ ? e — e~ %
cosh z = % sinh z = i B (8-11)

cos z = cosh 1z 18in z = sinh ¢z

costz = cosh z sin?z = 2sinh z

Complex Numbers in Roots to Polynomial Equations

Complex numbers frequently arise when solving for the roots of a polynomial equation. There are many
cases in which a model of system’s physical behavior depends on whether the roots of a polynomial
are real or imaginary, and if the real part is positive. While evaluating the nature of the roots is
straightforward conceptually, this often creates difficulties computationally. Frequently, ordered lists
of solutions are maintained and the behavior each solution is followed.

3.016 Home

PRI

Full Screen

Quit

Bt
Close
e

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

Lecture 08 MATHEMATICA®) Example 3

Complex Roots of Polynomial Equations

notebook (non-evaluated)

pdf (evaluated)

html (evaluated)

Here we construct an artificial example of a model that depends on a single parameter in a quadratic polynomial

and illustrate methods to analyze and visualize its roots. Methods to “peek” at the form of long expressions are

also demonstrated.

1-6 Using a prototype fourth order equation, a list of solutions are obtained;

7.

10:

10:

12:
13:

14:

the real and imaginary parts are computed.

The above is generalized to a single parameter b in the quartic equation;
the conditions that the roots are real will be visualized. bsols, the list of
solution rule-lists is long and complicated.

First, one must consider the structure of bsols, Dimensions indicates it
is a list of four lists, each of length 1.

Short is a practical method to observe the structure without filling up
the screen display.

Flatten converts lists of lists into a single list—it is especially useful with
the lists of rule lists that are returned from Solve.

Here, the real and complex parts of each of the solutions is obtained with

Re and Im where the parameter b is assumed to be real via the use of
ComplexExpand. This may take a long time to evaluate on some
computers.

Which of the solutions (i.e., 1,2,3, or 4) is identified by using Hue.

Similarly, the real parts appear to converge to a single value when the
imaginary parts (from above) appear. ..

But, the acual behavior is best illustrated by using Thickness to distin-
guish superposed values. The behavior of real parts of this solution have
what is called a pitchfork structure.

1| sols = Solve[(xA4 —xA3 +x +1) = 0, x]

2[x/. sols

3| Im[x /. sols]

4| ComplexExpand|Im[x /. sols]]

5| ComplexExpand[Im[x /. sols]] // N

6| ComplexExpand[Re[x /. sols]] // N

Generalize the above to a family of solutions: find b such

that imaginary part of the solution vanishes

7| bsols = Solve[(xA4 —xA3 +bxx +1) = 0, x]

3.016 Home

«| «|» ||

8| Dimensionslbsols]

9[Shortibsols, 4]

Dimensions|Flatten[bsols]
Short[Flattenlbsols], 4]

11 | Solsbimag = ComplexExpand[Im[x /. bsols]];

1 Dimensions[SolsbImag]
Short[Solsbimagll11]]

13| SolsbReal = ComplexExpand[Rel[x /. bsols]];

14[Plot|Evaluate[Solsbimag], (b, ~10, 10}]

Plot[Evaluate[Solsblmag], {b, -10, 10},
PlotStyle - Table[{Huel1 —a/6l}, {a, 1, 4}]]

Plot[EvaluatelSolsbReall, {b, —10, 10},
PlotStyle - Table[{Huel1 —a/6l}, {a, 1, 4}]]

17

Plot[Evaluate[SolsbReall, {b, 10, 10}, PlotStyle -
Table[{Huel1 —a/6l, Thickness[0.05 .01 «al}, {a, 1, 411]

Full Screen

Close

Quit

o

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2006/Notebooks/L08/Lecture-08.nb
http://pruffle.mit.edu/3.016-2006/pdf/L08/Lecture-08-3.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-08/HTMLLinks/index_3.html
http://pruffle.mit.edu/3.016-2006/html/Lecture-08/HTMLLinks/index_3.html

Lecture 9: Eigensystems of Matrix Equations

Reading:
Kreyszig Sections: 8.1, 8.2, 8.3 (pages334-338, 340-343, 345-348)

Eigenvalues and Eigenvectors of a Matrix

The conditions for which general linear equation

AT =5 (9-1)
has solutions for a given matrix A, fixed vector 5, and unknown vector £ have been determined.

The operation of a matrix on a vector—whether as a physical process, or as a geometric transfor-
mation, or just a general linear equation—has also been discussed.

Eigenvalues and eigenvectors are among the most important mathematical concepts with a very
large number of applications in physics and engineering.

An eigenvalue problem (associated with a matrix A) relates the operation of a matrix multiplication
on a particular vector & to its multiplication by a particular scalar .

AT = AT (9-2)

This equation bespeaks that the matrix operation can be replaced—or is equivalent to—a stretching
or contraction of the vector: “A has some vector & for which its multiplication is simply a scalar
multiplication operation by \.” # is an eigenvector of A and A is &’s associated eigenvalue.

The condition that Eq. 9-2 has solutions is that its associated homogeneous equation:

(A-XDE=0 (9-3)

has a zero determinant:

det(A —) =0 (9-4)

3.016 Home

PRI

Full Screen

Quit

Bt
Close
e

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

Eq. 9-4 is a polynomial equation in A (the power of the polynomial is the same as the size of the square
matrix).
The eigenvalue-eigenvector system in Eq. 9-2 is solved by the following process:

1. Solve the characteristic equation (Eq. 9-4) for each of its roots A;.

2. Each root); is used as an eigenvalue in Eq. 9-2 which is solved for its associated eigenvector z;

3.016 Home

PRI

Full Screen

Quit

Bt
Close
e

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

Lecture 09 MATHEMATICA®) Example 1

Matrix eigensystems and their geometrical interpretation

notebook (non-evaluated) pdf (evaluated) html (evaluated)
The symbolic computatation of eigenvalues and eigenvectors is demonstrated. In this example, a “cheat” is
employed so that a matrix with “interesting” eigenvalues and eigenvectors is used as computation fodder. Just
why the “cheat” works is demonstrated in Example 09-2.

v Initialization Steps: Define a 2x2 matrix and compute its
eigensystem

1-3 These are initialization steps used to define mymatrix below. The idea
here is to produce a non-trivial matrix with simple eigenvalues.

4: A “typical” 2 x 2 matrix A is defined. ..
5: Its eigenvalues are obtained by by first solving equation Eq. 9-4 for X...

4| mtemp = DiagonalMatrix[{2 Pi, 4}];
mtemp // MatrixForm

2| << "Geometry Rotations™ |

MatrixForm[msim = TransposelRotationMatrix2D[Pi/411.
mtemp.RotationMatrix2D[Pi/ 4]

mymatrix = {{2+Pi, -2+ Pi}, {-2+ Pi, 2+ Pi}};
mymatrix // MatrixForm

6: And, its eigenvectors could be obtained by putting each eigenvalue back
into Eq. 9-2 and then solving & for each distinct A\. However, this tedious
procedure can also be performed with Eigenvectors

5| Solve[Det[mymatrix — A IdentityMatrix[2]] == 0, 1]

6| Eigenvectors[mymatrix]

7| {evec1, evec2} = Eigenvectors[mymatrix]

7: Here, a matrix of eigenvectors is defined with named rows evecl and
evec2.

Bl Eigensystem[mymatrix]

8: Eigensystem generates the same results as Eigenvectors and
Eigenvalues in one step.

3.016 Home

PRI

Full Screen

Close

Quit

o

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2006/Notebooks/L09/Lecture-09.nb
http://pruffle.mit.edu/3.016-2006/pdf/L09/Lecture-09-1.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-09/HTMLLinks/index_1.html
http://pruffle.mit.edu/3.016-2006/html/Lecture-09/HTMLLinks/index_1.html

The matrix operation on a vector that returns a vector that is in the same direction is an eigensys-
tem. A physical system that is associated can be interpreted in many different ways:

geometrically The vectors & in Eq. 9-2 are the ones that are unchanged by the linear transformation
on the vector.

iteratively The vector # that is processed (either forward in time or iteratively) by A increases (or
decreases if A < 1) along its direction.

In fact, the eigensystem can be (and will be many times) generalized to other interpretations and
generalized beyond linear matrix systems.

Here are some examples where eigenvalues arise. These examples generalize beyond matrix eigen-
values.

e As an analogy that will become real later, consider the “harmonic oscillator” equation for a mass,
m, vibrating with a spring-force, k, this is simply Newton’s equation:

d?z

If we treat the second derivative as some linear operator, £ on the position z, then this

spring
looks like an eigenvalue equation:

k

Espringx =

5 (9-6)

e Letting the positions x; form a vector Z of a bunch of atoms of mass m;, the harmonic oscillator
can be generalized to a bunch of atoms that are interacting as if they were attached to each other
by springs:

d?z;
mzﬁ = Z kl](xl . xj) (9—7)
i’s near neighbors j

3.016 Home

PRI

Full Screen

Quit

Bt
Close
e

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

For each position ¢, the j-terms can be added to each side, leaving and operator that looks like:

d2
migzz —ki2 0 —kus
d2
—ko1 mogz —kes O

- . 2
Llattice = : my; j?

0 0

d2
MN-177 —kN-1N
2

d
—kNN-1 MmNz

The operator £),ice has diagonal entries that have the spring (second-derivative) operator and
one off-diagonal entry for each other atom that interacts with the atom associated with row i.

The system of atoms can be written as:

-1 o e
k™ LagticeT =T

(9-9)

which is another eigenvalue equation and solutions are constrained to have unit eigenvalues—these

are the ‘normal modes.’

To make the above example more concrete, consider a system of three masses connected by

springs.

3.016 Home

PRI

Full Screen

Quit

Bt
Close
e

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

Figure 9-4: Four masses connected by three springs

The equations of motion become:

d2
m1gez

—k12
—ki13
—k14

— T Lk e x1 kio+kis+ka 0 0 O

maL 0 0 o 0 ki 0 0
0 mg% 0 z3 | 0 0 ki3 O
0 0 ms % T4 0 0 0 ks

which can be written as

Lyxa® = kX

(9-10)

BN

PRI

3.016 Home

Full Screen
Close

Quit

(9_11) ©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

or
B L T =T (9-12)

As will be discussed later, this system of equations can be “diagonalized” so that it becomes four
independent equations. Diagonalization depends on finding the eigensystem for the operator.

e The one-dimensional Shrodinger wave equation is:

h d*y(x)
— S L U@)(e) = By@) (9-13)
where the second derivative represents the kinetic energy and U(zx) is the spatial-dependent 3.016 Home
potential energy. The “Hamiltonian Operator” H = —%%—I—U (z), operates on the wavefunction
¥ (x) and returns the wavefunction’s total energy multiplied by the wavevector;
Hip(z) = Ey(x) (9-14)

PRI

This is another important eigenvalue equation (and concept!)

Symmetric, Skew-Symmetric, Orthogonal Matrices

Three types of matrices occur repeatedly in physical models and applications. They can be placed into Full Screen
three categories according to the conditions that are associated with their eigenvalues:

All real eigenvalues Symmetric matrices—those that have a ”mirror-plane” along the northwest—

southeast diagonal (4 = AT)—must have all real eigenvalues.

Close
Hermetian matrices—the complex analogs of symmetric matrices—in which the reflection across

the diagonal is combined with a complex conjugate operation (a;; = dj;), must also have all real
eigenvalues.

All imaginary eigenvalues Skew-symmetric (diagonal mirror symmetry combined with a minus) Quit
matrices (—A = AT) must have all complex eigenvalues.

Skew-Hermitian matrices—-the complex analogs of skew-symmetric matrices (a;; = —aj;)—have
all imaginary eigenvalues. ©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

product of all the eigenvalues is 1. These are called orthogonal matrices and they have or-

Unitary Matrices: unit determinant Real matrices that satisfy A7 = A~! have the property that I I N -
thonormal rows. Their determinants are also +1. = I

This is generalized by complex matrices that satisfy A_T = A7, These are called unitary matrices
and their (complex) determinants have magnitude 1. Orthogonal matrices, A, have the important
physical property that they preserve the inner product: Z -y = (AZ) - (Ay). When the orthogonal
matrix is a rotation, the interpretation is that the vectors maintain their relationship to each
other if they are both rotated.

3.016 Home

PRI

Full Screen

Quit

Bt
Close
e

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

Imaginary axis: (O, i)

....... Skew—Hermitian

Hermitian
' Real Axis (1, 0) o |

PRI

Full Screen

Figure 9-5: The Symmetric (complex Hermitic), Skew-Symmetric (complex Skew-Hermitian),
Orthogonal, and Unitary Matrix sets characterized by the position of their eigenvalues in the
complex plane. (Hermits live alone on the real axis; SkewHermits live alone on the imaginary

axi S) Close

Orthogonal Transformations

Multiplication of a vector by an orthogonal matrix is equivalent to an orthogonal geometric transfor-
mation on that vector.

For othogonal transformation, the inner product between any two vectors is invariant. That is,
the inner product of two vectors is always the same as the inner product of their images under an

orthogonal transformation. Geometrically, the projection (or the angular relationship) is unchanged.
©W. Craig Carter

Quit

http://pruffle.mit.edu/3.016-2006/

This is characteristic of a rotation, or a reflection, or an inversion.
Rotations, reflections, and inversions are orthogonal transformations. The product of orthogonal
matrices is also an orthogonal matrix.

Lecture 09 MATHEMATICA® Example 2

Coordinate Transformations to The Eigenbasis

notebook (non-evaluated) pdf (evaluated) html (evaluated)
Demonstrates that the matrix composed of columns constructed eigenvectors of a matrix can be used to diago-
nalize a matriz and the resulting diagonal entries are the matrix eigenvalues.

simtrans = {evec2, evecl} // Transpose;
simtrans // MatrixForm

1: simtrans is constructed by assigning rows defined by the eigenvectors

2| Inverselsimtrans].mymatrix.simtrans // Simplify // MatrixForm

from Example 09-1 and then transposing so that the eigenvectors are the s[——(reaagesa ormogonaizaton

2: The original matrix is left-multiplied by the inverse of simtrans and ®l==GecmetyRotations
6| MatrixFormlRotationMatrix2Dlx/ 411

COlqul’lS. 4[GramSchmidt[Eigenvectors[mymatrix]] // MatrixForm

3.016 Home

«| «|»|m]

right-multiplied by simtrans; the result will be a diagonal matrix with
the original matrix’s eigenvalues as diagonal entries. 7

evecl
evec2

8[mymatrix.evecl

2-4 The eigenvectors are orthogonal. There is a process called Gram-Schmidt
orthogonalization used to define a set of vectors that are normal to each
other. Here, GramSchmidt produces vectors that are also normalized to
unit vectors. This, and other useful vector functions such as Normalize
are avaiable in the LinearAlgebra‘Orthogonalization package.

9[mymatrix.evec2

o

10[MatrixPower[mymatrix, 12].evec2 // Simplify

5-6 The geometrical interpretation of the matrix that performs the diagonal-
ization can be obtained by loading the Geometry‘Rotations package.
The eigenvector-matrix can be compared to the /4 rotation matrix.

8-9 Demonstrates that Eq. 9-2 is true.
10: Demonstrates that A"Z = \"Z.

Full Screen

Close

Quit

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2006/Notebooks/L09/Lecture-09.nb
http://pruffle.mit.edu/3.016-2006/pdf/L09/Lecture-09-2.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-09/HTMLLinks/index_2.html
http://pruffle.mit.edu/3.016-2006/html/Lecture-09/HTMLLinks/index_2.html

Lecture 10: Real Eigenvalue Systems; Transformations to Eigenbasis

Reading:
Kreyszig Sections: 8.4, 8.5 (pages349-354, 356-361)

Similarity Transformations

A matrix has been discussed as a linear operation on vectors. The matrix itself is defined in terms of
the coordinate system of the vectors that it operates on—and that of the vectors it returns.

In many applications, the coordinate system (or laboratory) frame of the vector that gets operated
on is the same as the vector gets returned. This is the case for almost all physical properties. For
example:

e In an electronical conductor, local current density, j, is linearly related to the local electric field
E:

—

s (10-1)

e In a thermal conductor, local heat current density is linearly related to the gradient in tempera-

ture:
EVT = jq (10-2)

e In diamagnetic and paramagnetic materials, the local magnetization, B is related to the applied
field, H:
uH =B (10-3)

e In dielectric materials, the local total polarization, 13, is related to the applied electric field:

+P (10-4)

=
=,
I
]
I
=
=,

3.016 Home

PRI

Full Screen

Close

Quit

o

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

When & and y are vectors representing a physmal quantity in Cartesian space (such as force F
electric field E orientation of a plane n, current j, etc.) they represent something physical. They don’t
change if we decide to use a different space in which to represent them (such as, exchanging z for v,
y for z, z for x; or, if we decide to represent length in nanometers instead of inches, or if we simply
decide to rotate the system that describes the vectors. The representation of the vectors themselves
may change, but they stand for the same thing.

One interpretation of the operation AZ has been described as geometric transformation on the
vector Z. For the case of orthogonal matrices A,., geometrical transformations take the forms of
rotation, reflection, and/or inversion.

Suppose we have some physical relation between two physical vectors in some coordinate system,
for instance, the general form of Ohm’s law is:

J =cE
Jz Ozx Ogzxy Ozz E; (10—5)
Jy | =\ Ozy Oy Oy £,
J, Ozz Oyz Ozz E,

The matrix (actually it is better to call it a rank-2 tensor) g is a physical quantity relating the amount
of current that flows (in a direction) proportional to the applied electric field (perhaps in a different
direction). ¢ is the “conductivity tensor” for a particular material.

The physical law in Eq. 10-5 can be expressed as an inverse relationship:

S

18 Pxx Pzy Pxz Jx (10—6)
E, = | Pzy Pyy Pyz Jy

E, Pzz Pyz Pzz Jz

where the resistivity tensor p = o L.

What happens if we decide to use a new coordinate system (i.e., one that is rotated, reflected, or
inverted) to describe the relationship expressed by Ohm’s law?
The two vectors must transform from the “old” to the “new” coordinates by:

At e _ piee Adionda _ i 10
Anew—mldEﬁ’ew m Egld Anew—mld Y
orth — Lorth] =)

3.016 Home

PRI

Full Screen

Quit

Bt
Close
e

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

Where is simple proof will show that:

old—new __ gnew—old—1
Aorth _Aorth

1
i (10-8)

new—old old—new ™
Aorth Aort

new—old old—new
Aort _Aort

Anew—>old Aold—mewT

orth orth

where the last two relations follow from the special properties of orthogonal matrices.
How does the physical law expressed by Eq. 10-5 change in a new coordinate system?

in old coordinate system: joid = 40t Fold
YR ITEX (10-9)

in new coordinate system: j7€w = "W prew
To find the relationship between x4 and x™¢*: For the first equation in 10-9, using the transformations

in Egs. 10-7:
Agfzuaold]new _ XOZdANGTU—*OldEnew (10_10)

orth

and for the second equation in 10-9:

MJOM I XnewMEold (10-11)

orth
Left-multiplying by the inverse orthogonal transformations:

old—new pnew—old : old—new old new—old
Aorth Aorth new Aor‘th Aorth <

10-12
AneﬁL—»oldAoldHnew old Anezu%old neonldHnewEold ()
or or

Because the transformation matrices are inverses, the following relationship between similar matrices
in the old and new coordinate systems is:

ld L Aold—mew newAnew—>old

orth orth
ne Anew—>old oldAold—mew (10‘13)
X orth orth

The x°¢ is said to be similar to X" and the double multiplication operation in Eq. 10-13 is called
a stmilarity transformation.

3.016 Home

PRI

Full Screen

Quit

Bt
Close
e

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

Stresses and Strains

Stresses and strains are rank-2 tensors that characterize the mechanical state of a material.

A spring is an example of a one-dimensional material—it resists or exerts force in one direction
only. A volume of material can exert forces in all three directions simultaneously—and the forces need
not be the same in all directions. A volume of material can also be “squeezed” in many different ways:
it can be squeezed along any one of the axis or it can be subjected to squeezing (or smeared) around
any of the axes®

All the ways that a force can be applied to small element of material are now described. A force
divided by an area is a stress—think of it the areal density of force.

Sk

F, _Fq

(i, Opy = —=— = 0z

) (10-14)

]
T

A;j is a plane with its normal in the j-direction (or the projection of the area of a plane A in the
direction parallel to j)

3Consider a blob of modeling clay—you can deform it by placing between your thumbs and one opposed finger; you
can deform it by simultaneously squeezing with two sets of opposable digits; you can “smear” it by pushing and pulling
in opposite directions. These are examples of uniaxial, biaxial, and shear stress.

3.016 Home

PRI

Full Screen

Close

o

Quit

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

A A

—>02

—(O)
yA 'C/’XZ '(/)'13

Ozx Oz 031 €

> —>022
y & >Oyy
| 21f~1
X Oyx 011

Figure 10-6: Illustration of stress on an oriented volume element.

Oxx Ogzgy Ogxz
o= O G @ (10-15)
Ozez Ozy Ozz
There is one special and very simple case of elastic stress, and that is called the hydrostatic stress.
It is the case of pure pressure and there are no shear (off-diagonal) stresses (i.e., all o;; = 0 for ¢ # j,
and 011 = 092 = 033). An equilibrium system composed of a body in a fluid environment is always in
hydrostatic stress:

=2 (T
o= 0 —P 0 (10-16)
0 il 7R

where the pure hydrostatic pressure is given by P.

Strain is also a rank-2 tensor and it is a physical measure of a how much a material changes its
shape.?

Why should strain be a rank-2 tensor?

Tt is unfortunate that the words of these two related physical quantities, stress and strain, sound so similar. Strain

3.016 Home

PRI

Full Screen

Quit

Bt
Close
e

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

X X

Figure 10-7: lllustration of how strain is defined: imagine a small line-segment that is aligned
with a particular direction (one set of indices for the direction of the line-segment); after defor-
mation the end-points of the line segment define a new line-segment in the deformed state. The
difference in these two vectors is a vector representing how the line segment has changed from
the initial state into the deformed state. The difference vector can be oriented in any direction
(the second set of indices)—the strain is a representation of “a difference vectors for all the
oriented line-segments” divided by the length of the original line.

Or, using the same idea as that for stress:

AL; _ AL AL -i
R B o S SRS) g

If a body that is being stressed hydro-statically is isotropic, then its response is pure dilation (in
other words, it expands or shrinks uniformly and without shear):

measures the change in geometry of a body and stress measures the forces that squeeze or pull on a body. Stress is the
press; Strain is the gain.

3.016 Home

BN

PRI

I
o= |
o |

Full Screen

Close

Quit

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

A/3 0 0

=] 0 A/3 0 (10-18)
0 0 A/3
dv
yA i 10-19
= (10-19)

So, for the case of hydrostatic stress, the work term has a particularly simple form:

3 3
szaijdéij = —PdV

e (10-20)

Vig;jdei; = —PdV. (summation convention)

This expression is the same as the rate of work performed on a compressible fluid, such as an ideal
gas.

EigenStrains and EigenStresses

For any strain matrix, there is a choice of an coordinate system where line-segments that lie along the
coordinate axes always deform parallel to themselves (i.e., they only stretch or shrink, they do not
twist).

For any stress matrix, there is a choice of an coordinate system where all shear stresses (the off-
diagonal terms) vanish and the matrix is diagonal.

These coordinate systems define the eigenstrain and eigenstress. The matrix transformation that
takes a coordinate system into its eigenstate is of great interest because it simplifies the mathematical
representation of the physical system.

3.016 Home

PRI

Full Screen

Quit

Bt
Close
e

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

N N
Lecture 10 MATHEMATICA®) Example 1 I

Principal Axes: Mohr’s Circle of Stress

notebook (non-evaluated) pdf (evaluated) html (evaluated)
Diagonalizing a quasi-two-dimensional stress tensor, the equations for Mohr’s circle of stress (Fig. 10-8) are
derived

otensordiag =
{{oprinc,,, 0, 0}, (0, oprinc,y, Oy, {0, 0, aprinc,, }j;

1: The problem is done in reverse by finding the backwards rotation of a |stensordiag/ MatixForm

.) o . -) e
diagonal matrix. This is the stress in the principle coordinate system. 5™ "zfc[ojsm‘ il 0}, (Sinlel, Cosldl, 0, {0, 0, 1)
. . . . rotmatlel // MatrixForm
2: This is the rotation operator by 6 about the z-axis. 3.016 Home

orot = Simplify[Transposelrotmatlél].otensordiag.rotmatl6l];
orot // MatrixForm

4: The rotation matrix factors well using the double angle formulas.

4| orotalt = Collect{orot // TrigReduce, {Cosl24], Sinl261};
orotalt // MatrixForm

5: This can be compared with the general form of any quasi-two-dimensional
(z—y plane) stress that has the same principle stresses identified above. In
the rotated (i.e., laboratory) frame, the stresses are geometrically related
to the circle plotted in 10-8.

6: The trace of the stress tensor is independent of rotation—this is a general ¢[smpityiiab, + oiab, | |

claby claby, olab,,

olabMat = | olab,, claby, olaby,]: orrotalt;

clab,, claby, olab,,

olabMat // MatrixForm <<| 4 | ’ |>’|

All z — components remain zero except the original diagonal olab,,

property for any unitary transformation. 7[Simpliy(ciab, lab,, — (labs,)"2] |
7: Like the trace, the determinant is also an matriz invariant. gf uniexiel10 = (oprinc,, -> 10, oprine,y —>0) |
N . ParametricPlot[{clab,y, orlabyy} /. uniaxiall0
11: USlng ParametricPlot fOr Oxo (9) and O—Iy (9), an example Of MOhI"S , {6, 0, 71}, AxesLabel - ("nor'mal stress", "shear stress"}, Full Screen
o o &) 9| AspectRatio - 1,
circle is plotted for principle stresss of 30 and 10. PlotLabel - " \t \t Mohr Circle for 10 MPa Uniaxial Tension",
PlotStyle - {Thickness[0.01], Huel11}]

10| uniaxialother = (oprinc,, —> 30, rrprinr:W —>10; |

ParametricPlot{clabyy, orlaby } /. uniaxialother
, 16, 0, nr}, AxesLabel — {"normal stress", "shear stress"},
AspectRatio - 1,
PlotRange —> {{0, 40}, {-20, 20}}, PlotLabel - Close
"\t \t Mohr Circle for oprinc,, = 30 oprinc,, =10",

PlotStyle - {Thickness[0.01], Huel11};

Quit

o

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2006/Notebooks/L10/Lecture-10.nb
http://pruffle.mit.edu/3.016-2006/pdf/L10/Lecture-10-1.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-10/HTMLLinks/index_1.html
http://pruffle.mit.edu/3.016-2006/html/Lecture-10/HTMLLinks/index_1.html

lab

>

o

- -

0ij(0)

\4

princ
O arge

0ii(0) = offset+ radius cos20
0jj(0) = offset —radiuscos 26
0jj(6) = radiussin26

PrinC e _princ

: e CSlarge Ogmall
where radius = O

Figure 10-8: Mohr's circle of stress is a way of graphically representing the two-dimensional
stresses of identical stress states, but in rotated laboratory frames.
The center of the circle is displaced from the origin by a distance equal to the average of the
principal stresses (or average of the eigenvalues of the stress tensor).
The maximum and minimum stresses are the eigenvalues—and they define the diameter in the
principal 8 = 0 frame.

Any other point on the circle gives the stress tensor in a frame rotated by 26 from the principal

axis using the construction illustrated by the blue lines (and equations).

Quadratic Forms

The example above, where a matrix (rank-2 tensor) represents a material property, can be understood
with a useful geometrical interpretation.

For the case of the conductivity tensor ¢, the dot product E j is a scalar related to the local energy
dissipation:

e=EToE (10-21)

3.016 Home

PRI
Full Screen

Bt
Close

Quit

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

The term on the right-hand-side is called a quadratic form, as it can be written as:

2
€ =011 + 0122122 + 0132123+
2
0212122 + 022%5 + 023X2X3+ (10—22)

2
0317123 + 032%273 + 03373
or, because ¢ is symmetric:

e =01177 + 20122172 + 201371 T3+
09975 + 20937273+ (10-23)

2
033373

It is not unusual for such quadratic forms to represent energy quantities. For the case of paramag-
netic and diamagnetic materials with magnetic permeability tensor p, the energy per unit volume due

to an applied magnetic field H is:

[(R
—= §HTHH (10-24)

for a dielectric (i.e., polarizable) material with electric electric permittivity tensor k£ with an applied

electric field E:]
—— o l -
= 2E7 kE (10-25)

The geometric interpretation of the quadratic forms is obtained by turning the above equations
around and asking—what are the general vectors Z for which the quadratic form (usually an energy
or power density) has a particular value? Picking that particular value as unity, the question becomes
what are the directions and magnitudes of Z for which

1 =zT A% (10-26)

This equation expresses a quadratic relationship between one component of £ and the others. This is a
surface—known as the quadric surface or representation quadric—which is an ellipsoid or hyperboloid
sheet on which the quadratic form takes on the particular value 1.

3.016 Home

PRI

Full Screen

Quit

Bt
Close
e

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

In the principal axes (or, equivalently, the eigenbasis) the quadratic form takes the quadratic form
takes the simple form:
e = x;’bTAebxgb = AH.%'% aF A22$% + Aggl‘g (10—27)

and the representation quadric
Ap123 + Agox3 + Agza =1 (10-28)

which is easily characterized by the signs of the coefficients.
In other words, in the principal axis system (or the eigenbasis) the quadratic form has a particularly
simple, in fact the most simple, form.

Eigenvector Basis

Among all similar matrices (defined by the similarity transformation defined by Eq. 10-13), the simplest
matrix is the diagonal one. In the coordinate system where the similar matrix is diagonal, its diagonal
entries are the eigenvalues. The question remains, “what is the coordinate transformation that takes
the matrix into its diagonal form?”

The coordinate system is called the eigenbasis or principal axis system, and the transformation that
takes it there is particularly simple.

The matrix that transforms from a general (old) coordinate system to a diagonalized matrix (in
the new coordinate system) is the matrix of columns of the eigenvectors. The first column corresponds
to the first eigenvalue on the diagonal matrix, and the n® column is the eigenvector corresponding the
n* eigenvalue.

The Eigenvector The Eigenvector
Diagonalized | = Column General Column (10-29)
Matrix Matrix Matrix Matrix

This method provides a method for finding the simplest quadratic form.

3.016 Home

PRI

Full Screen

Quit

Bt
Close
e

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

Lecture 11: Geometry and Calculus of Vectors

Reading:
Kreyszig Sections: 9.1, 9.2, 9.3, 9.4 (pages364-369, 371-374, 377-383, 384-388)

Graphical Animation: Using Time as a Dimension in Visualization

Animations can be very effective tools to illustrate time-dependent phenomena in scientific presenta- M
tions. Animations are sequences of multiple images—called frames—that are written to the screen
interatively at a constant rate: if one second of real time is represented by N frames, then a real-time
animation would display a new image every 1/N seconds.
There are two important practical considerations for computer animation: ﬂ ﬂ ﬁ ﬂ

frame size An image is a an array of pixels, each of which is represented as a color. The amount of
memory each color requires depends on the current image depth, but this number is typically
2-5 bytes. Typical video frames contain 1024x 768 pixel images which corresponds to about 2.5
MBytes/image and shown at 30 frames per second corresponding to about 4.5 GBytes/minute. Full Screen
Storage and editing of video is probably done at higher spatial and temporal resolution. Each
frame must be read from a source—such as a hard disk—and transfered to the graphical memory
(VRAM) before the screen can be redrawn with a new image. Therefore, along with storage

space the rate of memory transfer becomes a practical issue when constructing an animation.

Close

animation rate Humans are fairly good at extrapolating action between sequential images. It de-
pends on the difference between sequential images, but animation rates below about 10 frames
per second begin to appear jerky. Older Disney-type cartoons were typically displayed at about
15 frames per second, video is displayed at 30 frames per second. Animation rates above about
75 frames per second yield no addition perceptable “smoothness.” The upper bound on computer
displays is typically 60 hertz.

Quit

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

Lecture 11 MATHEMATICA®) Example 1

Introductory Animation Examples

notebook (non-evaluated)
Several introductory examples of animated results from equation-generated graphics are presented as model

pdf (evaluated)

html (evaluated)

starting points. In MATHEMATICA®) , the goal is produce a list of Graphics-objects and then display them
all. The animation can be played by grouping all the individual displayed graphics objects into one super-group
(i.e., a super-bracket); closing the brackets and then using the Cell-menu to animated the closed-and-selected
group.
Two simple methods to produce animations are illustrated: 1) using Table with a graphics-producing argument;

2) generating a list of undisplayed graphics objects, and then displaying them using a loop structure.

1:

A traveling wave is produced by iteratively plotting sin(kz —wt) a discrete
times using Table together with Plot. Evaluate must be wrapped
around the function, otherwise the time-variable will not be computed
automatically.

Beats are illustrated. However, unless the PlotRange of each image is
the same, the resulting animation would be shoddy.

In this case, the animation is computed first and then displayed
later. The Graphics-objects are stored in a list using Table
and ParametricPlot, but graphical display is suppressed by using
DisplayFunction—Identity. Any list-generating function, such as
AppendTo, can be used to produce such Graphics-lists.

Such Graphics-lists can be combined with other computed graphics ob-
jects and shown together. In this example, a list of colors is produced
with Graphics and CMYKColor is computed and then used to colorize
the previously computed graphics list. Do is used with Show to produce
the graphics; in this case, the previously-suppressed display is forced with
DisplayFunction— $DisplayFunction.

An animation of a sequence of 3D graphics objects is produced similarly;
note that PlotRange must be used to ensure that the z-axis remains
constant between frames.

N

IS

frequency = 3;
Table[
Plot[Evaluate[Sin[x — frequency t]], {x, —Pi, Pi}], {t, 0, 2, 0.1}]

frequency1 = 1;
frequency2 = 2/8;
Kl =1/2;
k2 =4/7;
Table[Plot[Evaluate[
Sin[k1 x — frequency1 t] + Sin[k2x — frequency2t]],
{x, 0, 20 Pi}, PlotRange —> {-2, 2}], {t, 0, 10, 0.25}]

GraphicsList = Table[ParametricPlot[
Evaluate[{Sinlt] + Sin[tal, Coslt] + Cosltal}],
{t, 0, 2 Pi}, AspectRatio —> 1,
DisplayFunction —> Identity], {a, 0, 20}];

Do[Show[GraphicsListl[il],
DisplayFunction —> $DisplayFunction],
{i, 1, Length[GraphicsList]}]

RandomColors =
Table[Graphics| CMYKColor[0.5 + 0.5 Sin[2 Pitl,
0.5 + 0.5Cosl2Pit], 0.5, 011,
{t, 0, 1, 1/Length[GraphicsList]}];
Do[Show[{RandomColorsllill, GraphicsListllill},
AspectRatio —> 1, DisplayFunction —> $DisplayFunction],
{i, 1, Length[GraphicsList]}]

Table[Plot3D[Evaluate[
Exp[-0.01x((x = DA2 + (y —t)22)] Sinlx —t] Sin[y - t]],
{x, —Pi, 4P}, {y, —Pi, 4 Pi}, PlotRange —> {~1, 1}],
{t, -4 Pi, 6 Pi, Pi/24}]

3.016 Home

PRI

Full Screen

Close

o

Quit

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2006/Notebooks/L11/Lecture-11.nb
http://pruffle.mit.edu/3.016-2006/pdf/L11/Lecture-11-1.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-11/HTMLLinks/index_1.html
http://pruffle.mit.edu/3.016-2006/html/Lecture-11/HTMLLinks/index_1.html

Vector Products

The concept of vectors as abstract objects representing a collection of data has already been presented.
Every student at this point has already encountered vectors as representation of points, forces, and
accelerations in two and three dimensions.

Review: The Inner (dot) product of two vectors and relation to projection

An inner (or dot-) project is multiplication of two vectors that produces a scalar.
alibi=2
=a;b;
1ifi=j
0 otherwise

) PRI

2
=(a1,02,...an) | . (11-1)

Eaibj 61']' where 67Lj

bn

ax Full Screen

a2
E(bl, bg, 00 bN)

an
3 A Close
The inner product is:
linear, distributive (k1@ -+ kqb) &= ki@ -+ kb - ¢
symmetric a - b="b-d
Quit

satifies Schwarz inequality ||@ - b|| < ||b]|||@]|

satifies triangle inequality ||@ + b|| < ||| + ||@]| ——
. Craig Carter

http://pruffle.mit.edu/3.016-2006/

If the vector components are in a cartesian (i.e., cubic lattice) space, then there is a useful equation
for the angle between two vectors:
@b
o = — =
&l 1ol
where 77; is the unit vector that shares a direction with i. Caution: when working with vectors in
non-cubic crystal lattices (e.g, tetragonal, hexagonal, etc.) the angle relationship above does not hold.
One must convert to a cubic system first to calculate the angles.
The projection of a vector onto a direction 73, is a scalar:

Thq - iy (11-2)

p=a-riy (11-3)

Review: Vector (or cross-) products

The vector product (or cross x) differs from the dot (or inner) product in that multiplication produces
a vector from two vectors. One might have quite a few choices about how to define such a product,
but the following idea proves to be useful (and standard).

normal Which way should the product vector point? Because two vectors (usually) define a plane,
the product vector might as well point away from it.

The exception is when the two vectors are linearly dependent; in this case the product vector will
have zero magnitude.

The product vector is normal to the plane defined by the two vectors that make up the product.
A plane has two normals, which normal should be picked? By convention, the “right-hand-rule”
defines which of the two normal should be picked.

magnitude Given that the product vector points away from the two vectors that make up the product,
what should be its magnitude? We already have a rule that gives us the cosine of the angle
between two vectors, a rule that gives the sine of the angle between the two vectors would be
useful. Therefore, the cross product is defined so that its magnitude for two unit vectors is the
sine of the angle between them.

This has the extra utility that the cross product is zero when two vectors are linearly-dependent
(i.e., they do not define a plane).

3.016 Home

PRI

Full Screen

Quit

Bt
Close
e

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

This also has the utility, discussed below, that the triple product will be a scalar quantity equal
to the volume of the parallelepiped defined by three vectors.

The triple product,
- (bxd=(@xb)-¢=
V@B Sin e 08 Yape = (11.4)
l[@[l1[b[l]le]] sin Ya—p cOS Yap—c

where 7;_; is the angle between two vectors ¢ and j and ;;_j is the angle between the vector k£ and
plane spanned by ¢ and j. is equal to the parallelepiped that has &, 5, and ¢, emanating from its
bottom-back corner.

If the triple product is zero, the volume between three vectors is zero and therefore they must be
linearly dependent.

3.016 Home

PRI

Full Screen

Close

Quit

o

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

N N
Lecture 11 MATHEMATICA® Example 2 I

Cross Product Example

notebook (non-evaluated) pdf (evaluated) html (evaluated)
This is a simple demonstration of the vector product of two spatial vectors and comparison to the the memo-

rization device: R . L

i 7 k
axb=det| a1 as a3
b1 by b3
1|crossab =Cross|{ay, a,, ag} , {by, by, bs}] 3.016 Home
1: Cross produces the vector product of two symbolic vectors @ and b of HE
1 h 3 2 delab:Det[ay |ap [ag]
ength 3. by |5 |bs
2: Det produces the same result using the memorization device. 4| testcrossab = (Coeficientidetab, il
Coefficient[detab, j], Coefficient[detab, kl}
3: Coefficient is used to extract each vector component. 4[testcrossab — crossab | «| «|» | >

Full Screen

Close

o

Quit

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2006/Notebooks/L11/Lecture-11.nb
http://pruffle.mit.edu/3.016-2006/pdf/L11/Lecture-11-2.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-11/HTMLLinks/index_2.html
http://pruffle.mit.edu/3.016-2006/html/Lecture-11/HTMLLinks/index_2.html

Derivatives Vectors

Consider a vector, p, as a point in space. If that vector is a function of a real continuous parameter for
instance, t, then p(t) represents the loci as a function of a parameter.

If p(t) is continuous, then it sweeps out a continuous curve as ¢t changes continuously. It is very
natural to think of ¢ as time and p(t) as the trajectory of a particle—such a trajectory would be
continuous if the particle does not disappear at one instant, ¢, and reappear an instant later, ¢ + dt,
some finite distance distance away from p(t).

If p(t) is continuous, then the limit:

dp(t) .. plt+At) —p(t)

s At il

Notice that the numerator inside the limit is a vector and the denominator is a scalar; so, the derivative
is also a vector. Think about the equation geometrically—it should be apparent that the vector
represented by the derivative is locally tangent to the curve that is traced out by the points p(t — dt),
p(t) plt + dt), etc.

3.016 Home

PRI

Full Screen

Quit

Bt
Close
e

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

Lecture 11 MATHEMATICA® Example 3

Visualizing Time-Dependent Vectors and their Derivatives

notebook (non-evaluated) pdf (evaluated) html (evaluated)
Examples of Z(t) and dZ/dt are illustrated as curves and as animations.

1[TimeVector = (Cosl4xt], Sin8xtl, Sinl27t])

1: A list of three time-dependent components for (z, y, z) is constructed 2[ParameticPloDiTimeVector t,0, 1)

DeltoidSpiral =
and. .. {2 Coslrtl + Cosl2xth), @Sinlxtl - Sinl27t)), t/3)
6 2 a g pp = ParametricPlot3D[DeltoidSpiral,
2: Displayed with ParametricPlot3D. 4| eyl e e it

. ;- {Graphics3DIThickness[0.011], Graphics3DI[Huel11l, pp}]
tive will be calculated.

6[dDSt = DIDeltoidSpiral, t]

6: The derivative operator D is a threadable function so it will operate on 7|ppdt:ParametricPIotSD[dDSt,
. {t, -8, 3}, AxesLabel - {"x", "y", "z"}]
each component of its vector argument.

|
|
ted q 3 9 g | 3.016 Home
3: This is a second example of a curve, DeltoidSpiral, for which the deriva- 5| Showl |
|

Show[
{Graphics3DIThicknessl0.011], Graphics3DI[Huel0.311, ppdt}]

“«| | |»
ppdtlim[tl_] := {Graphics3D[Thickness[0.011],

9 Graphics3D[Huel0.31], ParametricPlot3D[
0.33:dDSt, {t, 0, tl}, AxesLabel > {"x", "y", "z"},

7: This will display the curve that is tangent to DeltoidSpiral at each time
t. Because the z-component is linear in ¢, the resulting tangent curve has

a constant Value Of Z. Compiled - False, DisplayFunction - Identity]}
] . A i — 1cs3DIThi 10.0111
9: This function will produce a graphical object which is the image superpo- | "4 ciabituelil. paamericPord
- .) . DeltoidSpiral, t, 0, i}, AxesLabel - {'x", "y", "2'),
sition of all the results of DeltoidSpiral for ¢ = 0 up to some specified Complon - Faise, DisplayFunction » dentty])
value t = tlim—i.e., a visible curve. 11|TheGraphicsList:Table[(ppdilim[t], dtiimltl}, {t, .05, 3, .05}]; Full Screen
11: A graphics list of the development of the curve and its derivative is con- | PIgsalhecrepnios sl e 425 0,11,
PlotR - {{0, 1}, {0, 1}}, SphericalRegion — True,
structed and. .. L2 Boo;edega‘o‘lr']ruef‘Box:qa(tiosl(1’? fr;c)’a egion > frue
ViewCenter - {0, 0, 0.5}, AspectRatio - 1,
12: Subsequently animated Wlth a DO. ViewPoint - {1.2, -3, 2}], {i, 1, Length[TheGraphicsList]}]

Close

b

Quit

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2006/Notebooks/L11/Lecture-11.nb
http://pruffle.mit.edu/3.016-2006/pdf/L11/Lecture-11-3.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-11/HTMLLinks/index_3.html
http://pruffle.mit.edu/3.016-2006/html/Lecture-11/HTMLLinks/index_3.html

Review: Partial and total derivatives

One might also consider a time- and space-dependent vector field, for instance E €. A = E(:E’, t)
could be the force on a unit charge located at £ at time ¢.

Here, there are many different things which might be varied and give rise to a derivative. Such
questions might be:

1. How does the force on a unit charge differ for two nearby unit-charge particles, say at (x,y, 2)
and at (z,y + Ay, 2)?

2. How does the force on a unit charge located at (z,y, z) vary with time?

3.016 Home

3. How does the the force on a particle change as the particle traverses some path (z(t),y(t), z(t))
in space?

Each question has the “flavor” of a derivative, but each is asking a different question. So a different
kind of derivative should exist for each type of question. ﬂ ﬂﬁﬂ
The first two questions are of the nature, “How does a quantity change if only one of its variables
changes and the others are held fixed?” The kind of derivative that applies is the partial derivative.
The last question is of the nature, “How does a quantity change when all of its variables depend
on a single variable?” The kind of derivative that applies is the total derivative. The answers are:

1. o) 3
9By, 1) _ (aE) ko
8y ay constantz,z,t g
Close
2. o) 3
aE(x,y, Z7t) aE
9B(w,y,2,t) _ (9B 11-7
ot ot ()
constantx,y,z
3. #

AB(e(t).y(0).2(0).) _ 9Bdr 9Bdy 9Bdz OEdi _
dt C Oxdt Oydt Ozdt Otdt

0L,
ATl O (11-8)

VE(Z(#),t) — + —
(l‘()) dt ot ©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

Time-Dependent Scalar and Vector Fields

A physical quantity that is spatially variable is often called a spatial field. It is a particular case of a
field quantity.

Such fields can be simple scalars, such as the altitude as a function of east and west in a topographical
map. Vectors can also be field quantities, such as the direction uphill and steepness on a topographical
map— this is an example of how each scalar field is naturally associated with to its gradient field.
Higher dimensional objects, such as stress and strain, can also be field quantities.

Fields that evolve in time are time-dependent fields and appear frequently in physical models.
Because time-dependent 3D spatial fields are four-dimensional objects, animation is frequently used to
visulize them.

For a working example, consider the time-evolution of “ink concentration” ¢(z,y,t) of a very small
spot of ink spilled on absorbant paper at © = y = 0 at time ¢t = 0. This example could be modeled
with Fick’s first law:

= dc Oc
J=-—-DVc(z,y,t) = —D | — + — 11-9
@t =-D (5 +5) (11-9)
where D is the diffusivity that determines “how fast” the ink moves for a given gradient V¢, and it
is a time-dependent vector that represents “rate of ink flow past a unit-length line segment oriented
perpendicular to J. which leads to the two-dimensional diffusion equation

dc 0%c 9%
Cla i L 1 51
ot <8m2 i 8y2> gy
For this example, the solution, c(z,y,t) is given by

Co a24y?

e o (11-11)

) —

where ¢, is the initial concentration of ink.

3.016 Home

PRI

Full Screen

Close

Quit

o

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

Lecture 11 MATHEMATICA® Example 4

Visualizing a Solution to the Diffusion Equation

html (evaluated)
J is illustrated

notebook (non-evaluated) pdf (evaluated)

The solution to 2D diffusion equation for point source initial conditions and its resulting flux,

with several types of animation.

E (XA2 + yh2)
5 b) . . N 1| concentration = %
1: The diffusivity it set to one, this effectively sets the length and time scales | piusiy=1: Sy
fOI" the Subsequent Simulation. Table[Plot3D[Evaluatelconcentrationl,
{x, -2, 2}, {y, -2, 2}, PlotPoints - 40,
2: The concentration plotted with Plot3D as a two-dimensional surface R 10, 41,0 06D, 25 GES) SO Intewe
embedded in three-dimensions and animated as a function of time. B e e e e e
.) N 3 i] ColorFunction - (Huel1 - 0.75#] &)], {t, 0.0125, 1, .025}]
3: A simpler graphical representation is obtained with ContourPlot by o[Graphics Pt |
plotting contours of constant concentration. The resulting animation is 5 [= (- Dlconceniatin,] _Diconceriraton, y |
of a two-dimensional object. o[PlotvectorFieldiflux /.t 08, (x, 2, 21, Iy, -2, 2,
. N PlotPoints - 20, ColorFunction - (Huel1 - 0.75 #] &)] 44 | <4 | > | > |
4: To plot the flux which is vector field, the package Graphics‘PlotField T
i i i 1 {y, -2, 2}, PlotPoints - 21, Frame —> True,
is loaded for its PlotVectorField function. Siauncion 1004 &) Mohrowiengh =50,
a a . . ScaleFactor —> None, ColorFunction - (Huel1 - 0.75 #] &)]
8: An animation of PlotVectorField for the flux can be obtained. How- :
. 2 K] Table[PlotVectorField[flux, {x, -2, 2}, {y, -2, 2},
PlotRange —> {{-3, 3}, {3, 3}}, Frame —> True,
ever, getting the sequential frames to be consistent and the size of the | Pofange-> (331 13 3)) Frame > Tru
1] 3 MaxArrowLength —> 10, ScaleFactor —> None,
arrows representing the vectors requires a somewhat complicated use of R or o T 01, 08)] Full Screen
PlotVectorField’s options such ScaleFunction. This may serve as & [Taeconoupotiiod o x 2 2.
C g . 9 {y, -2, 2}, PlotPoints — 40, PlotRange - {0, 0.5},
WOFklng first example for beglnnlng users. ColorFunction - (Huel1 - 0.75#1 &), {t, 0.01, 1.01, .05}]
. X 3 . . a 3 Table[ContourPlot]
9: Animations of vector fields can be simplified, by converting them into a ol i i, O, (vl <O
3 } o 10 V2, (x, -2, 2}, [y, -2, 2},
set of scalar representations. In this example, the dot-product exracts the PIOIPOINS 40, PotFangs - (0, 05),
Jz-component only which is animated with contourplots. Colorunctiona e 2075 B IO IEOTT0S | Glose

b

Quit

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2006/Notebooks/L11/Lecture-11.nb
http://pruffle.mit.edu/3.016-2006/pdf/L11/Lecture-11-4.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-11/HTMLLinks/index_4.html
http://pruffle.mit.edu/3.016-2006/html/Lecture-11/HTMLLinks/index_4.html

All vectors are not spatial

It is useful to think of vectors as spatial objects when learning about them—but one shouldn’t get
stuck with the idea that all vectors are points in two- or three-dimensional space. The spatial vectors
serve as a good analogy to generalize an idea.
For example, consider the following chemical reaction:
Reaction: H, %OQ = H50
Initial: 1 1 = 0 The composition could be written as a vector:
During Rx.: 1-¢ 1-— %5 = £

moles Ho l=¢
N = | moles Oy = — 3¢ (11-12)
moles H,O &

and the variable £ plays the role of the “extent” of the reaction—so the composition variable N lives
in a reaction-extent (§) space of chemical species.

3.016 Home

PRI

Full Screen

Quit

Bt
Close
e

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

Lecture 12: Multivariable Calculus

Reading:
Kreyszig Sections: 9.5, 9.6, 9.7 (pages389-398, 400-403, 403-409)

The Calculus of Curves

In the last lecture, the derivatives of a vector that varied continuously with a parameter, 7(t), were
considered. It is natural to think of 7(¢) as a curve in whatever space the vector 7 is defined. The most
familiar example is a curve in the plane: the two values (x(¢),y(t)) are mapped onto the plane through
values as t sweeps through its range tinitial < ¢t < tgnal- A curve in three-dimensional cartesian space is
the mapping of three values (x(t),y(t), z(t)); in cylindrical coordinates: (r(t),0(t),z(t)). In general, a
curve is represented by N coordinates as a single parameter (i.e., t) takes on a range of numbers—the
N coordinates form the embedding space.

Objects that have more dimensions than curves need more parameters. The number of parameters
is the dimensionality of the object and the number of coordinates is the dimensionality of the embedding
space. What we naturally call a surface is a two dimensional object embedded in a three-dimensional
space—for example, in cartesian coordinates (z(u,v),y(u,v), z(u,v)) is a surface.

The two-dimensional surface (z(u,v),y(u,v),z(u,v)) can itself become an embedding space for
lower dimensional objects; for example, the curve (u(t),v(t)) is embedded in the surface (u,v) which
itself embedded in (z,y,z). In other words, the curve (z(u(t),v(t)),y(u(t),v(t)), z(u(t),v(t))) can
be considered to be embedded in (u,v), or embedded in (x,y,z) and constrained to the surface
(2w, 0), y(u, v), 2(u, v)).

In higher dimensions, there are many more possibilities and we can make a few introductory re-
marks about the language that is used to describe them. For application to physical problems, these
considerations indicate the number of degrees-of-freedom that are available and the conditions that a
system is overconstrained. An N-dimensional surface (sometimes called a hyper-surface) embedded in
an M-dimensional space is said to have codimension M — N. Some objects cannot be embedded in

3.016 Home

PRI

Full Screen

Close

Quit

o

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

a higher dimensional space; these are called non-embeddable, examples include the Klein bottle which
cannot be embedded in our three-dimensional space.

Lecture 12 MATHEMATICA@® Example 1

Curves in Three Dimensions

notebook (non-evaluated) pdf (evaluated) html (evaluated)
Two examples of parametric curves are presented with a visualization technique that animates the vector as it
sweeps out a curve.

PrellyFloawer[tJ =

1 . "

e N — + = Cosl3tl){ Coslt]*3, Sinlt]*3, Sinlt] Cosltl*2}

2: This is the second of two example functions that take an argument and (3 + 3 s SO Intewe
2[Bendylt_| := {Coslt], Sinlt], Sinlt] Cosltl}

return a vector at the argument. It is a vector function that takes a scalar
argument.

Display Functions

showcurve[VecFunc_ , tl_] := ParametricPlot3D[
EvaluatelVecFuncltvalll, {tval, 0, tl}, Compiled - False,

3: The function showcurve takes two arguments. The first argument is the B P o
{{=1, 1}, (=1, 1}, {1, 1}}, BoxRatios - {1, 1, 1}]

name of a vector function that takes a single argument, as in the above « <»rlm
° o a a showline[VecFunc_, tl_] := Graphics3D[

examples. The second argument is the upper limit of time to be plotted; Thickness[0.011, Huel1], Linel{(0, 0, 0}, VecFuncltil}] ‘ JJJJ
i.e., it will sweep out a curve from ¢t = 0 to ¢ =upper-limit. The option [showcurveinelVecFunc_ 1] -

Show[{showcurve[VecFunc, tl], showline[VecFunc, til},

IS

&

DisplayFunction is a replacement to Identity, so the graphics will not DisplayFunction —» $DisplayFunction]
o Ci LineSt [VecFunc_] :=
be displayed. e

4: The function showline takes the same two arguments, and it creates a Animating the Curves with Their Parameter
graphics-object for a line drawn from the origin to the point indicated by 7[CuveLineSequencelprettyFiowery
the SeCOIld argument B[CuweLineSequence[BendyJ; [

[Full Screen

5: The function showcurveline takes the same two arguments and calls the
previously defined functions showcurve and showline with the graphics

displayed by using DisplayFunction — $DisplayFunction. The result Close
should be a line pointing to a curve that is swept out from the time ¢ = 0.
6: ClurveLineSequence just calls showcurveline for a fixed interval.

8: This is the second example of an animation showing the vector as it sweeps
out a curve.
Quit

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2006/Notebooks/L12/Lecture-12.nb
http://pruffle.mit.edu/3.016-2006/pdf/L12/Lecture-12-1.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-12/HTMLLinks/index_1.html
http://pruffle.mit.edu/3.016-2006/html/Lecture-12/HTMLLinks/index_1.html

Lecture 12 MATHEMATICA® Example 2

Embedding Curves in Surfaces

notebook (non-evaluated) pdf (evaluated)
An example is constructed that visualizes a two-dimensional surface in three dimensions and then visualizes a

one-dimensional curve constrained to the surface.

1:

FlowerPot takes two arguments and returns a vector. As the arguments
sweep through domains, the vector will trace out a surface.

Using the ParametricPlot3D that is in the Graphics ‘ParametricPlot¢
package, the surface defined by FlowerPlot can be visualized.

Vines takes a single argument and then calls FlowerPot with arguments
that are functions of that single argument—the result must be a curve
embedded in the surface. In this case, the function is scaled a little, so
the curves will be visible.

This is an example that makes the curve fat and green colored.

Here, both the embedded curve and the surface are shown together.

html (evaluated)

FlowerPot[u_, v_] :={(3 + Coslv]) Coslul,

U Sinlul + @ + CoslvD Sinlul, 3/2 + Coslu + v)) Sinlv]}

2[<< Graphics' ParametricPlot3D"

Flowerplot = ParametricPlot3D[FlowerPot[u, v], {u, 0, 2 Pi},
3 {v, 0, 2Pi}, ViewPoint —> {0.141, 1.653, 1.117},
PlotPoints —> {120, 40}]

Vines[t_] := 1.025 « FlowerPot[t Cosltl, —tA2 Sinl t]]
4| vineplot = ParametricPlot3D[Vinesltl, {t, 0, 2 Pi},
ViewPoint —> {0.141, 1.653, 1.117}, PlotPoints —> 500]

3.016 Home

thickvineplot = Show[{Graphics3DIThickness[0.02]],

9 Graphics3D[Hue[0.333, 0.5, 0.5]], vineplot}]

6[Show{thickvineplot, Flowerplot]

7| Show[Flowerplot, thickvineplot]

RIS

Full Screen

Close

Quit

o

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2006/Notebooks/L12/Lecture-12.nb
http://pruffle.mit.edu/3.016-2006/pdf/L12/Lecture-12-2.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-12/HTMLLinks/index_2.html
http://pruffle.mit.edu/3.016-2006/html/Lecture-12/HTMLLinks/index_2.html

Because the derivative of a curve with respect to its parameter is a tangent vector, the unit tangent

can be defined immediately:
dr

It is convenient to find a new parameter, s(t), that would make the denominator in Eq. 12-1 equal
to one. This parameter, s(t), is the arc-length:

s(t) = /t: ds

t
/ Vdz? + dy? + dz2

U=

(12-1)

d 7 (12-2)
2 4 (Zy2qt
/ \/ (7 + ()
and with s instead of ¢,
dr
0(s) = — 12-3
a(s) = o (12:3)

This is natural because ||7]| and s have the same units (i.e., meters and meters, foots and feet, etc)
instead of, for instance, time, t, that makes dr’/dt a velocity and involving two different kinds of units
(e.g., furlongs and hours).

With the arc-length s, the magnitude of the curvature is particularly simple,

w(e) = I = 157

as is its interpretation—the curvature is a measure of how rapidly the unit tangent is changing direction.
Furthermore, the rate at which the unit tangent changes direction is a vector that must be normal
to the tangent (because d(@ -4 = 1) = 0) and therefore the unit normal is defined by:

1 da

p(s) = “5(6) 03 (12-5)

S (12-4)

3.016 Home

PRI

Full Screen

Close

Quit

o

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

There two unit vectors that are locally normal to the unit tangent vector u (s) and the curve unit
normal p(s) x @ and @(s) x p. This last choice is called the unit binormal, b = @(s) X p and the three
vectors together form a nice little moving orthogonal axis pinned to the curve. Furthermore, there
are convenient relations between the vectors and differential geometric quantities called the Frenet
equations.

Using Arc-Length as a Curve’s Parameter

However, it should be pointed out that—although re-parameterizing a curve in terms of its arc-length
makes for simple analysis of a curve—achieving this re-parameterization is not necessarily simple.
Consider the steps required to represent a curve 7(t) in terms of its arc-length:
integration The integral in Eq. 12-2 may or may not have a closed form for s(t).
If it does then we can perform the following operation:

inversion s(t) is typically a complicated function that is not easy to invert, i.e., solve for ¢ in terms
of s to get a t(s) that can be substituted into 7(¢(s)) = 7(s).

These difficulties usually result in treating the problem symbolically and the resorting to numerical
methods of achieving the integration and inversion steps.

3.016 Home

PRI

Full Screen

Quit

Bt
Close
e

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

Lecture 12 MATHEMATICA® Example 3

Calculating arclength

notebook (non-evaluated) pdf (evaluated) html (evaluated)
Examples of computing a curve’s arc-length s

1 | dFlowerDt = Simplify[D[PrettyFlowerlt], t]]

1: Here, the tangent vector for the function, PrettyFlower defined above, is 2[sFlower = integratelSariSimpityldFiowerDt dFiowerDi)
computed. 3[dBendyDt = DiBendylt, 1

2: This is an attempt to find a closed-form solution for arclength s(7)—s(0) = T

3.016 Home

|
|
|
4| sBendy = Integrate[Sqrt[dBendyDt.dBendyDt], t] |
|

Plot[Evaluate[NIntegrate[
SartldFlowerDt.dFlowerDt], {t, 0, uplim}]], {uplim, 0, 6.4}]

i (%)th. A closed-form doesn’t exist. 6
4: However, a closed-form solution does exist for the Bendy -function defined
earlier. If the closed-form s(t) could be inverted (i.e., t(s)) then the curve

¢(t) could be expressed in terms of its natural variable c(s) = c(¢(s)).

5: The plot, s(t) is monotonically increasing and therefore, the function could ﬂ ﬂﬁﬂ
always be inverted numerically.

6: Even for the arc-length that could not be evaluated in closed-form (i.e.,
PrettyFlower), a numerical integration could be used to perform the

inversion.
Full Screen

Close

o

Quit

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2006/Notebooks/L12/Lecture-12.nb
http://pruffle.mit.edu/3.016-2006/pdf/L12/Lecture-12-3.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-12/HTMLLinks/index_3.html
http://pruffle.mit.edu/3.016-2006/html/Lecture-12/HTMLLinks/index_3.html

Scalar Functions with Vector Argument

In materials science and engineering, the concept of a spatially varying function arises frequently:
For example:

Concentration c;(z,y,z) = ¢;(Z) is the number (or moles) of chemical species of type i per unit
volume located at the point Z.

Density p(z,y, z) = p(Z) mass per unit volume located at the point Z. a point p(x,y, z) = p(Z).
Energy Density u(z,y,z) = u(Z) energy per unit volume located at the point &.

The examples above are spatially dependent densities of “extensive quantities.”
There are also spatially variable intensive quantities:

Temperature T'(z,y,z) = T(Z) is the temperature which would be measured at the point Z.
Pressure P(z,y,z) = P(Z) is the pressure which would be measured at the point Z.

Chemical Potential p;(x,y,z) = pi(Z) is the chemical potential of the species ¢ which would be
measured at the point Z.

Each example is a scalar function of space—that is, the function associates a scalar with each point
in space.

A topographical map is a familiar example of a graphical illustration of a scalar function (altitude)
as a function of location (latitude and longitude).

How Confusion Can Develop in Thermodynamics

However, there are many other types of scalar functions of several arguments, such as the state function:
U=U(S,V,N;) or P= P(V,T, N;). It is sometimes useful to think of these types of functions a scalar
functions of a “point” in a thermodynamics space.

However, this is often a source of confusion: notice that the internal energy is used in two different
contexts above. One context is the value of the energy, say 128.2 Joules. The other context is the
function U (S, V, N;). While the two symbols are identical, their meanings are quite different.

3.016 Home

PRI

Full Screen

Quit

Bt
Close
e

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

The root of the confusion lurks in the question, “What are the variables of U?” Suppose that
there is only one (independent) chemical species, then U(-) has three variables, such as U(S,V, N).
“But what if S(T,P,u), V(T,P,u), and N(T,P,u) are known functions, what are the variables
of U?” The answer is, they are any three independent variables, one could write U(T, P, u) =
U(S(T,P,u),V(T, P,u), N(T, P, iu)) and there are six other natural choices.

The trouble arises when variations of a function like U are queried—then the variables that are
varying must be specified.

For this reason, it is either a good idea to keep the functional form explicit in thermodynamics, i.e.,

N N N

dU(S,V,N) = 0S5l)dS - GEHENL,)dV + CONIN))dN

oS ov ON (12-6)
. OU(Z, P) OU(T, P,) OU(T, P,) y
dU(T, P,) = 5T dT + iYa av + an dpu
or use, the common thermodynamic notation,
w-(%) w50 (%) wri () ay

V,N S,N S,V (12_7)

ou ou ou
dU = | — dT + () dP + <) d
<8T>P,# op m o T,P d

Total and Partial Derivatives, Chain Rule

There is no doubt that a great deal confusion arises from the following question, “What are the variables
of my function?”

For example, suppose we have a three-dimensional space (x,y, z), in which there is an embedded
surface (z(w,v),y(w,v), z(w,v)) F(w,v) = Z(&) where @ = (v,w) is a vector that lies in the surface,
and an embedded curve (z(s), y(s), z(s)) = Z(s). Furthermore, suppose there is a curve that lies within
the surface (w(t),v(t)) = u(t).

Suppose that € = f(z,y, 2) is a scalar function of (z,y, z).

Here are some questions that arise in different applications:

3.016 Home

PRI

Full Screen

Close

o

Quit

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

. How does &€ vary as a function of position?
. How does &€ vary along the surface?

. How does &€ vary along the curve?

. How does &£ vary along the curve embedded in the surface?

3.016 Home

PRI

Full Screen

Quit

Bt
Close
e

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

Lecture 12 MATHEMATICA® Example 4

Total Derivatives and Partial Derivatives: A Mathematica Review

notebook (non-evaluated) pdf (evaluated) html (evaluated)
Demonstrations of 1) the three spatial derivatives of F(x,y,z); 2) the two independent derivatives on a two-
dimensional surface embedded in z—y-z; 3) the complete derivative of F'(z,y, z) along a curve (z(t), y(t), z(t)).

1|AScaIarFunction[x_, y_, z_] := SomeFunction[x, y,] |

1: AScalarFunction is a symbolic representation of a function—it will be a 2[AScalarFunctonix,y.z |

place-holder for examples of partial derivatives. T o
] 3 . . N . 3 g Print["derivative w/r to seco_nd argumentis "]; 3.016 H
3: This will print Mathematica’s representation of derivatives with respect to 8|druney = DiaScalarFunctionix, . 2},] : ome
rint["derivative w/r to third argumentis " [;

one of several arguments—e.g., OF (z,y, 2) /0y is written as F(0:1:0 [xy 7], | dFuncz = DiAScalarFunctonix,y.z] 21

4: AScalarFunction becomes a function of two-variables when 1z, 4[AScalarFunctionixiw, vl, yw, vl zlw, vi
y, and 2z are restricted to a surface parameterized by (u,v): SLoUAScalarunctionixiw,vl,yiw, vl 2w, vll
(z(w, v), y(w,v), 2(w, v)) 6[dFuncW = DIAScalarFunctionixiw, vl, ylw, v1, zIw, vi], w]
)))))

5: Caution: the distinction between the symbol x and the symbol x [w,v] is o[FocataFanctoniwl i, ytwld v, 2D, vl

important; the following two examples show how the derivatives should 9|dFuncT:
appear. D[AScalarFunction[x[wlt], v[tl], ylwlt], v[t]], z[wlt], vlt]]],

|
|
|
7[dFuncv = DiAScalarFunction[xiw, v, yiw, vI, zw, vIL vl | 44 | 4 | 4 | 44 |
|
4 |
|

10| dFuncT = D[AScalarFunction[x[t], yltl, z[t]], t]

7: This and the previous example show how the chain rule is computed,
these two terms are the components of the gradient in the surface. Full Screen

8: In this case, the previous AScalarFunction becomes a function of a single
variable by specifying a curve in the surface with (w(t),v(t)).

9: Now, a total derivative can be calculated with the chain rule. This is

equivalent to. ..

10: The total derivative along a specific curve (z(t), y(¢), z(t). Close

Quit

o

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2006/Notebooks/L12/Lecture-12.nb
http://pruffle.mit.edu/3.016-2006/pdf/L12/Lecture-12-4.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-12/HTMLLinks/index_4.html
http://pruffle.mit.edu/3.016-2006/html/Lecture-12/HTMLLinks/index_4.html

Taylor Series

The behavior of a function near a point is something that arises frequently in physical models. When
the function has lower-order continuous partial derivatives (generally, a “smooth” function near the
point in question), the stock method to model local behavior is Taylor’s series expansions around a
fixed point.

Taylor’s expansion for a scalar function of n variables, f(x1,x2,...,x,) which has continuous first
and second partial derivatives near the point & = (§1,&2,...,&,) is:
f(glag%"' agn) = f(mlax%" . 7xn)
0 0 0
] 87f (51 AL xl) ar 7f (52 = mQ) Fooodr 7f (gn - xn) 3.016 Home
T |g 0xo £ Oxy, £ g
i
2
82f 9 a2f 82f
. T n —T2) 4.+ — 21)(&n — Zn «| «|»|m
Orq? 5(51 1)) 0x1022 g(fl 71)(&2 — 2) 01101y, 5(51 71)(§n — on) JJJJ
0% f 0% f) GE
D201 5(52 —22)(§L - 21) + 5 5(52 —Z2)"+... + 95202, g(Ez — 22)(én—2n) (12-8)
Full Screen
a ' f)
0,071 g(gn — @& —2) + 0,072 g(gn —o)(Gmz) + 0x,? g(fn = Tn)

+0[(&—21)%] + O [(& — 21)%(& — 22)] + O [(&1 — 21) (&2 — 22)%] + O [(&2 — 22)°]
o= O [(51 i xl)Q(fn . $n)] +O[(&1 — x1)(§2 — 22)(én — Zu)] + .. -+ O [(gn) $n)3]

__runsaeen_|
] Close
or in a vector shorthand:

f@) = £E + Vafle =D+ E-) (VaVafllg- @ -D+O[IE-3P] (129) o]

In the following example, visualization of local approximations will be obtained for a scalar function
of two variables, f(z,y). This will be extended into a an approximating function of four variables by @©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

expanding it about a point (£, 7) to second order. The expansion is now a function of four variables—
the first two variables are the point the function is expanded around (x and y), and the second two
are the variable of the parabolic approximation at that point (§ and n): fappx(§,m;7,y) = f(z,y) +

d 92 92
g, e+ 8| m-nrewhee =3 F| E-2)¢-a)+5f| E-a@—y)+
—z

% Tf (77 —y)(n —y) or fappx(&,m,z,y) = flz,y) +Vf- (f]—y > o %Qform where Qfj., =
2f Of ¢
o0x2 0xdy — T

TR i anx,y 82 “t <77_y>
Oyox - Oy? o

The function fappx(§,7,2,y) will be plotted as a function of { and 7 for |{ —z| < 0 and [n—y| < ¢
for a selected number of points (z,y).

3.016 Home

PRI

Full Screen

Quit

Bt
Close
e

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

Lecture 12 MATHEMATICA® Example 5

Approximating Surfaces at Points

notebook (non-evaluated) pdf (evaluated) html (evaluated)

Visualization of a quadratic approximations to a surface at points on that surface

CrazyFun[x_, y_] := Sin[5xx]Sin[5xy] /(xy) +

™ sinlsx = DISinB x(y - D1/ (x = D (y - 1)

1: CrazyFun is an example function of two variables. enlor — PloaD Cramy Py 01 91

2|7y, 0.1, .9}, PlotRange — All, Mesh — False]

3: Using Normal to convert the Taylor Expansion obtained by Series at
an point z,, y, produces a function Approzfunction of four variables.

Approxfunction[x_, y_, xo_, yo_] :=
Series[CrazyFunlx, y], {x, X0, 2}, {y, yo, 2}] // Normal

4

3.016 Home

anapprox = Plot3D[Evaluate[Approxfunction[x, y, .7, .1]],
{x, 1+.1

5: This illustrates how the local quadratic approximation fits the surface A, T+l A=A, 141

locally at a particular point.

5| Show[anapprox, theplot]

6| Table[{xolil = Randoml], yolil = Randomll}, {i, 1, 100}];

6: Generate a list of random points at which to visualize the local approxi-

8 ApproxPlotli_] :=
mation. Plot3D[Evaluate[Approxfunction[x, y, xolil, yolil]],
{x, xo[?]—.1,xo[!]+.1), _
7: ApprozPlot is an example that will plot the local approximation for any e Functios o (ROBCoR Sl ol #18), «| «|» | »
indexed random point. The surface is colored by using the value of the T BT
-) . . . GraphicsStackl0] =
point as an indicator. Visualization is delayed: only a graphics object is Show[ApproxPlotl 1], DisplayFunction - Identity]
GraphicsStackli_] := GraphicsStacklil =
pI"Oduced. Show|GraphicsStackli - 1], ApproxPlotli +11]
! . - q g g 3 Show|GraphicsArray|
8: This is an example of producing a stack of graphics with a recursive * Graphicastackl10], Showitheplot, GraphicsSiackl 1011,
graphics function. It iteravely adds a new approximating surface graphics L 2ispayFunction= $DisplayFunction] Full Screen
object to the set of the previous ones.
9: GraphicsArray allows plots to be drawn in rows and columns. Here, in-

termediate output is produced and displayed, and then the approximating
surfaces are plotted on the left of the surfaces with the original surface.

Close

Quit

o

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2006/Notebooks/L12/Lecture-12.nb
http://pruffle.mit.edu/3.016-2006/pdf/L12/Lecture-12-5.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-12/HTMLLinks/index_5.html
http://pruffle.mit.edu/3.016-2006/html/Lecture-12/HTMLLinks/index_5.html

Just a few of many examples of instances where Taylor’s expansions are used are:

linearization Examining the behavior of a model near a point where the model is understood. Even
if the model is wildly non-linear, a useful approximation is to make it linear by evaluating near
a fixed point.

approximation If a model has a complicated representation in terms of unfamiliar functions, a Taylor
expansion can be used to characterize the ‘local’ model in terms of a simple polynomials.

asymptotics Even when a system has singular behavior (e.g, the value of a function becomes infinite as
some variable approaches a particular value), how the system becomes singular is very important.
At singular points, the Taylor expansion will have leading order terms that are singular, for 3.016 Home

example near x = 0,
sin(z) 1 =z 3
1z 4 12-10
dol P G (1210
The singularity can be subtracted off and it can be said that this function approaches co ”linearly” ﬂ ﬂ ﬁ ﬂ
from below with slope -1/6. Comparing this to the behavior of another function that is singular

near zero:

2

1 gg L5
— oy e TS 12-11
x 2 6 e ()

exp(7)

. . Full S
shows that the e* /2 behavior is “more singular.” o oreen

Quit

Bt
Close
e

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

Sin[x] 1 Exp[x] 1
s e R
Pl ot Styl e » {{Thi ckness[0.02], Hue[1]}, {Thickness[0.01], Hue[0.5]}}]

Pl ot [{ }. (x, .001, 2.5},

4

3 3.016 Home

2| PRI

Full Screen
" 2 Close
- G aphi cs -
Figure 12-9: Behavior of two singular functions near their singular points.
Quit

stability In the expansion of energy about a point is obtained, then the various orders of expansion
can be interpreted:

zero-order The zeroth-order term in a local expansion is the energy of the system at the point @©@W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

evaluated. Unless this term is to be compared to another point, it has no particular meaning I N -
(if it is not infinite) as energy is always arbitrarily defined up to a constant. I

first-order The first-order is related to the driving force to change the state of the system.
Consider:

AE =VE.6f=—F - 6% (12-12)
If force exists, the system can decrease it energy linearly by picking a particular change §&
that is anti-parallel to the force.
For a system to be stable, it is a necessary first condition that the forces (or first

order expansion coefficients) vanish.

3.016 Home
second order If a system has no forces on it (therefore satisfying the necessary condition of g
stability), then where the system is stable or unstable depends on whether a small §Z can
be found that deceases the energy:

AB= 0% V-F 5% RIRIESLY
1 s
ok VVE -6z (12-13)
1 0%E
= - Sx;0x;
2 61'1617] el Fa 0%y Full Screen

where the summation convention is used above and the point (z1, z9, ..., x,) is one for which
VE is zero.

sion provides a formula to approximate numerical derivatives—and provides an estimate of the
numerical error as a function of quantities like numerical mesh size.

Gradients and Directional Derivatives Quit

numerics Derivatives are often obtained numerically in numerical simulations. The Taylor expan- Close

Scalar functions F'(z,y,z) = F(Z) have a natural vector field associated with them—at each point &
there is a direction n(Z) pointing in the direction of the most rapid increase of F'. Associating the
©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

magnitude of a vector in the direction of steepest increase with the rate of increase of F' defines the
gradient.

The gradient is therefore a vector function with a vector argument (Z in this case) and it is commonly
written as VF'

Here are some natural examples:

Meteorology The “high pressure regions” are commonly displayed with weather reports—as are the
”isobars” or curves of constant barometric pressure. Thus displayed, pressure is a scalar function
of latitude and longitude.

At any point on the map, there is a direction that points to local high pressure center—this is
the direction of the gradient. The rate at which the pressure is increasing gives the magnitude
of the gradient.

The gradient of pressure should be a vector that is related to the direction and the speed of wind.
Mosquitoes It is known that hungry mosquitoes tend to fly towards sources (or local maxima) of

carbon dioxide. Therefore, it can be hypothesized that mosquitoes are able to determine the
gradient in the concentration of carbon dioxide.

Heat In an isolated system, heat flows from high-temperature (7'(Z)) regions to low-temperature
regions.

The Fourier empirical law of heat flow states that the rate of heat flows is proportional to the
local decrease in temperature.

Therefore, the local rate of heat flow should be a proportional to the vector which is minus the
gradient of T'(Z¥): —VT

Finding the Gradient

Potentials and Force Fields

Force is a vector. Force projected onto a displacement vector dz is the rate at which work, dW, is done
on an object dW = —F - dx.

3.016 Home

PRI

Full Screen

Quit

Bt
Close
e

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

If the work is being supplied by an external agent (e.g., a charged sphere, a black hole, a magnet,
etc.), then it may be possible to ascribe a potential energy (E(Z), a scalar function with vector argu-
ment) to the agent associated with the position at which the force is being applied.” This E(%) is the
potential for the agent and the force field due to the agent is F(Z) = —VE(Z).

Sometimes the force (and therefore the energy) scale with the “size” of the object (i.e., the object’s
total charge in an electric potential due to a fixed set of charges, the mass of an object in the gravita-
tional potential of a black hole, the magnetization of the object in a magnetic potential, etc.). In these
cases, the potential field can be defined in terms of a unit size (per unit charge, per unit mass, etc.).
One can determine whether such a scaling is applied by checking the units.

3.016 Home

BN

PRI

Full Screen

Close

Quit

o

5As with any energy, there is always an arbitrary constant associated with the position (or state) at which the energy
is taken to be zero. There is no such ambiguity with force. Forces are, in a sense, more fundamental than energies.
Energy appears to be fundamental because all observations of the first law of thermodynamics demonstrate that there is
a conserved quantity which is a state function and is called energy. ©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

Lecture 13: Differential Operations on Vectors

Reading:
Kreyszig Sections: 9.8, 9.9 (pages410-413, 414-416)

Generalizing the Derivative

The number of different ideas, whether from physical science or other disciplines, that can be understood M
with reference to the “meaning” of a derivative from the calculus of scalar functions is very very large.
Our ideas about many topics, such as price elasticity, strain, stability, and optimization, are connected
to our understanding of a derivative.

In vector calculus, there are generalizations to the derivative from basic calculus that acts on a ﬂ ﬂ ﬁ ﬂ
scalar and gives another scalar back:

gradient (V): A derivative on a scalar that gives a vector.
curl (Vx): A derivative on a vector that gives another vector. Full S
u creen

divergence (V-): A derivative on a vector that gives scalar.

Each of these have “meanings” that can be applied to a broad class of problems.
The gradient operation on f(Z) = f(z,y, 2) = f(x1,z2,23),

af of of\ (0 & 8
s (e 13)

dx’ Ay’ 0z
has been discussed previously. The curl and divergence will be discussed below.

Close

gradszf(

Quit

o

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

Lecture 13 MATHEMATICA®) Example 1

Gradients and Laplacians on Scalar Potentials

notebook (non-evaluated)

pdf (evaluated)

html (evaluated)

An example of a scalar potential due three point charges in the plane is visualized. Methods for computing a

gradient and the divergence of a gradient (Laplacian) are presented.

1:

This is the 2D 1/r-potential; here potential takes four arguments: two
for the location of the charge and two for the position where the “test”
charge “feels” the potential.

This is the third of three fixed charge potentials, arranged at the vertices
of an equilateral triangle.

gradfield is an example of a function that takes a scalar function of x and
y and returns a vector with component derivatives. . .

However, the previous example only works for functions of x and y ex-
plicitly. This expands gradfield to other cartesian coordinates other than
x and y.

P1ot3D is used to visualize the superposition of the three charge potentials
defined as ThreeHolePotential .

ContourPlot is an alternative method to visualize this scalar field. The
option ColorFunction points to an example of a Pure Function—a
method of making functions that do not operate with the usual “square
brackets.” Pure functions are indicated with the & at the end; the # is a
place-holder for the pure function’s argument.

PlotVectorField is in the Graphics‘PlotField‘ package. Because a
gradient produces a vector field from a scalar potential, arrows are used
at discrete points to visualize it.

The divergence operates on a vector and produces a scalar. Therefore,
taking the divergence of the gradient of a scalar field returns a scalar field
that is naturally associated with the original—its physical interpretation
is (minus) the rate at which gradient vectors “diverge” from a point.

potential(x_, y_, xo_, yo_]:=

U —1/Sqr[(x XO)Asz(y y0)A2]

2| HoleSouth[x_,

y_] := potential[x, y, Cos[3Pi/2], Sin[3Pi/2]] |

HoleNorthWest[x_, y_] :=
potential[x, y, CoslPi/6l,

sinl Pi/6]]

A HoleNorthEast[x_, y_] :=
potential[x, y, COS[SPI/B] Sinl5Pi/6l]

gradfield[scalarfunction_] :=
5| {D[scalarfunction[x, y], x] // Simplify,
Discalarfunction[x, y], y] // Simplify}

gradfield[scalarfunction_, x_, y_] =
6| (D[scalarfunction[x, y], x] // Simplify,
Discalarfunction[x, y], y] // Simplify}

7 ThreeHolePotential[x_, y_] := HoleSouth[x, y] +
HoleNorthWest|x, y] + HoleNorthEast[x, y]

8| Plot3D[ThreeHolePotential[x, y], {x, -2, 2}, {y, -2, 2}]

Y,
PlotPoints - 40, ColorFunction - (Huel1 - #0.66] &)]

ContourPlot[ThreeHolePotential[x, y], (x, -2, 2}, {y, -2, 2},

10| gradthreehole = gradfield[ThreeHolePotentiall

11[<< Graphics PlotField

3.016 Home

PRI

Full Screen

PlotVectorField[gradthreehole,
12| {x, -2, 2}, ly, -2, 2}, ScaleFactor - 0.2,
ColorFunction - (Huel1 - #+0.66] &), PlotPoints - 21]

divergence[{xcomp_, ycomp_}] :=
Simplify[D[xcomp, x] + D[ycomp, y]]

divgradthreehole =

i divergence|gradfield[ThreeHolePotentiall] // Simplify

Plot3D[divgradthreehole,

15" 1x, —2, 2}, y, -2, 2}, PlotPoints —> 60]

Close

Quit

b

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2006/Notebooks/L13/Lecture-13.nb
http://pruffle.mit.edu/3.016-2006/pdf/L13/Lecture-13-1.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-13/HTMLLinks/index_1.html
http://pruffle.mit.edu/3.016-2006/html/Lecture-13/HTMLLinks/index_1.html

Divergence and Its Interpretation

The divergence operates on a vector field that is a function of position, ¥(z, y, z) = (%) = (v1(Z
and returns a scalar that is a function of position. The scalar field is often called the dlvergence ﬁel

of ¥ or simply the divergence of .

R O -) (0.2 8Y .,
ST S - Ch Y, b oy g, - <8w’8y’8z> (v1, 2, v3) = <8x’8y’8z> ! 2

Think about what the divergence means,

Coordinate Systems

The above definitions are for a Cartesian (x,y, z) system. Sometimes it is more convenient to work
in other (spherical, cylindrical, etc) coordinate systems. In other coordinate systems, the derivative
operations V, V-, and Vx have different forms. These other forms can be derived, or looked up in a
mathematical handbook, or specified by using the MATHEMATICA®) package “VectorAnalysis.”

3.016 Home

PRI

Full Screen

Close

o

Quit

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

N N
Lecture 13 MATHEMATICA®) Example 2 I

Coordinate Transformations

notebook (non-evaluated) pdf (evaluated) html (evaluated)

Examples of Coordinate Transformations obtained from the Calculus‘VectorAnalysis‘ package. An
frivolous example of computing distances from Boston to Paris along different routes using data from the
Miscellaneous ‘CityData‘ package.

1[<< Calculus' VectorAnalysis® [

2: CoordinatesFromCartesian from the Calculus‘VectorAnalysis® CGonveringbetween coordinate systems
o o o 2| CoordinatesFi Cartesian[{x, y, z}, Sphericallr, theta, phi
package transforms three cartesian coordinates, named in the first [CoodatesF romGertsianti.. 2, Sphrical, thete, phll_] 3.016 Home
5 . . 3[CoordinatesToCartesian({r, theta, phi}, Spherical[r, theta, phi]] [
argument-list into one of many coordinate systems named by the second
argument.

4 Simplify[CoordinatesFromCartesian[
{at, bt, ct}, Sphericallr, theta, phi]], t > 0]

An example of calculating the positions of cities in cartesian

3: CoordinatesFromCartesian transforms one of many different coordinate andspherical coordinates.
systems, named in the second argument into three cartesian coordinates, —5[<<Mscslancous Citydata |

named in the ﬁrst argument-hst. 6[boston = CityData["Boston", CityPosition] [4<| 4 | } | }}I
7[paris = CityData["Paris", CityPosition]

7: CityData in the Calculus‘VectorAnalysis‘ package can give the lat-
itude and longitude of cities in the database—in this case Boston and
Paris. 8

SphericalCoordinatesofCity[cityname_String] :=
6378.1,

2Pi
EOI ToDegrees|CityData|cityname, CityPosition][[11]],

. o o . . 2Pi " " " -
8: SphericalCoordinatesofCity takes the string-argument of a city name eofaeeeies CheskiezaneiClesicy 2|
] X] i } Full Screen
and uses CityData to compute its spherical coordinates (i.e., (Tearth, 0, @)
are same as (average earth radius = 6378.1 km, latitude, longitude)). ; —
. i ; q CartesianCoordinatesofCity|cityname_String] :=
ToDegrees is from the Miscellaneous‘Geodesy‘ package and converts 10| CoordinatesToCartesianiSphericalCoordinatesofCityl
. cityname], Spherical[r, theta, phi]]
a (degree, minutes, seconds)-structure to degrees.

9[SphericalCoordinatesofCityl"Boston"] [

1 [CartesianCoordinatesofCityl"Paris"] [

10: CartesianCoordinatesofCity uses a coordinate transform and Spherical- _[MinimumTunneliciyi_Sting, city2 String] := Tlsse
2| Norm[CartesianCoordinatesofCity[city1] —

CoordinatesofCity to compute cartesian coordinates. CartesianCoordinatesofCity(city21]
12: Imagining that a tunnel could be constructed between two cities, this

13[MinimumTunnel["Boston", "Paris"] [
. M . e 14[SphericalDistance[boston, paris] // N [
function would calculate the minimum distance between cities.

15[SpheroidalDistance[boston, paris] // N [

14: Comparing the great circle route using SphericalDistance to the eu-
clidian distance is a result that suprises me. It would save only about 55 Quit
kilometers to dig a tunnel to Paris—sigh.

15: SpheroidalDistance accounts for the earth’s extra waistline for comput-
ing minimum distances. @, Gl Ot

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2006/Notebooks/L13/Lecture-13.nb
http://pruffle.mit.edu/3.016-2006/pdf/L13/Lecture-13-2.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-13/HTMLLinks/index_2.html
http://pruffle.mit.edu/3.016-2006/html/Lecture-13/HTMLLinks/index_2.html

N
Lecture 13 MATHEMATICA®) Example 3 I

Gradient and Divergence Operations in Other Coordinate Systems

notebook (non-evaluated) pdf (evaluated) html (evaluated)
A 1/r™-potential is used to demonstrate how to obtain gradients and divergences in other coordinate systems.

1

1| SimplePot[x_, y_, z_, n_] :=

(XA2 + yA2 + 2“2)%

1: SimplePot is an example function—a 1/r™ potential in cartesian coordi-
nates.

2| gradsp = Grad[SimplePot[x, y, z, 1], Cartesian[x, y, z]]

1
3| SimplePot[r_, n_] :=

™

|
2: Grad is defined in the Calculus‘VectorAnalysis‘: in this form it takes |
. 4 dsphere = Grad[SimplePot[r, 1], Sphericallr, 6, ¢]]
a scalar function and returns its gradient in the coordinate system defined | S S N s RO : S (2715
|
|
|

5[GradiSimplePotlr, 11, Cylindricallr, 6, zI]
by the second argument.

6| Grad[SimplePot[r, 1], ProlateSpheroidallr, 6, ¢]]

An alternate form of SimplePot is defined here in spherical coordinates. _[GrassmpioPotic, y_, 2 n -
Evaluate[Grad[SimplePot[x, y, z, n], Cartesian[x, y, z]]]
Here, the gradient of 1/r is obtained in spherical coordinates. 8 DiviGradSmplePolix,y, , l, Gartesians, y, 211/ Sy
Here, the gradient of 1/r is obtained in cylindrical coordinates. o[DiviGradSimplePotix,y. z, 1), Cartesianlx, y, 211/ Smpliy “| <«|» | »»

Here, the gradient of 1/r is obtained in prolate spheriodal coordinates.
The laplacian (V2(1/7™)) has a particularly simple form. ..

By inspection of V2(1/r™) or by direct calculation, it follows that V2(1/r)
vanishes identically.

55 PSS e 6

Full Screen

Close

o

Quit

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2006/Notebooks/L13/Lecture-13.nb
http://pruffle.mit.edu/3.016-2006/pdf/L13/Lecture-13-3.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-13/HTMLLinks/index_3.html
http://pruffle.mit.edu/3.016-2006/html/Lecture-13/HTMLLinks/index_3.html

Curl and Its Interpretation

The curl is the vector valued derivative of a vector function. As illustrated below, its operation can be

geometrically interpreted as the rotation of a field about a point

For a vector-valued function of (z,y, 2):

o(x,y, z) = ¥(7) =

the curl derivative operation is another vector defined by

8’03

Curlv:VXv:<(ay—az az

or with the memory-device:

7
- — Q
curl ¥ =V x v = det T
U1

For an example, consider the vector function that is often used in Brakke’s Surface Evolver program

Zn

(v1(E), v2(), v3(F)) = v1(x,y, 2)i + v2(@,y, 2)] + v3(x, 9, 2)k

ST TR, (R m O
"\ or Oy

ox

S o

0 =
(a® +y2)(a? + 42 + 2%)3

This will be shown below, in a MATHEMATICA® example, to have the property

n—1

—

V xd =

which is spherically symmetric for n = 1 and convenient for turning surface integrals over a portion of

a sphere into a path-integral over a curve on a sphere

12 AT (x1+yj + zk)

(13-3)

(13_4) 3.016 Home

k
i LR RIRI
v3
(y 1 x]) (13_6) Full Screen
(13_7) Close
_ o |

Quit

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

Lecture 13 MATHEMATICA® Example 4

Computing and Visualizing Curl Fields

notebook (non-evaluated)
Examples of curls are computing for a particular family of vector fields. Visualization is produced with the

pdf (evaluated)

PlotVectorField3D function from the Graphics‘PlotField3D‘.

10:

11:

LeavingKansas is the family of vector fields indicated by 13-6.

The function will be singular for n > 1 along the z — azis, this singularity
will be reported during the numerical evaluations for visualization.

Here, the singularity is removed by testing the value of the argument and
returning a fixed value along the singular axis.

Alternatively, the singular axis can be avoided by explicitly removing it
from the domain of plotting.

This demonstrates the assertion (13-7) about the cylindrical symmetry of
this curl for n = 1.

Visualizing the curl for n = 3: note that the field is points up with large
magnitude near the vortex at the origin.

Demonstrate that the divergence of the curl of « vanishes for any n—this
is true for any differentiable vector field.

html (evaluated)

LeavingKansas[x_, y_, z_, n_] =
o

7 Y, =, 0}
(XA2 + yA2) (XA2 + yA2 + z/2)2

2| LeavingKansas|x, y, z, 3]

3| << Graphics’PlotField3D"

PlotVectorField3D[LeavingKansas|x, y, z, 3],
{x, =1, 1}, {y, -1, 1}, {z, -.5, .5}, VectorHeads - True,
ColorFunction - ((Huel#:.66]) &),
PlotPoints - 15, ScaleFactor - 0.5]

LeavingKansasNicely[x_, y_, z_, n_] =
Module[(CindRadsq = xN2 + yr2},

CindRadsq =
IfiCindRadsq < 107, 107, CindRadsq, CindRadsq];
>

{y, =, Ol]

CindRadsq (CindRadsq + zA2)%

PlotVectorField3D[LeavingKansasNicely[x, y, z, 3],
{x, =1, 1}, {y, -1, 1}, {z, -.5, .5}, VectorHeads - True,
ColorFunction - ((Huel#:.66]) &),
PlotPoints — 15, ScaleFactor — 0.5]

PlotVectorField3D[LeavingKansas|x, y, z, 3],
{x, .01, 1}, {y, .01, 1}, {z, .01, .5}, VectorHeads - True,
ColorFunction - ((Huel#:.66]) &),
PlotPoints - 15, ScaleFactor - 0.5]

8| Curl[LeavingKansas|x, y, z, 3], Cartesian[x, y, z]] // Simplify

Glenda[x_, y_,z_,n_]:=

Simplify[Curl[LeavingKansas|[x, y, z, n], Cartesian[x, y, z]]] |

10| Glenda[x, y, z, 1]

PlotVectorField3D[Evaluate[Glendal[x, y, z, 3]],
11| {x, 0, .5}, {y, 0, .5}, {z, 0.1, .5}, VectorHeads - True,
ColorFunction - ((Huel# .66 &), PlotPoints - 7]

12| DivCurl = Div[Glenda[x, y, z, n], Cartesian[x, y, z]]

13[SimplityDivCurl]

3.016 Home

PRI

Full Screen

Close

o

Quit

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2006/Notebooks/L13/Lecture-13.nb
http://pruffle.mit.edu/3.016-2006/pdf/L13/Lecture-13-4.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-13/HTMLLinks/index_4.html
http://pruffle.mit.edu/3.016-2006/html/Lecture-13/HTMLLinks/index_4.html

One important result that has physical implications is that a the curl of a gradient is always zero:

f(f) = f($’y’ Z):
V x (Vf)=0 (13-8)

Therefore if some vector function ﬁ(az,y, z) = (Fy, Fy, F.) can be derived from a scalar potential,
W= ﬁ, then the curl of F must be zero. This is the property of an exact differential df = (Vf) -
(dx,dy,dz) = F - (dz,dy,dz). Maxwell’s relations follow from equation 13-8:

9F, OF, 0% 03 &1 &

U oy T 9z y 0z 020y L 0y0z

o _OF: 0F _ s Taks] T (13-9)
0z ox 0z ox 0xdz 0z0x

o 0, OB _ I oY% &y o

ox oy ox oy Oyox L 0xdy

Another interpretation is that gradient fields are curl free, irrotational, or conservative.

The notion of conservative means that, if a vector function can be derived as the gradient of a scalar
potential, then integrals of the vector function over any path is zero for a closed curve—meaning that
there is no change in “state;” energy is a common state function.

Here is a picture that helps visualize why the curl invokes names associated with spinning, rotation,
etc.

3.016 Home

PRI

Full Screen

Quit

Bt
Close
e

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

Figure 13-10: Consider a small paddle wheel placed in a set of stream lines defined by a vector
field of position. If the v, component is an increasing function of x, this tends to make the
paddle wheel want to spin (positive, counter-clockwise) about the k-axis. If the v, component is
a decreasing function of y, this tends to make the paddle wheel want to spin (positive, counter-
clockwise) about the k-axis. The net impulse to spin around the k-axis is the sum of the two.
Note that this is independent of the reference frame because a constant velocity ¥ = const. and
the local acceleration ¥ = V f can subtracted because of Eq. 13-10.

Another important result is that divergence of any curl is also zero, for 7(%) = ¥(z,y, 2):

V- (Vx3) =0 (13-10)

3.016 Home

PRI

Full Screen

Close

Quit

o

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

Lecture 14: Integrals along a Path

Reading:
Kreyszig Sections: 10.1, 10.2, 10.3 (pages420-425, 426—432, 433-439)

Integrals along a Curve

Consider the type of integral that everyone learns initially:

b
E(b) — E(a) = / f(z)dx (14-1)
The equation implies that f is integrable and
dFE
dE = fdxr = —d 14-2

so that the integral can be written in the following way:

E(b)— F(a) = / B (14-3)

where a and b represent “points” on some line where E is to be evaluated.
Of course, there is no reason to restrict integration to a straight line—the generalization is the
integration along a curve (or a path) Z(t) = (z1(¢), x2(t), ..., x,(t)).

zb) b b e b
E(b)—E(a)Z[() f(f)-df:/ g(x(t‘))dt:/ VE-C;tdt:/ dE (14-4)

This last set of equations assumes that the gradient exists—i.e., there is some function F that has the
gradient VE = f.

3.016 Home

PRI

Full Screen

Close

o

Quit

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

Path-Independence and Path-Integration

If the function being integrated along a simply-connected path (Eq. 14-4) is a gradient of some scalar
potential, then the path between two integration points does not need to be specified: the integral
is independent of path. It also follows that for closed paths, the integral of the gradient of a scalar
potential is zero.® A simply-connected path is one that does not self-intersect or can be shrunk to a
point without leaving its domain.

There are familiar examples from classical thermodynamics of simple one-component fluids that
satisfy this property:

%mjzfvgjdgzo de:ngSdgzo fﬁG:ngGdgzo (14-5)
fdp:fﬁgpdgzo fdf:fﬁgT@gzo de:fk@Vd§=o (14-6)

Where S is any other set of variables that sufficiently describe the equilibrium state of the system (i.e,
U(s,v),U(s,P), U(T,V), U(T, P) for U describing a simple one-component fluid).

The relation curl grad f =V x Vf = 0 provides method for testing whether some general ﬁ(a‘:’) is
independent of path. If

0=V xF (14-7)
or equivalently,
oF; — OF;
= A 14-8

for all variable pairs x;, x;, then ﬁ(f) is independent of path. These are the Maxwell relations of
classical thermodynamics.

In fact, there are some extra requirements on the domain (i.e., the space of all paths that are supposed to be
path-independent) where such paths are defined: the scalar potential must have continuous second partial derivatives
everywhere in the domain.

3.016 Home

PRI

Full Screen

Close

Quit

o

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

Lecture 14 MATHEMATICA®) Example 1 I

Path Dependence of Integration of Vector Function: Non-Conservative Example

notebook (non-evaluated) pdf (evaluated) html (evaluated)
The path dependence of a vector field with a non-vanishing curl () = zyz(i + k + 2)) is demonstrated with a
family of closed curves.

<< Calculus' VectorAnalysis®
VectorFunction = {xyz, xyz, yxz}

. 1 i
. g CurlVectorFunction =
1 . VeCtOTFunCtZOn (Z‘yz, $y37 l’yz) 1S an example VeCtOI" ﬁeld that has a Lérimgﬁfg;'cm‘[:\;ggwﬁuncnon, Cartesian([x, y, z]]]

non-vanishing curl. The curl is computed with Curl which is in the 2|Condmonsof29,ocu,,: |
. 8 g Table[0 == CurlVectorFunctionl[ill, (i,
Calculus ‘VectorAnalysis‘ package. Here, the particular coordinate bleld == Curvectorfuncton ™, 1. 90 3.016 Home
. . . . 3| FindInstance[ConditionsOfZeroCurl, {x, y, z}] |
system is specified with Cartesian argument to Curl.
For the integral of the vector potential (§V -ds) any curve

3: The curl vanishes only at the origin—this is shown with FindInstance iawraps around a cylinder of radius R with an axis that
. incid ith the z-axi b itized
called with a list of equations corresponding to the vanishing curl e
4: This is the integrand ¢ - ds computed as indicated in the figure. P(6)

i ~ Z
represents any periodic function, but (z,y) = R(cos 8, sin) representing J ﬂﬂﬁﬂ

] (x(1), y(), z(t)) = (R cos(t), R sin(t), A P> (1))
paths that wrap around cylinders. GO A (e AR

Therefore

5: PathDeplnt is an integral for ¢ represented by VectorFunction an arbi- — ds=(Rsing). R cos(), Plx(t) dt= (y(). x(t) APy (0) ot
trary path wrapping around the cylinder. vi =

4| VectorFunction.{-y, x, Amp D[PIt], 1]} /. {x » Radius Coslt,
y - Radius Sinlt], z » Amp Pltl} // Simplify

7: This is the second example of a computation by using a replacement for

{Cosltl, Sinltl, Cosltl}}, it, 0, 2 Pi}]

. 5| PathDeplnt = Integrate[Vf, {t, 0, 2Pi}] | (Full) Siarazty
a periodic P(0) (i.e., each of the P() begin and end at the same point, [Faoa 75]
. . = O[T P Eh

but the path between differs). That the two results differ shows that ¥

| ‘W = 7[PathDepint /. {Pltl > t @t~ 2Pi), P'ltl - DitGt-2Pi, 1) |
is path-dependent—this is a general result for non-vanishing curl vector o pagen = PaihDepin /P - Cosln . P10~ DiCoan 1.1 |
funCthnS. 9| Simplify[pdigen, n € Integers] |

40/ thecurves = ParametricPlot3DI{{Coslt, Sinltl, Cos[3tl}, | Close

Show[(GraphlcsSD[Thlckness[O o1ll,
Graphics3D[Hue[0.25, 0.5, 0.5]], thecurves}]

Quit

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2006/Notebooks/L14/Lecture-14.nb
http://pruffle.mit.edu/3.016-2006/pdf/L14/Lecture-14-1.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-14/HTMLLinks/index_1.html
http://pruffle.mit.edu/3.016-2006/html/Lecture-14/HTMLLinks/index_1.html

Lecture 14 MATHEMATICA®) Example 2

Examples of Path-Independence of Curl-Free Vector Fields and Curl-Free Subspaces

notebook (non-evaluated) pdf (evaluated) html (evaluated)
A curl-free vector field can be generated from any scalar potential, in this case W = Ve®¥% = (%) = e*¥*(yz1 +
zxk + xyz). To find a function that is curl-free on a restricted subpace (for example, the vector function

—

(%) = (22 + y? — R?)2 vanishes on the surface of a cylinder) one needs to find a 7 such that V x m = @ (for

this case A A
1
m = 3 (yR2 [1—:82—%} &+ —zR? {1—y2—g] g)

is one of an infinite number of such vector functions.)

Start with a scalar potential to ensure that we can generate a
curl-free vector field

1: To ensure that we will have a zero-curl, a vector field is generated from a

1| temp = Grad[Exp[x y z], Cartesian[x, Y, z]]
gradient of a scalar potential. The curl vanishes because V x V f = 0.

xyz xyz z

AnotherVFunction = (X% yz, ¢*¥% xz, *¥* xy}
Simplify[Curl[AnotherVFunction, Cartesian[x, y, z]]]

2: This is a demonstration that the curl does indeed vanish.
8]

{x - Radius Coslt], y » Radius Sinltl, z - Pltl} // Simplify

3: Here is the integrand for § ¢ d3 for the family of paths that wrap around

5 5 . . 4| PathDeplnt = Integrate[anothervf, t]
a cylinder for the particular case of this conservative fields. l

anothervf = AnotherVFunction.{—y, x, D[PIt], t]} /. |

5[(PathDeplnt /.t - 2 Pi) ~ (PathDepint /.t - 0)

4: This is the general result for the family of curves indicated by P () ... Nowwe generate an example of a vectorvalued fumction thatis

not curl-free in general, but is path independent in a restricted

5: This demonstrates that the path integral closes for any perioidic P(f)— subspace where the our vanishes.

which is the same as the condition that the curve is closed. 6[VanishonCyinder = x2 + y*2 - Radius"2
7| CurlOfOneStooge = {0, 0, VanishOnCylinder}

8: This demonstrates the method used to find the vector function which has

. i Stooge = {-1/2 Integrate[VanishOnCylinder, y],
a curl that vanishes on a cylinder.

g 1/2 Integrate[VanishOnCylinder, x], 0}

9| Simplify[Curl[Stooge, Cartesian[x, y, z]]]

11: This will demonstrate that the integral of the generally non-zero curl
vector function is path independent as long as the path lies on a surface
where the curl of the vector function vanishes. 11[IntegratelWhylOughta, t, 0, 2P}

WhylOughta = Stooge.{-y, x, D[PIt], t]} /.

1°| (x - Radius Coslt], y - Radius Sinlt]} // Expand

o

3.016 Home

PRI

Full Screen

Close

Quit

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2006/Notebooks/L14/Lecture-14.nb
http://pruffle.mit.edu/3.016-2006/pdf/L14/Lecture-14-2.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-14/HTMLLinks/index_2.html
http://pruffle.mit.edu/3.016-2006/html/Lecture-14/HTMLLinks/index_2.html

Multidimensional Integrals

Perhaps the most straightforward of the higher-dimensional integrations (e.g., vector function along
a curve, vector function on a surface) is a scalar function over a domain such as, a rectangular block
in two dimensions, or a block in three dimensions. In each case, the integration over a dimension is
uncoupled from the others and the problem reduces to pedestrian integration along a coordinate axis.

Sometimes difficulty arises when the domain of integration is not so easily described; in these cases,
the limits of integration become functions of another integration variable. While specifying the limits
of integration requires a bit of attention, the only thing that makes these cases difficult is that the
integrals become tedious and lengthy. MATHEMATICA®) removes some of this burden.

A short review of various ways in which a function’s variable can appear in an integral follows:

The Integral Its Derivative
dp ag do
Function B(x) T f(ﬁ(x))% O (oa(x))@
5 @)= [e
limits el
d &)
Function b dj :/ g((;,x) 73
of al) = [9(6,a)de r " Jo 0x
integrand]
Function B(z) dr dg dao
of rw) = [gleane & =BG ~ fe@) g
o)
both B(x)
B / 99(§,) dé
a(x) ox

3.016 Home

PRI

Full Screen

Close

Quit

o

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

Using Jacobians to Change Variables in Thermodynamic Calculations I I

Changing of variables is a topic in multivariable calculus that often causes difficulty in classical ther-
modynamics.

This is an extract of my notes on thermodynamics: http://pruffle.mit.edu/3.00/

Alternative forms of differential relations can be derived by changing variables.

To change variables, a useful scheme using Jacobians can be employed:

o(u,v) g—; %
 Budy Bubv [soiem |
Jx 0y 0Oy ox (14-9)
- <8u) (81}) <8u> (81})
~\ oz dy). \oy oz
4 N 5 Y «“|l «|»|»m
_ Ou(z,y) Ov(z,y) Ou(x,y) dv(z,y) JJJJ
Oz oy oy ox
O(w,v) _ O(v,u) _ O(v,u)
8(1‘,(@) - a(ajay i 8(%1’) Full Screen
O(u,v) (Ou
ow,v) (a> o
d(u,v) I(u,v) O(r,s)
a(x?y) - 8(7", 8) 8($7y) Close

For example, the heat capacity at constant volume is:

ov=1(%) ~r250
i

S,V)o(T, P

TR (%) (5) (), GG, oew —=
‘T‘T@ e R ———

o

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.00/

Using the Maxwell relation, (g—}z)T = = (%)P,

I 2
Cp—Cy = _T@J}; (14-12)

which demonstrates that Cp > Cy because, for any stable substance, the volume is a decreasing
function of pressure at constant temperature.

. Example of a Multiple Integral: Electrostatic Potential above a Charged Region

This will be an example calculation of the spatially-dependent energy of a unit point charge in the
vicinity of a charged planar region having the shape of an equilateral triangle. The calculation super-
imposes the charges from each infinitessimal area by integrating a 1/r potential from each point in
space to each infinitessimal patch in the equilateral triangle The energy of a point charge |e| due to a
surface patch on the plane z = 0 of size d€dn with surface charge density o(z,y) is:

d¢d
dE(z,y,2,&,n) = m (14-13)

for a patch with uniform charge,
|e|odgdn
V(@ =2+ (y—n)?+2°

For an equilateral triangle with sides of length one and center at the origin, the vertices can be located
at (0,v/3/2) and (£1/2, —/3/6).

The integration becomes

V3/2 V3/2—n d¢
E(z,y, d 14-15
S OC/\/E/ﬁ </77\/§/2 \/(x—§)2+(y—77)2+z2> R ()

dE(x7y)Z7§7n) = (14_14)

3.016 Home

PRI
Full Screen

Bt
Close
e

Quit

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

Lecture 14 MATHEMATICA® Example 3

Potential near a Charged and Shaped Surface Patch: Brute Force

notebook (non-evaluated) pdf (evaluated) html (evaluated)
A example of a multiple integral and its numerical evaluation for the triangular charged patch.

Uniformly charged surface patch

2: Integrate’s syntax is to integrate over the last integration iterator first, _
and the first iterator last. \ N

3: This will show that the closed form of the above integral appears to be =3t ﬁ‘d:mﬂ
unknown to MATHEMATICAG) ... I 3.016 Home

4: However, the energy can be integrated numerically. Here is a function
that calls NIntegrate for a location given by its arguments.

Integrate[Exp[3x], {y, 0, 1}, {x, 0, y}]
(Integrate[Expl3 x], {x, 0, y}])
Integrate[(Integrate[Expl3 x], {x, 0, y}]), {y, 0, 1}]

6: This will be a very slow calculation on most computers, but it will Show [LeoaeEaBa w0y .01

how the potential changes along a line segment of length 2 that runs 2[imegmer oo bnas v o0 11 woy ﬂ ﬂ ﬁ ﬂ
through the origin at 45°.

n

TrianglePotentialDirect = Integraw[—_——,
o o o X—E2+(y—n? +22
7: Even slower, ContourPlot is used at sequential heights for use as an !

animation.

V3 n 11
3 :n,o,—},:,&—_——,———_},

2 V3 2°2 43
Assumptions - {x € Reals, y € Reals, z > 0}|

TrianglePotentialNi i 0 Y 2 =
rianglePotential umer|c1|x, y., z_] Full Screen

Nintegrate] —————,
o= (X=§P +(y-n?+2°

5| TrianglePotentialNumeric[1, 3, .01] |

6| Plot[TrianglePotentialNumericlx, x, 1/40], {x, -1, 1}] |

Table[ContourPlot[TrianglePotentialNumeric[x, y, h], {x, =1, 1}, Close
{y, —=0.5, 1.5}, Contours - Tablelyv, {v, .25, 2, .25}],
ColorFunction - (Huel1 —0.66«#/2] &),
ColorFunctionScaling —> False], {h, .025, .5, .025}]

Quit

o

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2006/Notebooks/L14/Lecture-14.nb
http://pruffle.mit.edu/3.016-2006/pdf/L14/Lecture-14-3.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-14/HTMLLinks/index_3.html
http://pruffle.mit.edu/3.016-2006/html/Lecture-14/HTMLLinks/index_3.html

Lecture 15: Surface Integrals and Some Related Theorems

Reading:
Kreyszig Sections: 10.4, 10.5, 10.6, 10.7 (pages439-444, 445-448, 449-458, 459-462)

Green’s Theorem for Area in Plane Relating to its Bounding Curve

Reappraise the simplest integration operation, g(z) = [f(x)dz. Temporarily ignore all the tedious
mechanical rules of finding and integral and concentrate on what integration does.

Integration replaces a fairly complex process—adding up all the contributions of a function f(z)—
with a clever new function g(x) that only needs end-points to return the result of a complicated
summation.

It is perhaps initially astonishing that this complex operation on the interior of the integration
domain can be incorporated merely by the domain’s endpoints. However, careful reflection provides
a counterpoint to this marvel. How could it be otherwise? The function f(x) is specified and there
are no surprises lurking along the x-axis that will trip up dx as it marches merrily along between the
endpoints. All the facts are laid out and they willingly submit to the process their preordination by
g(z) by virtue of the endpoints.”

The idea naturally translates to higher dimensional integrals and these are the basis for Green’s
theorem in the plane, Stoke’s theorem, and Gauss (divergence) theorem. Here is the idea:

"I do hope you are amused by the evangelistic tone. I am a bit punchy from working non-stop on these lectures and
wondering if anyone is really reading these notes. Sigh.

3.016 Home

PRI

Full Screen

Quit

Bt
Close
e

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

Figure 15-11: An irregular region on a plane surrounded by a closed curve. Once the closed
curve (the edge of region) is specified, the area inside it is already determined. This is the
simplest case as the area is the integral of the function f = 1 over dxdy. If some other
function, f(z,y), were specified on the plane, then its integral is also determined by summing
the contributions along the boundary. This is a generalization g(z) = [f(z)dz and the basis
behind Green's theorem in the plane.

The analog of the “Fundamental Theorem of Differential and Integral Calculus’® for a region R
bounded in a plane with normal % that is bounded by a curve dR is:

// (V x ﬁ)-igd:cdy=y§ F.di (15-1)
R OR

The following figure motivates Green’s theorem in the plane:

8This is the theorem that implies the integral of a derivative of a function is the function itself (up to a constant).

3.016 Home

PRI

Full Screen

Close

Quit

o

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

E%F '
PR

Figure 15-12: lllustration of how a vector valued function in a planar domain "spills out” of]
domain by evaluating the curl everywhere in the domain. Within the domain, the rotational
flow (V x F') from one cell moves into its neighbors; however, at the edges the local rotation
is a net loss or gain. The local net loss or gain is E - (dz,dy).

The generalization of this idea to a surface dB bounding a domain B results in Stokes’ theorem,
which will be discussed later.

In the following example, Green’s theorem in the plane is used to simplify the integration to find
the potential above a triangular path that was evaluated in a previous example. The result will be
a considerable increase of efficiency of the numerical integration because the two-dimensional area
integral over the interior of a triangle is reduced to a path integral over its sides.

The objective is to turn the integral for the potential

)= |, s

into a path integral using Green’s theorem in the z—y plane:

(9F2 8F1 -
//R <81L‘ = &y) dxdy = /BR(Fld:U + Fody) (15-3)

3.016 Home

PRI

Full Screen

Close

Quit

o

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

To find the vector function F = (F1, F>) which matches the integral in question, set Fy =
integrate to find F} via

/ ’
VE—€2+ (y—n)? + 22

Lecture 15 MATHEMATICA®) Example 1

Turning an integral over a domain into an integral over its boundary

notebook (non-evaluated) pdf (evaluated) html (evaluated)
Here we turn the two dimensional numerical integration which requires O(N?) calculations into an integration
around the boundary which requires O(NN) evaluations for the same accuracy. The path of integration must be
determined (i.e., (z(t),y(t))) and then the integration is obtained via (dz,dy) = (z'dt, y'dt).

1: Finding F; as indicated above is obtained easily with Integrate.
UseGreen's theorem to
2: The bottom part of the triangle can be written as the curve: (¢(t),7(t)) = replace the areantegral with pattn integral
j 2 aF, «| <[> |»
(t— %, 0) for 0 < t < 1; the integrand over that side is obtained by suitable ff[%FT ‘%FT]"X“":fAF' i Fady) JJJJ

re lacement 1 Try to find a vector function (Fy, F2) that matches the
p integrand over the domain. Let F, = 0, then to find
F; which when differentiated by 7 gives 1/r

3.016 Home

BN

5: The remaining two legs of the triangle can be written similarly as: ((1 —
t)/2,\/§t/2) and (—t/Q,\/g(l == t)/Q) 1 FHx,,y,,z,J:flntegrate[L

6: This is the integrand for the entire triangle to be integrated over 0 < t < 1. =

1
Bottomside = F1[x, y, z] /. {{-‘ >t- > n- O} // Simplify

Full Screen
2

7: There is no free lunch—the closed form of the integral is either unknown
or takes too long to compute.

BottomContribution = Integrate[Bottomside, {t, 0, 1},

8 Assumptions - x € Reals && y € Reals &&z > 0]

-t

1
NEside = F1[x,y, z] /. {¢ > z

8: However, NIntegrate is much more efficient because the problem has 4 ,77*@}//Simplify
been reduced to a single integral instead of the double integral in the

previous example.

V3(-p
2

5

NWside = F1[x, y, z] /. {£ > %l - } 1/ Simplify

1 Lo —dt 1 L, —dt 1 N
fﬂ dx :f NEside — +f NWside — +f Bottomside dt
A 0 2 o 2 o

—(NEside + NWside)
2

6| integrand = Simplify| +Bottomside|

PotXYZ = Integrate[integrand, {t, 0, 1},
Assumptions - x € Reals && y € Reals &&z > 0]

=

Quit

Bt
Close
e

Pot[X_, Y_, Z_| := Nintegrate[

Evaluate[integrand /. {x » X,y - Y, z > Z}], {t, 0, 1}]

@©

ContourPlot[Pot[a, b, 1/101, {a, -1, 1}, {b, —.5, 1.5},
Contours - 8, ColorFunction - (Huel1 —0.66 +#] &)1

9

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2006/Notebooks/L15/Lecture-15.nb
http://pruffle.mit.edu/3.016-2006/pdf/L15/Lecture-15-1.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-15/HTMLLinks/index_1.html
http://pruffle.mit.edu/3.016-2006/html/Lecture-15/HTMLLinks/index_1.html

Representations of Surfaces

Integration over the plane z = 0 in the form of [f(x,y)dzdy introduces surface integration—over a
planar surface—as a straightforward extension to integration along a line. Just as integration over a
line was generalized to integration over a curve by introducing two or three variables that depend on
a single variable (e.g., (z(t),y(t),z(t))), a surface integral can be conceived as introducing three (or
more) variables that depend on two parameters (i.e., (z(u,v),y(u,v), z(u,v))).

However, there are different ways to formulate representations of surfaces:

Surfaces and interfaces play fundamental roles in materials science and engineering. Unfortunately,
the mathematics of surfaces and interfaces frequently presents a hurdle to materials scientists and
engineering. The concepts in surface analysis can be mastered with a little effort, but there is no
escaping the fact that the algebra is tedious and the resulting equations are onerous. Symbolic algebra
and numerical analysis of surface alleviates much of the burden.

Most of the practical concepts derive from a second-order Taylor expansion of a surface near a point.
The first-order terms define a tangent plane; the tangent plane determines the surface normal. The
second-order terms in the Taylor expansion form a matrix and a quadratic form that can be used to
formulate an expression for curvature. The eigenvalues of the second-order matrix are of fundamental
importance.

The Taylor expansion about a particular point on the surface takes a particularly simple form if
the origin of the coordinate system is located at the point and the z-axis is taken along the surface
normal as illustrated in the following figure.

3.016 Home

PRI

Full Screen

Quit

Bt
Close
e

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

Figure 15-13: Parabolic approximation to a surface and local eigenframe. The surface
on the left is a second-order approximation of a surface at the point where the coordinate axes
are drawn. The surface has a local normal at that point which is related to the cross product
of the two tangents of the coordinate curves that cross at the that point. The three directions
define a coordinate system. The coordinate system can be translated so that the origin lies at
the point where the surface is expanded and rotated so that the normal 7 coincides with the
z-axis as in the right hand curve.

In this coordinate system, the Taylor expansion of z = f(z,y) must be of the form

i 6275 1 dx
Az =0dz +0dy + = (dz,dy) [38, ¥ < i)
2 Oxdy Oy? Y
If this coordinate system is rotated about the z-axis into its eigenframe where the off-diagonal com-
ponents vanish, then the two eigenvalues represent the maximum and minimum curvatures. The sum
of the eigenvalues is invariant to transformations and the sum is known as the mean curvature of the
surface. The product of the eigenvalues is also invariant—this quantity is known as the Gaussian
curvature.

3.016 Home

PRI

Full Screen

i

Close

Quit

i

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

The method in the figure suggests a method to calculate the normals and curvatures for a surface.

Those results are tabulated below.
Level Set Surfaces: Tangent Plane, Surface Normal, and Curvature

F(x,y,z) = const

Tangent Plane (¥ = (z,v, 2), 5: (€n,0)

= oF oF oF
VF (£~ &) or 7(§_$)+87y(77_y)+§(<_2)

Normal

St B e
oF — OF T OF
oz dy 0z

Mean Curvature

VF
|\ o) or
v (nwn)o
9°F | 9°F F 9°F | 9%F 8F 2 F\ (OF\2
(8y2+8z> ot (a +8m2> o) +(2+T>($)
9(0FOF 0 F+8F8F82F|_8F6 0*F
Ox Oy O0xdy dy 0z Oyoz 0z Ox 020z

8F2+8F2 aF2\3/2
Dz

3.016 Home

PRI

Full Screen

Quit

Bt
Close
e

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

Parametric Surfaces: Tangent Plane, Surface Normal, and Curvature

Z = (p(u,v), q(u,v), s(u,v)) or x = p(u,v)y = q(u,v)z = s(u,v)

=

Tangent Plane (¥ = (z,y,2), £ = (§,1,())

5 N O o G
= dIE d.fC b F)
—) (== x =) det 9op 9q 9Os -0
v v v
Normal

O N
ANgs) — Asp) A(ps9)
O(u,v) O(u,v) O(u,v)

Mean Curvature

i 45\ (di o dF 25\ _o(dE 45\ (df ¢ dF &) | (di . dE) (dF di . &%
du du du dv dv? du dv du dv dudv dv dv du dv du?

LA AN
dv du dv

3.016 Home

PRI

Full Screen

Close

Quit

o

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

Graph Surfaces: Tangent Plane, Surface Normal, and Curvature

z:f(x,y)

=

Tangent Plane (¥ = (z,y,2), £ = (§,1,())

Le-a)+ 2Lt-1)= -2

Normal

50" i'mi l C e
& — &f 1
oz oy

Mean Curvature

0f 2\ 92f of 8f 0f Of2\ 82 f
(IR)W—2@@8$8y+(1+@)
af2 | of2
1—1—% +<97y

Oz2

3.016 Home

PRI

Full Screen

Close

o

Quit

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

Lecture 15 MATHEMATICA®) Example 2

Representations of Surfaces

notebook (non-evaluated) pdf (evaluated) html (evaluated)
Visualization examples of surfaces represented in three ways: 1) graph z = f(z,y); 2) parametric
(z(u,v),y(u,v), 2(u,v)); 3) level set constant = F'(z,y, z).

Surface of the form: (z=f(x,y))

2: Using Plot3D to plot GraphFunction . 1| GraphFunctonic, y_| = S-XED |

4: Using ParametricPlot3D to visualize a surface of the form 2[PotsDiEvauateiGraphFunctiontx, yil (x, 1, 1), iy, ~1. 11 |
(z(u,v),y(u,v),z(u,v)) given by SurfaceParametric . The lines of Surfaceofthe form: x(uv). yuy). 2(uv) S (2715

3| SurfaceParametriclu_, v_] := {Coslul v, uCoslu+vl, Cos[u])l

constant u and v generate the “square mesh” of the approximation
to the surface. Each line on the surface is of the form: 7rj(u) =
(z(u,v = const),y(u,v = const), z(u,v = const)) and 72(v) = (z(u = [TebelParametricPiotaDy

Evaluate[SurfaceParametric[u, V1], {u, —ep, ep},

const, v),y(u = const,v),z(u = const,v)). The set of all crossing lines 5| v -ep ep),PiotRange - (=4, 4), (-4, 4], (-1, 1)),
i N g ¥ 9 ” . PlotPoints - {1+ Round[ep/.125], 1 + Round[ep/.125]}], << ‘ ’ >’
71(u) and 73(v) is the surface. Each little “square” surface patch provides | fep 125 425 1251

a convenient way to define the local surface normal—because both the Suraceofthe form: (Fxy.z) = constan

vectors dri /du and dr3/dv are tangent to the surface, their cross-product

is either an inward-pointing normal or outward-pointing normal.

4| ParametricPlot3D[
Evaluate[SurfaceParametriclu, V1], {u, -2, 2}, {v, -2, 2}]

6| << Graphics ContourPlot3D" |

7| ConstFunction = x* —4xy +y? + 2° |

8 ContourPlot3D[ConstFunction, {x, —1, 1}, |
8: Using ContourPlot3D in the Graphics‘ContourPlot3D‘ package to (b= (5, = 1 G- (]
d . . ; . = 5.
visualize the level set formulation of a surface constant = F(z,y, z) given | OqiguroPh ~ay v -3z, o o6, Full Screen
by OOTLStFu’fLCtZ‘OTL PlotPoints - {5, 7}, DisplayFunction — Identity]
cpb = ContourPlot3D[x? —4xy + y? + yx2z?,
. 1 3 3 1 {x, =3, 3}, {y, -3, 3}, {z, -3, 3},

12: Animation is produced by using Table to generate the level sets for | x 8383z 33"

different constants. ContourStyle - {{Huel0l}, {Huel.25}, {Huel.51}},

Lighting - False, DisplayFunction — Identity]

11 | Show[GraphicsArray[{cpa, cpb}]] | Cl
ose

Table[ContourPlot3D[x? —4xy + y? + yx2z?,
12 {x, -3, 3}, ly, -3, 8}, {z, -3, 3}, Contours —> {i},
PlotPoints - {5, 7}], {i, -2, 10, .5}]

Quit

o

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2006/Notebooks/L15/Lecture-15.nb
http://pruffle.mit.edu/3.016-2006/pdf/L15/Lecture-15-2.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-15/HTMLLinks/index_2.html
http://pruffle.mit.edu/3.016-2006/html/Lecture-15/HTMLLinks/index_2.html

Integration over Surfaces

Integration of a function over a surface is a straightforward generalization of [[f(x,y)dzdy = [f(x,y)dAR

The set of all little rectangles dxdy defines a planar surface. A non-planar surface Z(u,v) is composed &3
of a set of little parallelogram patches with sides given by the infinitesimal vectors

Tudu —?du
4 (15-5)
rodu —%dv
X ov

Because the two vectors r,, and 7, are not necessarily perpendicular, their cross-product is needed to 3.016 Home
determine the magnitude of the area in the parallelogram:

dA = ||7y, X 7 ||dudv (15-6)
and the integral of some scalar function, g(u,v) = g(x(u,v), y(u,v)) = g(#(u,v)), on the surface is ﬂﬂﬁﬂ
/ u,v)dA = // u, v)||7 X 7y||dudv (15-7)
However, the operation of taking the norm in the definition of the surface patch dA indicates that Full Screen

some information is getting lost—this is the local normal orientation of the surface. There are two
choices for a normal (inward or outward).

When calculating some quantity that does not have vector nature, only the magnitude of the
function over the area matters (as in Eq. 15-7). However, when calculating a vector quantity, such as
the flow through a surface, or the total force applied to a surface, the surface orientation matters and
it makes sense to consider the surface patch as a vector quantity:

Close

A(u,v) = || A||A(u, v) = An(u, v) (15-8)

A = 7T X 7 Quit

o

where 7 (u,v) is the local surface unit normal at Z(u,v).

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

Lecture 15 MATHEMATICA®) Example 3

Example of an Integral over a Parametric Surface

notebook (non-evaluated)

pdf (evaluated)

html (evaluated)

The surface energy of single crystals often depends on the surface orientation. This is especially the case for

materials that have covalent and/or ionic bonds. To find the total surface energy of such a single crystal, one has

to integrate an orientation-dependent surface energy, v(7), over the surface of a body. This example compares

the total energy of such an anisotropic surface energy integrated over a sphere and a cube that enclose the same

volume.
1: This is the parametric equation of the sphere in terms of longitude v €
(0,27) and latitude u € (—m/2,7/2).
2: Calculate the tangent plane vectors 7, and 7,
3: Using CrossProduct from the Calculus‘VectorAnalysis‘ package to
calculate r;, X r,, for subsequent use in the surface integral.
4: Using DotProduct to find the magnitude of the local normal.
5: This is the local unit normal 7.
6: This is just an example of a y(7) that depends on direction that will be
used for purposes of illustration.
9: Using SphericalPlot3D from the Graphics‘ParametricPlot3D‘ pack-
age to illustrate the form of SurfaceTension for the particular choice of
Y111 = 12.
10: Using the result from |r7, x 7|, the energy of a spherical body of radius
R =1 is computed by integrating yn over the entire surface.
12: This would be the energy of a cubical body with the same volume.
14: This calculation is not very meaningful, but it is the value of 111 such that

the cube and sphere have the same total surface energy. The minimizing
shape for a fixed volume is calculated using the Wulff theorem.

Example: Integrating an Orientation-Dependent Surface Tension
over the surface of a cube and a sphere

3.016 Home

spheresurflu_, v_] :=
R {Coslv] Coslul, Coslvl Sinlul, Sinlvl}

RIS

Rulu.

I_, v_] = D[spheresurf[u, v], u] // Simplify
Rv[u_

, V_] = D[spheresurf[u, v], v] // Simplify

N

3| << Calculus’VectorAnalysis™

NormalVectorfu_, v_] =
CrossProduct[Ru[u, v], Rv[u, v1] // Simplify

NormalMag =
5| Sqrt[DotProduct[NormalVector[u, v], NormalVector[u, v]] //
Simplify] // PowerExpand

6| UnitNormal[u_, v_] = NormalVector[u, v]/NormalMag |

SurfaceTension[nvec_] :=

1 + gamma,,, »nvecll111® nvecl[2]1* nvecl[3]]? Full Screen

8| << Graphics'ParametricPlot3D" |

SphericalPlot3D[
9| SurfaceTension[UnitNormal[u, v]] /. gamma,,, - 12,
{u, 0, 2Pi, v, —Pi/2, Pi/2})

SphereEnergy = Imegrate[

10 Integrate[SurfaceTension[UnitNormal[u, v]] Coslv],
T

(u,0, 271, (v, 53]

4
1| CubeSide = 3 ?"

12| CubeEnergy = 6 (CubeSide® SurfaceTension[(1, 0, 0}]) |

Close

EqualEnergies =

13| Solve[CubeEnergy = SphereEnergy, gamma,,,] // Flatten

| Quit

14| Nigamma, ,, /. EqualEnergies]

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2006/Notebooks/L15/Lecture-15.nb
http://pruffle.mit.edu/3.016-2006/pdf/L15/Lecture-15-3.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-15/HTMLLinks/index_3.html
http://pruffle.mit.edu/3.016-2006/html/Lecture-15/HTMLLinks/index_3.html

Oct. 30 2006

Lecture 16: Integral Theorems

Reading:
Kreyszig Sections: 10.8, 10.9 (pages463-467, 468-473)

Higher-dimensional Integrals

The fundamental theorem of calculus was generalized in a previous lecture from an integral over a single M'
variable to an integration over a region in the plane. Specifically, for generalizing to Green’s theorem

in the plane, a vector derivative of a function integrated over a line and evaluated at its endpoints was

generalized to a vector derivative of a function integrated over the plane.

PRI

Full Screen

Figure 16-14: lllustrating how Green's theorem in the plane works. If a known vector function
is integrated over a region in the plane then that integral should only depend on the bounding
curve of that region.

Close

Quit

o

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

Figure 16-15: lllustration of a generalization to the Green's theorem in the plane: Suppose
there is a bowl of a known shape submerged in a fluid with a trapped bubble. The bubble is
bounded by two different surfaces, the bowl down to z = 0 and the planar liquid surface at that
height. Integrating the function fVB dV over the bubble gives its volume. The volume must
also be equal to an integral ffavB zdxdy over the (oriented) surface of the liquid. However,
the volume of bubble can be determined from only the curve defined by the intersection of the

bowl and the planar liquid surface; so the volume must also be equal to f(y(some function)ds.

The Divergence Theorem

Suppose there is “stuff” flowing from place to place in three dimensions.

3.016 Home

PRI
Full Screen

Bt
Close |
e

Quit

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

Figure 16-16: lllustration of a vector “flow field” J near a point in three dimensional space.
If each vector represents the rate of “stuff” flowing per unit area of a plane that is normal to
the direction of flow, then the dot product of the flow field integrated over a planar oriented
area A is the rate of “stuff” flowing through that plane. For example, consider the two areas
indicated with purple (or dashed) lines. The rate of “stuff” flowing through those regions is
J-Ap=J kApand J-Ap = J kA

If there are no sources or sinks that create or destroy stuff inside a small box surrounding a point,
then the change in the amount of stuff in the volume of the box must be related to some integral over
the box’s surface:

d

i(amount of stuff in box) = / giGuT eV
box

dt T dt volume i

- / i amount of stuff
~ Jbox dt volume

)dV

N (16-1)
= /b (some scalar function related to J)dV
0x

= b oxX J . dA
surface

3.016 Home

PRI

Full Screen

Close

Quit

b

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

‘J“x:() y=0. =35

- ‘]I(X:_ATX y=0. z=0)

' o0y

—
%’, z=0)

Jyx=, y=0; z=0)

Jyx=0, y=0, =4

Figure 16-17: Integration of a vector function near a point and its relation to the change in
that vector function. The rate of change of stuff is the integral of flux over the outside—and
in the limit as the box size goes to zero, the rate of change of the amount of stuff is related to
the sum of derivatives of the flux components at that point.

To relate the rate at which “stuff M” is flowing into a small box of volume 0V = dxdydz located

at (z,y, z) due to a flux J, note that the amount that M changes in a time At is:
AM(6V) = (M flowing out of V) — (M flowing in V)
:(x - %x)%dydz— J:(x +4ry. ?dydz

{(y - %y)tz'dzda:f {(y + %) - jdzdx At
(z — ©Ykdzdy— J(z + L) - kdzdy
y 7(8,]‘70 +%+ 0J
= ox oy 0z

If C(x,y,2z) = M(6V)/0V is the concentration (i.e., stuff per volume) at (z,y, z), then in the limit of
small volumes and short times:

oC _ _(aJx +%+ 8JZ)
TR AR oy 0z

|
<

i (16-2)
+

)0V At 4+ O(dz?)

= -V.J=—divJ (16-3)

3.016 Home

PRI

Full Screen

Close

o

Quit

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

For an arbitrary closed volume V' bounded by an oriented surface dV:

/CdV —dV— /V JdV——/ J-dA
dt ~d

The last equality
/ V-Jdv = [J-dA (16-5)
1% 1%

is called the Gauss or the divergence theorem.

3.016 Home

PRI
Full Screen

Bt
Close
e

Quit

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

Lecture 16 MATHEMATICA®) Example 1

London Dispersion Interaction between a point and Closed Volume

notebook (non-evaluated) pdf (evaluated) html (evaluated)
If the London interaction (i.e., energy between two induced dipoles) can be treated as a 1/r% potential, then
the potential due to a volume is an integration over each point in the volume and and arbitrary point in space.
This calculation will be made much more efficient by turning the volume integral into a surface integral by using
the divergence theorem.

. = . . j Find F such that div F is ——— wherer=(&n.)isa 3.016 H
1: To find a vector potential, F' which has a divergence that is equal to (F-%) b s
=t — =116 . ¢ 9 position in the cylinder and x=(x,y,z) is a general position in
V.- F=—1/||F— Z||°, FVecLondon is a ‘guess. space

3: Using Div in the Calculus‘VectorAnalysis‘ package, this will show — _ . . o
e following is a “"guess" at the vector potential; it will be
that the guess FVecLondon is a correct vector function for the 1/r® veifiedaste correctone by checking its civergence.

potential. FVecLondon =
I~ i 1 . S Vit IR QIR
6: This will be the multiplier elemental area for a parameterized cylindrical | 3@-x* ro-y? - ¢-2¢f -
Surface |d77/d0 X d'l?/dZ | R 2| << Calculus’VectorAnalysis™ |

3| FullSimplify[Div[FVecLondon, Cartesian(&, n, £]]] |

7: CylinderIntegrandf(is the integrand which would apply on a cylindrical

Cylinder Surface normals and differential quantities
surface. 4[cylsurt = (RCosltl, R sinltl,) |

8: This attempt to integrate CylinderIntegrandf(over 6 does not result in S W Full Screen
a closed form.

6| NormalVecCylSurf = Cross|CylSurfRt, GylSurfRz] |

9: However, integrating CylinderIntegrandf(over z does produce a closed —
inderintegrandf{ =

form that could be subsequently integrated over 6 numerically. TR e o 7 (T
rmalVecCylSul

Integrate[Cylinderintegrandéy, t,
8| Assumptions —>R > 0 && ¢ € Reals && Close
X € Reals &&y € Reals && z € Reals]

CylinderIntegrandéind¢ = Integrate[CylinderIntegrandé, ¢,
9 Assumptions ->R > 0 &% L >0 && x € Reals &&
y € Reals&& z € Reals&& t e Reals]

Quit

o

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2006/Notebooks/L16/Lecture-16.nb
http://pruffle.mit.edu/3.016-2006/pdf/L16/Lecture-16-1.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-16/HTMLLinks/index_1.html
http://pruffle.mit.edu/3.016-2006/html/Lecture-16/HTMLLinks/index_1.html

Efficiency and Speed Issues: When to Evaluate the Right-Hand-Side of a Function in
MATHEMATICAR®) .

The standard practice is to define functions in mathematica with :=. However, sometimes it makes
sense to evaluate the right-hand-side when the function definition is made. These are the cases where
the right hand side would take a long time to evaluate—each time the function is called, the evaluation
would be needed again and again. The following example illustrates a case where it makes sense to use
Evaluate in a function definition (or, equivalently defining the function with immediate assignment

=).

3.016 Home

PRI

Full Screen

Quit

Bt
Close
e

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

Lecture 16 MATHEMATICA® Example 2

To Evaluate or Not to Evaluate when Defining Functions

notebook (non-evaluated) pdf (evaluated)
This example illustrates a case in which immediate evaluation = would be preferable to delayed evaluation

1:

When a non-trivial integral is done for the first time, Mathematica loads
various libraries. Notice the difference in timing between this first com-
putatation of [exp[tan(z)]dz and the following one.

The second evaluation is faster. Now, a baseline time has been established
for evaluating this integral symbolically.

Here, to make a function definition for the integral, the symbolic integral
is obtained and so the function definition takes longer.

Using an = is roughly equivalent to using Evaluate above and the time
to make the function assignment should be approximately the same.

Here, the symbolic integration is delayed until the function is called
(later). Therefore, the function assignment is very rapid.

The functions, where the right-hand-side was immediately evaluated, con-
tain the symbolic information. Therefore, when the function is called
later, the symbolic integration will not be needed.

The function with the completely delayed assignment does not have the
symbolic information.

The speed of the function is much faster in the case where the symbolic
integration is not needed.

The relatively slow speed of this function indicates that it would be a
poor choice when numerical efficiency is an issue.

html (evaluated)

[Timing[lmegrate[Exp[Tan[x]l {x, 0, ¢}l

2| Timing[Integrate[ExplTanlxll, {x, 0, c}]]

l
3[Timing[flc_] := Evaluate[Integrate[ExplTanlxll, {x, 0, c}1]]
4[T\m|ng|h[c] = Integrate[ExplTanlxl], {x, 0, c}]]
SlTwmmg[glc] := Integrate[Exp[Tanlxll, {x, 0, c}1]
6[2f
7[2n
8[?9
9[Timinglf[0.5]]
10[Timing[hl0.5]]
11 Timingiglo.51)

|
|
|
|
|
|
|
|
|
|
|

3.016 Home

«| «|»|m]

Full Screen

Close

o

Quit

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2006/Notebooks/L16/Lecture-16.nb
http://pruffle.mit.edu/3.016-2006/pdf/L16/Lecture-16-2.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-16/HTMLLinks/index_2.html
http://pruffle.mit.edu/3.016-2006/html/Lecture-16/HTMLLinks/index_2.html

Lecture 16 MATHEMATICA® Example 3

London Dispersion Potential of a Finite Cylinder

notebook (non-evaluated)
The example of using the divergence theorem to compute a 1/7% potential by pushing a volume integral onto its

pdf (evaluated)

bounding surface is continued for the particular case of a cylinder.

1:

Here, Evaluate is used to store the result of the Simplify function
after the bounds of the integrated function are evaluated. The result is
the integrand for the cylindrical part.

NIntegrate is required to do the remaining calculation, but instead in-
tegrating over three variables, the cylinder’s contribution is reduced to a
single integration. Because of polar symmetry, the problem is simplified
by setting x to the total distance r and setting y = 0.

These are the surface differential quantities for the top surface of the
cylinder.

This is the integrand for the top surface.

The integral over 6 does not return a closed form; so here the r-integral
is performed explicitely.

NIntegrate is used to do the f-integral and here a function is defined to
give the contribution due to the top surface.

By direct analogy to the top surface, the contribution from the bottom
surface is defined as a function.

The total potential is obtained by adding the contribution from the cylin-
drical side to the top and bottom surfaces’ contributions.

html (evaluated)

Cylinderintegrandé|x_, y_, z_, CylRad_, CylLen_] :=

Evaluate[Simplify[(CylinderintegrandéInd¢ /. {¢ —> CylLen/2,

R —> CylRad})) - (CylinderIntegrandfInd /.
{{ —> -CylLen/2, R —> CylRad}), Assumptions —>
CylRad > 0 && CylLen >0 && x e Reals &&
y € Reals&& z € Reals && t e Reals]]

n

CylinderContribution[dist_, z_, CylRad_, CylLen_] :=
Nintegrate[Evaluate[CylinderIntegrandé|
dist, 0, z, CylRad, CylLen], {t, 0, 2x}]]

L
TopSurf = {rCosltl, rSinlt], =)
2

TopSurfRt = D[TopSurf, tj; ~TopSurfRr = D[TopSurf,]
NormalVecTopSurf = FullSimplify[Cross[TopSurfRr, TopSurfRt]]

~

Toplntegrandfr =
FullSimplify[(FVecLondon /. {¢ r Coslt], n - rSinlt], - L/2)).
NormalVecTopSurf]

o

Toplntegrandéindr = Integrate[Toplntegrandér, r, Assumptions —
t=0&& L > 08&& xec Reals && y < Reals && z < Reals]

[

Toplntegrandf[x_, y_, z_, CylRad_, CylLen_] := Evaluate[
Simplify[(ToplIntegrandfindr /. {r —> CylRad, L —> CylLen}) -
(ToplntegrandéIndr /. {r —> 0, L —> CylLen})]]

=

TopContribution[dist_, zpos_, CylRad_, CylLen_] :=
Nintegrate[Evaluate[
ToplIntegrandf[dist, 0, zpos, CylRad, CylLen], {t, 0, 2 x}]]

-L
BotSurf = (rCoslt, rSinitl, ==}

2
BotSurfRt = D[BotSurf, t]; BotSurfRr = D[BotSurf, r]
= Pl , BotSurfRr]]

Botintegrandér =
FullSimplify [(FVecLondon /. (£ - r Coslt, 5~ rSinlt], £ - ~L/2}).NormalVecBotSurf |

|

déindr = dér,

r ions -
t=08&&L > 08&8& xe Reals & y € Reals && z € Reals]

=)

BotContribution[dist_, zpos_, CylRad_, CylLen_] :=
Nintegrate[Evaluate[
BotIntegrands[dist, 0, zpos, CylRad, CylLenl], {t, 0, 2x}]]

LondonCylinderPotential[dist_, zpos_, CylRad_, CylLen_] :=
CylinderContribution[dist, zpos, CylRad, CylLen] +
TopContribution[dist, zpos, CylRad, CylLen] +
BotContribution[dist, zpos, CylRad, CylLen]

3.016 Home

PRI

Full Screen

Close

Quit

o

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2006/Notebooks/L16/Lecture-16.nb
http://pruffle.mit.edu/3.016-2006/pdf/L16/Lecture-16-3.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-16/HTMLLinks/index_3.html
http://pruffle.mit.edu/3.016-2006/html/Lecture-16/HTMLLinks/index_3.html

Lecture 16 MATHEMATICA® Example 4

Visualizing the London Potential of a Finite Cylinder

notebook (non-evaluated) pdf (evaluated) html (evaluated)
The example is finished off by visualizing the results. Some of the numerical integrations are still poorly behaved
in the vicinity of the cylinder’s sharp edge.

1| LondonCylinderPotentiall2, .5, 1, 3] |

1: Demonstrating that the LondonCylinderPotential function, that was de- 2| PeEotondenOyindePotentadst, zpos, 1, 2], |

fined above, gives a numerical result. o[<< Graphics Graphics |

2: Here, the potential is visualized with P1ot3D outside the radius from the visuaize resutt as a function of acial distance at different 3.016 Home
mid-plane to above the cylinder. aliudes

2 o o 0 . LondonPlot = Plot|

4: This is perhaps easier to interpret: the r-dependence is plotted at several | ™" oioncyimbrpotentaldist, o, 1, 4/3],
a o LondonCylinderPotentialldist, 2/3, 1, 4/3],
different midplanes. LondonCylinderPotentialldist, 4/3, 1, 4/3],

4 LondonCylinderPotentialldist, 2, 1, 4/31},
o g g {dist, 0.01, 3}, PlotStyle —
6: The same as the above, but for midplanes above the top of the cylinder. (hcasslogal,RoBoolr, 0, « <» | >

u . . . N o . . {Thicknessl0.015], RGBColor(0, 0.5, 01},

7: ContourPlot probably gives the easiest visualization to interpret in this Thicknessl0.01], RGBColor(0, 0, 11},

{Thicknessl0.005], RGBColor[1, 0, 11}}]

case.

5[Show[LondonPlot, PlotRange - (-5, 311 |

TopOfCylinder = Plot[{LondonCylinderPotentialldist, 1.1, 1, 1],
LondonCylinderPotential[dist, 1.2, 1, 1],
LondonCylinderPotentialldist, 1.3, 1, 11,
LondonCylinderPotentialldist, 1.4, 1, 11}, {dist, 0, 3},

PlotStyle - {{Thickness0.02], RGBColor(1, 0, 01}, Full Screen
{Thicknessl0.015], RGBColor[0, 0.5, 01},
{Thicknessl0.01], RGBColor{0, 0, 11},
{Thicknessl0.005], RGBColor(1, 0, 11}}]

The contour plot below would take an enormously long
time to compute if we had not employed all of the ““integral
tricks"

ContourPlot[LondonCylinderPotential[dist, height, 1, 0.25], Cl
7| " idist, 0.001, 2), {height, 0.001, 2), ose
Contours —> 25, ColorFunction —> (Huel0.6 #] &)]

Quit

LH

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2006/Notebooks/L16/Lecture-16.nb
http://pruffle.mit.edu/3.016-2006/pdf/L16/Lecture-16-4.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-16/HTMLLinks/index_4.html
http://pruffle.mit.edu/3.016-2006/html/Lecture-16/HTMLLinks/index_4.html

Stokes’ Theorem

The final generalization of the fundamental theorem of calculus is the relation between a vector function
integrated over an oriented surface and another vector function integrated over the closed curve that
bounds the surface.

A simplified version of Stokes’s theorem has already been discussed—Green’s theorem in the plane
can be written in full vector form:

// (aﬁ—aﬂ>dxdy:/VXﬁ-dg
R

:7{ (Fldx—l—ngy):?{ F ﬁals
OR or ds

as long as the region R lies entirely in the z = constant plane.
In fact, Stokes’s theorem is the same as the full vector form in Eq. 16-6 with R generalized to an
oriented surface embedded in three-dimensional space:

(16-6)

/vXﬁ-d/T: R (16-7)
R or ds

Plausibility for the theorem can be obtained from Figures 16-14 and 16-15. The curl of the vector
field summed over a surface “spills out” from the surface by an amount equal to the vector field itself
integrated over the boundary of the surface. In other words, if a vector field can be specified everywhere
for a firzed surface, then its integral should only depend on some vector function integrated over the
boundary of the surface.

Maxwell’s equations

The divergence theorem and Stokes’s theorem are generalizations of integration that invoke the diver-
gence and curl operations on vectors. A familiar vector field is the electromagnetic field and Maxwell’s
equations depend on these vector derivatives as well:

V-B=0 VXE:%B
e i (16-8)
VxH=">+7 V.-D=p

3.016 Home

PRI

Full Screen

Close

Quit

o

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

in MKS units and the total electric displacement D is related to the total polarization P and the
electric field E through:
D=P-+e¢FE (16-9)

where ¢, is the dielectric permittivity of vacuum. The total magnetic induction B is related to the
induced magnetic field H and the material magnetization through

B = po(H + M) (16-10)

where p, is the magnetic permeability of vacuum.

Ampere’s Law

Ampere’s law that relates the magnetic field hnes that surround a static current is a macroscopic
version of the (static) Maxwell equation V x H = J:

Gauss’ Law

Gauss’ law relates the electric field lines that exit a closed surface to the total charge contained within

the volume bounded by the surface. Gauss’ law is a macroscopic version of the Maxwell equation
V-D=p:

3.016 Home

PRI

Full Screen

Close

Quit

o

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

Lecture 17: Function Representation by Fourier Series

Reading:
Kreyszig Sections: 11.1, 11.2, 11.3 (pages478-485, 487-489, 490-495)

Periodic Functions

Periodic functions should be familiar to everyone. The keeping of time, the ebb and flow of tides, the
patterns and textures of our buildings, decorations, and vestments invoke repetition and periodicity
that seem to be inseparable from the elements of human cognition.” Although other species utilize
music for purposes that we can only imagine—we seem to derive emotion and enjoyment from making
and experience of music.

°T hope you enjoy the lyrical quality of the prose. While I wonder again if anyone is reading these notes, my wistfulness
is taking a poetic turn:

They repeat themselves

What is here, will be there

It wills, willing, to be again

spring; neap, ebb and flow, wane; wax
sow; reap, warp and woof, motif; melody.
The changed changes. We remain
Perpetually, Immutably, Endlessly.

3.016 Home

PRI

Full Screen

Close

o

Quit

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

Lecture 17 MATHEMATICA® Example 1

Playing with Audible Periodic Phenomena

notebook (non-evaluated)

pdf (evaluated)

html (evaluated)

Several example of creating sounds using mathematical functions are illustrated for education and amusement.

1:

10:

The seven musical notes around middle C indexed here with integers and
then their frequencies (in hertz) are defined with a freq. The function
Note takes one of the seven indexed notes and creates a wave-form for
that note. The function Play takes the waveform and produces audio
output.

To superimpose notes together to make a chord, it would be convenient
to Map the function Note over a list. ..

The easiest way to exend a function so that it executes over a list is to
use SetAttributes and declare the function to be Listable.

Like the function Plot, Play will frequently need Evaluate called on
nontrivial arguments.

Chord make an ascending list of every second note and then uses Mod to
map those notes onto the primary domain (0,1,. . .,6).

If different notes are wanted at different times, an If statement can be
used.

This is the sequence of notes associated with the displayed musical score.
Beats is a function that takes a list of notes and arranges them into a
list where each member is an If statement stating when and for what
duration it should play. In addition to the sequence of notes, the function

takes two arguments, cadence and duration | which specifiy how quickly
and how long to sustain the notes.

This is musical score with notes played every 0.75 seconds and held for

0.5 second. Joy.
This is random “music.”

Oh boy.

This is noise generated from a function. Enjoy.

=0;d=1;e=2;f=3;
freqlcl =261.6; freqld] =293.7; freqlel
q freqlfl = 349.2; freq(g] = 392.0;
freqlal = 440.0; freqlbl = 493.9;
Note[note_| := Sin[2 Pifreqlnotel t];
Play[Notelcl, {t, 0, 2}]

g=4;a=5b=6;
=329.6;

2| Notel{c, e}]

3| SetAttributes[Note, Listable] 3.016 Home

L

4| Play[{Notelc], Notelel}, {t, 0, 2}]

6| Chord[note_] := Table[Note[Mod[note + i, 611, i, 0, 4, 2}]

7| Play[EvaluatelChordlell, {t, 0, 2}]

l
l
l
5[Play|Evaluate[Notel(c, e}l], t, 0, 2]
l
l
l

8| Playl[lf[t > 0.25 && t < 1.25, Notelal, Notelcl], {t, 0, 1.5}]

“ <> |>>
Let's see if we can play this:
éﬂ; sl

* . e 4 4
s 45 f et tre

9[twoframes = {e, e, f, g, 9,f, e,d, c,c,d, e}

Beats|list_, duration_, cadence_] := Table[Iff
10 t= (i—1)«cadence & t < (i—1)«cadence + duration,|

Evaluateliistl[illl, 0], {i, 1, Lengthllist]}] Full Screen

11[Play|Evaluate[Beats[Noteltwoframes], 0.5, 0.751], {t, 0, 12}]

randomnotes =

12 Map[Note, Table[Random(Integer, {0, 6}], {24}]]

Play[Sin[1000 x Sin[Explx/3] + Sinlx]/x]] +

Explx/10] Sinlx] Sin[1500], {x, —20, 10}]

13[Play[Evaluate[Beats[randomnotes, 0.5, 0.5]], {t, 0, 12}] [
14 ‘

Close

Quit

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2006/Notebooks/L17/Lecture-17.nb
http://pruffle.mit.edu/3.016-2006/pdf/L17/Lecture-17-1.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-17/HTMLLinks/index_1.html
http://pruffle.mit.edu/3.016-2006/html/Lecture-17/HTMLLinks/index_1.html

A function that is periodic in a single variable can be expressed as:

fl@+A) = f(z)
fE+7)=f®)

The first form is a suggestion of a spatially periodic function with wavelength A and the second form
suggests a function that is periodic in time with period 7. Of course, both forms are identical and
express that the function has the same value at an infinite number of points (= n\ in space or t = nr
in time where n is an integer.)

Specification of a periodic function, f(x), within one period = € (x,, 2, + A) defines the function
everywhere. The most familiar periodic functions are the trigonometric functions:

(17-1)

sin(z) = sin(xz + 27) and cos(x) = cos(z + 27) (17-2)

However, any function can be turned into a periodic function.

3.016 Home

PRI

Full Screen

Quit

Bt
Close
e

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

N N
Lecture 17 MATHEMATICA® Example 2 I

Using “Mod” to Create Periodic Functions

notebook (non-evaluated) pdf (evaluated) html (evaluated)
Periodic functions are often associated with the “modulus” operation. Mod[z,)] is the remainder of the result
of recursively dividing x by A until the result lies in the domain 0 < Mod[z, A] < \). Another way to think of
modulus is to find the “point” where are periodic function should be evaluated if its primary domain is z € (0, \).

Boomerang uses Mod to force a function, f, with a single
argument, x, to be periodic with wavelength A

1: Boomerang uses Mod on the argument of any function f of a single

argument to map the argument into the domain (0, A). Therefore, calling 1[soomerangii_, x_, _1 = fivodlx, Al | 3.016 Home
Boomerang on any function will create a infinitely periodic repetition of 2[Afunctonix | = (3-r8)/27 |
the funCtiOn n the domain (0,)\) The following step uses Boomerang to produce a periodic

repetition of AFunction over the range 0 < x < 6:

3: Plot called on the periodic extension of wavelength A = 6 of a function
illustrates the effect of Boomerang . a periodic function with a specified 2|5 =52 55 Horamger Aif "

b, {x, -12, 12], PlotRange - Al ‘ ﬂﬂﬁﬂ

Full Screen

Close

o

Quit

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2006/Notebooks/L17/Lecture-17.nb
http://pruffle.mit.edu/3.016-2006/pdf/L17/Lecture-17-2.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-17/HTMLLinks/index_2.html
http://pruffle.mit.edu/3.016-2006/html/Lecture-17/HTMLLinks/index_2.html

Odd and Even Functions
The trigonometric functions have the additional properties of being an odd function about the point
x = 0: fodad : foad(z) = —foada(—z) in the case of the sine, and an even function in the case of the

cosine: feven : feven(x) o feven(_$)-
This can generalized to say that a function is even or odd about a point A/2: fodd)\ : Odd A(A/24z) =

_fodd% ()‘/2 1 l’) and feven : feven ()‘/2 ks 1:) even (>‘/2 o l’)

Any function can be decomposed into an odd and even sum:

g(x) = Jeven T Jodd (17—3)

The sine and cosine functions can be considered the odd and even parts of the generalized trigono-

metric function:
i

e'" = cos(x) + vsin(x) (17-4)
with period 27.

Representing a particular function with a sum of other functions

A Taylor expansion approximates the behavior of a suitably defined function, f(x) in the neighborhood
of a point, x,, with a bunch of functions, p;(z), defined by the set of powers:

o= (222t ...,27,..) (17-5)

bi
The polynomial that approximates the function is given by:
fl@y=A-p (17-6)
where the vector of coefficients is defined by:

pry™ syl 1 df

1 df
5 . (17-7)

The idea of a vector of infinite length has not been formally introduced, but the idea that as the
number of terms in the sum in Eq. 17-6 gets larger and larger, the approximation should converge to

3.016 Home

PRI
Full Screen

Bt
Close
e

Quit

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

the function. In the limit of an infinite number of terms in the sum (or the vectors of infinite length)
the series expansion will converge to f(x) if it satisfies some technical continuity constraints.

However, for periodic functions, the domain over which the approximation is required is only one
period of the periodic function—the rest of the function is taken care of by the definition of periodicity
in the function.

Because the function is periodic, it makes sense to use functions that have the same period to
approximate it. The simplest periodic functions are the trigonometric functions. If the period is A, any
other periodic function with periods A/2, A/3, A/N, will also have period A. Using these ”sub-periodic”
trigonometric functions is the idea behind Fourier Series.

Fourier Series

The functions cos(2mx/A) and sin(27mx/A) each have period A. That is, they each take on the same
value at x and = + A.

There are an infinite number of other simple trigonometric functions that are periodic in A; they
are cos[2mz/(A\/2))] and sin[27mz/(A/2))] and which cycle two times within each A, cos[2mz/(\/3))]
and sin[27z/(A/3))] and which cycle three times within each A, and, in general, cos[2rz/(A/n))] and
sin[27z/(A/n))] and which cycle n times within each A.

The constant function, ag(x) = const, also satisfies the periodicity requirement.

The superposition of multiples of any number of periodic function must also be a periodic function,
therefore any function f(x) that satisfies:

e 2mn 2 ;i 2mn
flx) =& + nZ:l En cos (Aac> + nz:l O,, sin <)\x)

= B Z &, cos(knx) + Z O, sin(knz)

=l n=1

(17-8)

where the k; are the wave-numbers or reciprocal wavelengths defined by k; = 2mj/A. The k’s represent
inverse wavelengths—Ilarge values of k represent short-period or high-frequency terms.

If any periodic function f(z) could be represented by the series in in Eq. 17-8 by a suitable choice
of coefficients, then an alternative representation of the periodic function could be obtained in terms
of the simple trigonometric functions and their amplitudes.

3.016 Home

PRI

Full Screen

Close

Quit

o

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

The “inverse question” remains: “How are the amplitudes &, (the even trigonometric terms) and

Oy, (the odd trigonometric terms) determined for a given f(z)?”
The method follows from what appears to be a “trick.” The following three integrals have simple

forms for integers M and N:

F0 Tl 2 VAL O N go = [aif M =N
- Sin X Z | sin 7)\ T T = 0if M 7& N
2ifM=N (17-9)

T 2 M 2N N o _ {3
o COS i X | COS 7)\ T T = 0if M ?é N

otk 2 M 2rN
/ cos (i :1:> sin (Z\x) dx = 0 for any integers M, N
o

The following shows a demonstration of this orthogonality relation for the trignometric functions.

PRI

Full Screen

Bt
Close
e

Quit

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

Lecture 17 MATHEMATICA® Example 3

Orthogonality of Trignometric Functions

notebook (non-evaluated) pdf (evaluated)
Demonstrating that the relations in Eq. 17-9 are true.

1:

Using Integrate for cos(2rMa/\) cos(2r Nz /) over a definite interval
of a single wavelength, does not produce a result that obviously vanishes
for M # N.

However, replacing any of the symbolic integers with actual integers re-
sults in a zero. So, one the orthogonality relation is plausible.

Using Assuming and Limit, one can show that the relation ship vanishes
for N = M. Although, it is a bit odd to be thinking about continuous
limits with integers.

Similarly for [cos(2nMz/A)sin(2rNxz/\)dz.

and for [sin(2rMz/\)sin(2rNz/\)dx.

html (evaluated)

27 Minteger x
€oscos = Integrate[Cos[7 Vintegef

2 rNinteger x

| Cos|

{x, X0, x0 + A}, Assumptions — {Minteger e Integérs,
Ninteger € Integers, xo € Reals, A > 0)]

1

2| Simplify[coscos /. {Minteger - 4, Ninteger - 34}]

Assuming[Minteger e Integers &&
Ninteger € Integers &&xo € Reals & A € Reals,
Limit[coscos, Minteger - Ninteger]]

(%)

3.016 Home

cossin = Integrate[Cos[

| sin
{x, x0, xo + A}, Assumptions - {Minteger € Integers,
Ninteger € Integers, xo € Reals, A > 0}]

2 Minteger x
A

27 Ninteger x
A

s

5| Simplify[cossin /. {Minteger - -7, Ninteger - 35}]

Assuming[Minteger e Integers &&
6 Ninteger € Integers && xo € Reals & A € Reals,
Limit[cossin, Minteger — Ninteger]]

«| «|» ||

sinsin = Imegrate[Sin[

| Sin| 3
{x, x0, xo + A}, Assumptions - {Minteger € Integers,
Ninteger € Integers, xo € Reals, A > 0)]

27 Minteger x 2 Ninteger x
A

]

8| Simplify[sinsin /. {Minteger - 10, Ninteger — 9}]

Assuming[Minteger e Integers &&
9 Ninteger € Integers &&xo € Reals & A € Reals,
Limit[sinsin, Minteger - Ninteger]]

Full Screen

Close

o

Quit

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2006/Notebooks/L17/Lecture-17.nb
http://pruffle.mit.edu/3.016-2006/pdf/L17/Lecture-17-3.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-17/HTMLLinks/index_3.html
http://pruffle.mit.edu/3.016-2006/html/Lecture-17/HTMLLinks/index_3.html

Using this orthogonality trick, any amplitude can be determined by multiplying both sides of Eq. 17-
8 by its conjugate trigonometric function and integrating over the domain. (Here we pick the domain
to start at zero, z € (0, \), but any other starting point would work fine.)

cos(kyrz) f(x) = cos(kprz) <5k0 + Z Ek,, cos(knpx) + Z Oy, sin(knm)>

n=1 n=1

A A 0 (%)
/0 cos(kprx) f(x)dx :/0 cos(knrx) <5k0 + Z Ek,, cos(knz) + Z Ok, sin(k;nx)> dx (17-10)

=1 n=1

A A
/ COS(kaL')f(x)daj :gng
0

This provides a formula to calculate the even coefficients (amplitudes) and multiplying by a sin function

provides a way to calculate the odd coefficients (amplitudes) for f(x) periodic in the fundamental
domain z € (0, \).

A
=5 | f@da

A
e / e T o e 22 (17-11)
Al)\
A
Okp —2/ f(z)sin(kyx)dx kn = 2V,
s A

The constant term has an extra factor of two because fOA Ekydr = NE, instead of the \/2 found in
Eq. 17-9.

Other forms of the Fourier coefficients

Sometimes the primary domain is defined with a different starting point and different symbols, for
instance Kreyszig uses a centered domain by using —L as the starting point and 2L as the period,
and in these cases the forms for the Fourier coefficients look a bit different. One needs to look at the
domain in order to determine which form of the formulas to use.

3.016 Home

PRI
Full Screen

Bt
Close
e

Quit

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

Extra Information and Notes
Potentially interesting but currently unnecessary

The “trick” of multiplying both sides of Eq. 17-8 by a function and integrating comes from
the fact that the trigonometric functions form an orthogonal basis for functions with inner
product defined by

A
f@) - 9(0) = [f@lg(o)dz
0
Considering the trigonometric functions as components of a vector:

éo(x) =(1,0,0,...,)
éi(z) =(0, cos(k12),0,...,)
és(z) =(0,0,sin(k1x),...,)

én(x)=(...... ,sin(kpx),...,)

then these “basis vectors” satisfy € - € = (N\/2)d;;, where 6;; = 0 unless i = j. The trick is
Just that, for an arbitrary function represented by the basis vectors, P(x) - €j(x) = (A/2)P;.

3.016 Home

PRI

Full Screen

Close

Quit

o

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

Lecture 17 MATHEMATICA® Example 4

Calculating Fourier Series Amplitudes

notebook (non-evaluated)

pdf (evaluated)

html (evaluated)

Functions are developed which compute the even (cosine) amplitudes and odd (sine) amplitudes for an input

function of one variable. These functions are extended to produce the first IV terms of a Fouriers series.

1:

12:

EvenTerms computes symbolic representations of the even (cosine) co-
efficients using the formulas in Eq. 17-11. The N = 0 term is computed
with a supplemental defintion because of its extra factor of 2. The domain
is chosen so that it begins at * = 0 and ends at z = .

OddTerms performs a similar computation for the sine-coefficients; the
N = 0 amplitude is set to zero explicitely. It will become convenient to
include the zeroth-order coefficient for the odd (sine) series which vanishes
by definition. The functions work by doing an integral for each term—this
is not very efficient. It would be more efficient to calculate the integral
symbolically once and then evaluate it once for each term.

efOddAmplitudeVector and EvenAmplitude Vectors create amplitude vec-
tors for the cosine and sine terms with specified lengths and domains.

This function, f(z) = z(1—x)?(2—=x), will be used for particular examples
of Fourier series, note that it is an even function over 0 < z < 2. ..

The functions, OddBasisVector and EvenBasisVector , create vectors of
basis functions of specified lengths and perioidic domains.

The Fourier series up to a certain order can be defined as the sum of two
inner (dot) products: the inner product of the odd coefficient vector and
the sine basis vector, and the inner product of the even coefficient vector
and the cosine basis vector.

This will illustrate the approximation for a truncated (N = 6) Fourier

series

EvenTerms|0, function_, A_] :=
T Integrate[function[dummy], {dummy, 0, A}]

1 Ev}enTerms[SP,lnieger, function_, A_] :=

E\ Integrate[functionlz] « Cosl(2 « SP« Pi+2)/Al, {z, 0, A}]

N

OddTerms|0, function_, wavelength_] := 0

OddTerms[SP_Integer, function_, A_] :
% Integratelfunctionlz] « Sinl(2+ SP «Pix2)/Al, {z, 0, A}]

(%)

OddAmplitudeVector{
NTerms_Integer, function_, wavelength_] :=
Table[OddTerms]i, function, wavelength], {i, 0, NTerms}]

4

EvenAmplitudeVector|
NTerms_Integer, function_, wavelength_] :=
Table[EvenTermsi, function, wavelength], {i, 0, NTerms}]

3.016 Home

BN

«| «|»|m]

9|

myfunctionlx_] := (xx (2 -x)x(1 —x)A2)

d

OriginalPlot = Plot[myfunctionlx], {x, 0, 2},
PlotStyle - {Huel1], Thickness[0.015]}]

7

OddBasisVedor[NvTermsflnteger, var_, wavelength_] =

. 27 ivar .
Tab\e[SmlWengm], {i, 0, NTerms)]

EvenBasisVemor[NTermsJmeger, var_, wavelength_] =
Tab\e[Cos[ﬂ], {i, 0, NTerms)]
wavelength

©

FourierTruncSeries[n_, function_, var_, wavelength_] :=
EvenAmplitudeVector[n, function, wavelength].
EvenBasisVector[n, var, wavelength] +
OddAmplitudeVector{n, function, wavelength].
OddBasisVector[n, var, wavelength]

10

11

12

[FourierTruncSeries[6, myfunction, x, 2]

|

FourierPlot =
Plot[FourierTruncSeries[6, myfunction, x, 2], {x, -2, 4}]

|

[Show[OriginalPlot, FourierPlot]

|

Full Screen

Close

o

Quit

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2006/Notebooks/L17/Lecture-17.nb
http://pruffle.mit.edu/3.016-2006/pdf/L17/Lecture-17-4.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-17/HTMLLinks/index_4.html
http://pruffle.mit.edu/3.016-2006/html/Lecture-17/HTMLLinks/index_4.html

Lecture 17 MATHEMATICA® Example 5

Using the Calculus‘FourierTransform‘ package

notebook (non-evaluated) pdf (evaluated) html (evaluated)
Fourier series expansions are a common and useful mathematical tool, and it is not surprising that
MATHEMATICA®) would have a package to do this and replace the inefficient functions defined in the pre-

vious example.

1 [<< Calculus’FourierTransform® [

1: The functions in Calculus‘FourierTransform‘ are designed to operate 2| aruncionix = % ‘
on the unit period located at © € (—=1/2,1/2). Therefore, the domains [FiotAFanstonld. . 0, 61 [3.016 Home
of functions of interest must be mapped onto this domain by a change of
R Mathematica's Fourier Series functions are defined for
Varlables. function that are periodic in the domain x e (-1/2,1/2). So

we need to map the periodic functions to this domain

4: ReduceHalfHalf is an example of a function design to do the required
mapping. First the length of original domain is mapped to unity by
dividing through by A and then the origin is shifted by mapping the x (that

the MATHEMATICA® functions will see) to (0, 1) with the transformation [PotReducedFuncion, ix, —1/2,1/2}, PlotRange - Al
T — X _|_ % 7[FourierCosCoefficient{ReducedFunction, x, n]

4[ReduceHalfHalflf_, x_, A_] := flx+1/2a]

ReducedFunction =
ReduceHalfHalf[AFunction, x, 6] // Simplify

&)

«| «|»|m]

8| FourierSinCoefficient{ReducedFunction, x, n]

8: Particular amplitudes of the properly remapped function can
be obtained with the functions FourierCosCoefficient and
FourierSinCoefficient. In this example, a symbolic n is entered and a
symbolic representation of the nt* amplitude is returned.

9| FourierTrigSeries[ReducedFunction, x, 5]

Full Screen

9: A truncated Fourier series can be obtained symbolically to any order with
FourierTrigSeries.

Quit

Bt
Close
e

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2006/Notebooks/L17/Lecture-17.nb
http://pruffle.mit.edu/3.016-2006/pdf/L17/Lecture-17-5.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-17/HTMLLinks/index_5.html
http://pruffle.mit.edu/3.016-2006/html/Lecture-17/HTMLLinks/index_5.html

N N
Lecture 17 MATHEMATICA® Example 6 I

Visualizing Convergence of the Fourier Series: Gibbs Phenomenon

notebook (non-evaluated) pdf (evaluated) html (evaluated)
Functions that produce animations (each frame representing a different order of truncation of the Fourier series)
are developed. This example illustrates Gibbs phenomenon where the approximating function oscillates wildly
near discontinuities in the original function.

AnimateTruncatedFourierSeries[function_,
{truncationstart_, truncationend_, truncjump_}] :=

1: AnimateTruncatedFourierSeries is a simple example of an animation 1| TeolPSiEvanaielFourerfrigSercstiunciion, x, el
function for the truncated Fourier series. It uses the Table func- ftrunc truncatonstart, truncationend, trunclump)l; 3.016 Home
The function is demonstrative, but is inefficient because

tion with three arguments in the iterator for the initial truncation coeficients are recaiculated nesdiessly. A more efficient version
. . . . below.
truncationstart, final truncation, and the number to skip in between.. .. =222

AnimateTruncatedFourierSeries[function_,

2: However, because the entire series is recomputed for each frame, the func- e e

Module[{coscof, sincof, currentappx, n, TwoPi= 27},

tion above is not very efficient. In this second version, only two arguments T = (RSOl e 5 0
. . . Simplify[FourierCosCoefficient[function, x, n]];
are supplied to the iterator. At each frame, the two N Fourier terms | sncoini- Smoint o “«W |»

FourierSinCoefficient(function, x, nl;

are added to the sum of terms computed previously.

Table[Plot[Evaluate[currentappx +=

. g flitrunc] + Cos[TwoPiits]
3: Because ReducedFunction has a discontinuity (its end-value and intitial O nooflitroncl SmTwoPitrune x1]
. {x, =1, 1}, PlotR: - {-2,2}],
value differ), this animation will show Gibbs phenomena near the edges (e, inncationstart, runcationenc)1]
of the domain. The following will demonstrate how convergence is difficult
where the function changes rapidly---this is known as Gibbs' Full Screen

Phenomenon

5: FourierCosCoefficient will show a frequently observed feature in the
amplitudes of Fourier coefficients. The amplitude’s magnitude becomes
smaller and smaller with larger n, and the sign of the terms tend to
oscillate between positive and negative values. General form of the even amplitudes

5[myfunccos = FourierCosCoefficient(4 x* — 16 x*, x,]

3[AnimateTruncatedFourierSeries|ReducedFunction, {1, 60}] [

ReducedMyFunction =
ReduceHalfHalf[myfunction, x, 2] // Simplify

8: Plots of the magnitudes of the amplitudes are a “signature” of the original
function in a new space. Each term indicates what “amount” of each pe-
riodicity is present in the original function. The plot could be interpreted
as a “frequency” or “wavelength” representation of the original function.

6[FourierSinCoefficient(4 x* — 16x4, X, n]

7[ListPlot[Table[myfunccos, {n, 1, 50}]]

ListPlot[Table[myfunccos, {n, 1, 10}],
PlotJoined — True, PlotRange — All]

8

Quit

Close
e

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2006/Notebooks/L17/Lecture-17.nb
http://pruffle.mit.edu/3.016-2006/pdf/L17/Lecture-17-6.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-17/HTMLLinks/index_6.html
http://pruffle.mit.edu/3.016-2006/html/Lecture-17/HTMLLinks/index_6.html

Complex Form of the Fourier Series

The behavior of the Fourier coefficients for both the odd (sine) and for the even (cosine) terms was
illustrated above. Functions that are even about the center of the fundamental domain (reflection
symmetry) will have only even terms—all the sine terms will vanish. Functions that are odd about
the center of the fundamental domain (reflections across the center of the domain and then across the
x-axis.) will have only odd terms—all the cosine terms will vanish.

Functions with no odd or even symmetry will have both types of terms (odd and even) in its
expansion. This is a restatement of the fact that any function can be decomposed into odd and even
parts (see Eq. 17-3).

This suggests a short-hand in Eq. 17-4 can be used that combines both odd and even series into
one single form. However, because the odd terms will all be multiplied by the imaginary number ¢, the
coefficients will generally be complex. Also because cos(nz) = (exp(inz) + exp(—inx))/2, writing the
sum in terms of exponential functions only will require that the sum must be over both positive and
negative integers.

For a periodic domain x € (0,), f(z) = f(x + \), the complex form of the fourier series is given

by:

= 2mn
5 1knx il
= Z Cr, € where k), = —
AR (17-12)
1A ok
Cr, == o (D) e ek
AJo

Because of the orthogonality of the basis functions exp(¢k,x), the domain can be moved to any
wavelength, the following is also true:

o
2mn
1knx -
= " h kn = —
) nzz_oo Ck, e where 3
T (17-13)
e :/ f(z)e *n%dg
AJx2

although the coeflicients may have a different form.

3.016 Home

PRI

Full Screen

Close

Quit

o

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

Lecture 18: The Fourier Transform and its Interpretations

Reading:
Kreyszig Sections: 11.4, 11.7, 11.8, 11.9 (pages496—-498, 506-512 513-517, 518-523)

Fourier Transforms

Expansion of a function in terms of Fourier Series proved to be an effective way to represent functions
that were periodic in an interval x € (—A/2, —\/2). Useful insights into “what makes up a function” are
obtained by considering the amplitudes of the harmonics (i.e., each of the sub-periodic trigonometric
or complex oscillatory functions) that compose the Fourier series. That is, the component harmonics
can be quantified by inspecting their amplitudes. For instance, one could quantitatively compare the
same note generated from a Stradivarius to an ordinary violin by comparing the amplitudes of the
Fourier components of the notes component frequencies.

However there are many physical examples of phenomena that involve nearly, but not completely,
periodic phenomena—and of course, quantum mechanics provides many examples of isolated events
that are composed of wave-like functions.

It proves to be very useful to extend the Fourier analysis to functions that are not periodic. Not
only are the same interpretations of contributions of the elementary functions that compose a more
complicated object available, but there are many others to be obtained.

For example:

momentum /position The wavenumber k,, = 27n /A turns out to be proportional to the momentum
in quantum mechanics. The position of a function, f(x), can be expanded in terms of a series
of wave-like functions with amplitudes that depend on each component momentum—this is the
essence of the Heisenberg uncertainty principle.

diffraction Bragg’s law, which formulates the conditions of constructive and destructive interference
of photons diffracting off of a set of atoms, is much easier to derive using a Fourier representation
of the atom positions and photons.

3.016 Home

PRI

Full Screen

Quit

Bt
Close
e

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

To extend Fourier series to non-periodic functions, the domain of periodicity will extended to
infinity, that is the limit of A — oo will be considered. This extension will be worked out in a heuristic
manner in this lecture—the formulas will be correct, but the rigorous details are left for the math
textbooks.

Recall that the complex form of the Fourier series was written as:

> 2mn
= Z Ay, €Fn® where k, =
- (18-1)

>\/2
ko / —zknzdx
=) A2

where Ay, is the complex amplitude associated with the k,, = 27n/\ reciprocal wavelength or wavenum-
ber.
This can be written in a more symmetric form by scaling the amplitudes with A—let Ag, =

V271Cy,, /A, then
= 2 %
f(LL’) e Z ﬂ-ckn ezknx ™
il o (18-2)
7zk T
kn Tl
V2T //\/2

Considering the first sum, note that the difference in wave-numbers can be written as:

2
Ak = Fpy1 — kn = 7” (18-3)

which will become infinitesimal in the limit as A — co. Substituting Ak/(27) for 1/ in the sum, the
more “symmetric result” appears,

\)

i = Z Cy, €¥nT Ak where k, = 2L
“ (18-4)

A/2
—zk:n:cdx

Cro = \/27T/)\/2

\/ﬂ

3.016 Home

PRI

Full Screen

Quit

Bt
Close
e

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

Now, the limit A — oo can be obtained an the summation becomes an integral over a continuous
spectrum of wave-numbers; the amplitudes become a continuous function of wave-numbers, C, — g(k):

1 e 1RKT
@) == | atoeta
——1 ¥ z)e % dy
o) === [flajea

The function g(k = 27/\) represents the density of the amplitudes of the periodic functions that make
up f(z). The function g(k) is called the Fourier Transform of f(x). The function f(z) is called the
Inverse Fourier Transform of g(k), and f(x) and g(k) are a the Fourier Transform Pair.

(18-5)

Higher Dimensional Fourier Transforms

Of course, many interesting periodic phenomena occur in two dimensions (e.g., two spatial dimensions,
or one spatial plus one temporal), three dimensions (e.g., three spatial dimensions or two spatial plus
one temporal), or more.

The Fourier transform that integrates % over all can be extended straightforwardly to a two

dxdy
2w

over an infinite three-dimensional volume.

dimensional integral of a function f(7) = f(x,y) by
integral of f(7)d2dudz

/@3

A wavenumber appears for each new spatial direction and they represent the periodicities in the
x-, y-, and z-directions. It is natural to turn the wave-numbers into a wave-vector

over all x and y—or to a three-dimensional

- 2 2w 2w
k= (kg by, k)= (—5—, — 18-6
(Y) (Az Ay)\y) ()
where)\; is the wavelength of the wave-function in the i** direction.
The three dimensional Fourier transform pair takes the form:
1 Bl -
@) =—= / / / g(k)e* ¥ dkydkydk.
VI 17T) =] (18-7)
k) =——— /// 2)e % dedydz
g(k) Jam f(@) y

3.016 Home

PRI

Full Screen

Close

Quit

o

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

Properties of Fourier Transforms
Dirac Delta Functions

Because the inverse transform of a transform returns the original function, this allows a definition of an
interesting function called the Dirac delta function §(x — z,). Combining the two equations in Eq. 18-5
into a single equation, and then interchanging the order of integration:

/(@) :% /_Z {/_Z f(§)e““§d£} ek df;
1@ = [1@ {5 [~ ereoanl (18-5)

— 00 — 00

Apparently, a function can be defined

1 k(z—§)
- = 18-
§(x — xo) 277/_ e dk (18-9)
that has the property
il) i= / Iz — xo) f(z)dx (18-10)

in other words, § picks out the value at x = z, and returns it outside of the integration.

Parseval’s Theorem

The delta function can be used to derive an important conservation theorem.
If f(z) represents the density of some function (i.e., a wave-function like ¢)(z)), the square-magnitude
of f integrated over all of space should be the total amount of material in space.

[st [~ {(ctrcva) (s o

3.016 Home

PRI

Full Screen

Quit

Bt
Close
e

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

where the complex-conjugate is indicated by the over-bar. This exponentials can be collected together
and the definition of the d-function can be applied and the following simple result can is obtained

/ (T = / " g(e)g(k)dk = (18-12)

o0

which is Parseval’s theorem. It says, that the magnitude of the wave-function, whether it is summed
over real space or over momentum space must be the same.

Convolution Theorem

The convolution of two functions is given by

F(z) = p1(x) * p2(z \/%/ p1(n)p2(z — n)dn (18-13)

If p; and ps can be interpreted as densities in probability, then this convolution quantity can be
interpreted as “the total joint probability due to two probability distributions whose arguments add
up to z.”10

The proof is straightforward that the convolution of two functions, p;(z) and ps(x), is a Fourier
integral over the product of their Fourier transforms, 1 (k) and 9 (k):

n@) s = = [- nin=—= [a@n®ea s

This implies that Fourier transform of a convolution is a direct product of the Fourier transforms
Y1 (k)2 (k).

Another way to think of this is that “the net effect on the spatial function due two interfering waves
is contained by product the fourier transforms.” Practically, if the effect of an aperture (i.e., a sample
of only a finite part of real space) on a wave-function is desired, then it can be obtained by multiplying
the Fourier transform of the aperture and the Fourier transform of the entire wave-function.

10 To think this through with a simple example, consider the probability that two dice sum up 10. It is the sum of
p1(n)p2(10 — n) over all possible values of n.

3.016 Home

PRI

Full Screen

Quit

Bt
Close
e

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

Lecture 18 MATHEMATICA®) Example 1

Creating Images of Lattices for Subsequent Fourier Transform

notebook (non-evaluated) pdf (evaluated) html (evaluated)
A very large matrix of ones (white) and zeroes (black) is created as a set of “pixels” for imaging. The white
regions arranged as 8 X 8 squares in a rectangular patterns. A diffraction pattern from a group of scattering
centers such atoms is related to the Fourier transform of the “atom” positions.

WhiteSquare = Table[1, {i, 8}, {j, 8}];
BlackSquare = Table[0, {i, 8}, {j, 8}];
Join[WhiteSquare, BlackSquare, BlackSquare] //

1: Table is used to created “submatrices” of 8 x 8 ones or zeroes. Join will

MatrixForm
combine the rows of matrices and creates a “tall skinny” matrix from of [-sn 3.016 Home
o c . . . T [Join[BlackS: b
three square ones. “pixel images” of lattices by placing ones (white) and " BiackSquare, BlackSquare, BlackSquarel],
c o Transpose[Join[BlackSquare, BlackSquare,
ZEeroes (black) 1mn a rectangular grld. 2 WhiteSquare, BlackSquare]],

Transpose[Join[BlackSquare, BlackSquare,

4 o o o WhiteS , BlackS 3
2: latcell will be a 32 x 32 black region with an 16 x 8 white rectangle near T e .
8 . BlackSquare, BlackSquare]|
the center. The Transpose of four Join-ed squares will be a short-fat I

matrix. Joining four of the resulting Transpose operations produces the 3[LiswensityPiotiatcel, MeshStyle - (Huel11l; | «I 4 | » | »l
Square matriX, ColumnDuplicateNsq[matrix_, nlog2_] := ‘

S

Nest[Join[#, #] &, matrix, nlog2]

3: ListDensityPlot produces a grayscale image from an array of “pixel |
values” between 0 (black) and 1 (white).

4: ColumnDuplicateNsq takes a matrix as an argument and then recursively
duplicates its rows into a matrix that has the same number of columns
as the original. It makes at copy of all the rows at the first iteration, ,
doubling the number of rows—at the second iteration it copies all the
rows of the previous result quadrupling the number of rows, and so on.
ColumnDuplicateNsq uses Nest with a pure function. 10

ListDensityPlot[ColumnDuplicateNsq[latcell, 2],
MeshStyle - {Huel11}]

=)

RowDuplicateNsq[matrix_, nlog2_] :=
Transpose[ColumnDuplicateNsqg[matrix, nlog2]]

ListDensityPlot{RowDuplicateNsq(latcell, 2], Full Screen

MeshStyle - {Huel11}]

=

XtalData = Transpose[
ColumnDuplicateNsq[RowDuplicateNsq[latcell, 3], 3]];

9

DisplayNow = DisplayFunction — $DisplayFunction;

ImagePlot[data_] := ListDensityPlot[data,
Mesh —> False, ImageSize — 144, DisplayLater]

Close

8: The result of calling RowDuplicateNsq and ColumnDuplicateNsq with 11[Xwlimage = imagePiorlxtaiDatal
“recursion” arguments of 3, creates an 82 x 8% matrix with a square lattice 12[ShowiXtallmage, DisplayNow, ImageSize - 400]
of white rectangles.

DisplayLater = DisplayFunction - Identity; ‘

9: DisplayLater and DisplayNow are examples of rule definitions that can
be passed to Show to delay display or to show a delayed display. Quit

o

12: Xtallmage will be used for the Fourier transfrom “diffraction” simulations
in the following example.

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2006/Notebooks/L18/Lecture-18.nb
http://pruffle.mit.edu/3.016-2006/pdf/L18/Lecture-18-1.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-18/HTMLLinks/index_1.html
http://pruffle.mit.edu/3.016-2006/html/Lecture-18/HTMLLinks/index_1.html

Fast Fourier Transforms and Simulated Diffaction

The fast fourier transform (FFT) is a very fast algorithim for compute discrete Fourier transforms
(DFT) (i.e., the Fourier transform of a data set) and is widely used in the physical sciences. For image
data, the Fourier transform is the diffraction pattern (i.e., the intensity of reflected waves from a set
of objects, the pattern results from positive or negative reinforcement or coherence).

However, for FF'T simulations of the diffraction pattern from an image, the question arises on what
to do with the rest of space which is not the original image. In other words, the Fourier transform is
taken over all space, but the image is finite. In the examples that follow, the rest of space is occupied
by periodic duplications of the original image. Thus, because the original image is rectangular, there
will always be an additional rectangular symmetry in the diffraction pattern due to scattering from the
duplicate features in the neighboring images.

The result of a discrete Fourier transform is a also a discrete set. There are a finite number of pixels
in the data, the same finite number of subperiodic wavenumbers. In other words, the Discrete Fourier
Transform of a N x M image will be a data set of N x M wavenumbers:

1 2 2
Discrete FT Data = 2
iscrete ata 7(Npixels’ Npixels’ =~ N pixels) (18-15)
1 2 i :

x 27 (

)

Mpixels’ Mpixels’ " Mpixels

representing the amplitudes of the indicated periodicities.

3.016 Home

PRI

Full Screen

Quit

Bt
Close
e

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

Lecture 18 MATHEMATICA® Example 2

Discrete Fourier Transforms

notebook (non-evaluated) pdf (evaluated) html (evaluated)
Example of taking the DFT of the perfect lattice created above and visualizing the diffraction pattern.

1| FourierData = Fourier[XtalDatal; |

. . . S c g FourierColor := ColorFunction - (If[# < .1, Hue[1, 0, 01,
1: FourierData is the DFT (obtained with Fourier) of Xtallmage . R S

d a o . o o o o a 2| FourierimagePlotldata_] := ListDensityPlot[Absldatal,
FourierColor is a special ColorFunction for visualizing diffraction pat- Mesh —> Fasa,InageSiza - 14,
. ourierColor, DisplayLater]
terns. If the intensity is very low (j0.1), the result will be black; otherwise : : :
) N ; -] . . 3| Fourierlmage = FourierimagePlotlFourierDatal | 3.016 H
it will scale from blue at low intensities to red at the highest intensity. o . . : ome
ow[GraphicsArray[{Xtallmage, Fourierimage,

FourierImage is a function to display the result of a DFT, it uses Abs *| | masePlotChonioverselouieriFourierbatalll
to get the magnitudes of the imaginary data set created by Fourier.

4: Notice that the DFT has very sharp features, this is because the underly-

ing lattice is perfect. Each feature represents a different periodic function
in the direction k = (kz, ky). ﬂﬂﬁﬂ

Full Screen

Close

o

Quit

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2006/Notebooks/L18/Lecture-18.nb
http://pruffle.mit.edu/3.016-2006/pdf/L18/Lecture-18-2.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-18/HTMLLinks/index_2.html
http://pruffle.mit.edu/3.016-2006/html/Lecture-18/HTMLLinks/index_2.html

Lecture 18 MATHEMATICA®) Example 3

Visualizing Diffraction Patterns

notebook (non-evaluated) pdf (evaluated) html (evaluated)
Visualization examples are created and a function is constructed to move the longest wavelength (i.e., E~0
periodicities to the center of the resulting pattern.

Show|GraphicsArray[{Xtallmage, Fourierimage,
1 ImagePlot[ChoplinverseFourierlFourierDatall1}],

1: Using GraphicsArray, the original image, its diffraction image, and the | mageSize~ 1000, DisplayNow]
. 3 c Microscopists are used to seeing the "k=0" point in the center of
inverse Fourier transform of the diffraction image are viewed side-by-side. 5 ouior mass o, the periodic nformation at the onter), We

. . . o can write a function that translates the k=0 point to the center of
2: Diffraction images are usually observed with the long wavelength features ine mage and redisplay the resu: 3.016 Home

at the center of the image, instead of at the corners. KZeroAtCenter [KzeroGentermatdat] = Biooki

{rows = Dimensionsimatdatl[[11],

divides the original matrix data into four approximately equal-sized parts, cole = Dimensionsimacatl2ll,
alfcol, halfrow, colrem, rowrem},
and then exchanges the data from the northwest and southeast parts of halfcol = Roundlcols/2]; halfrow = Roundirows /2];
N : colrem = cols — halfcol; rowrem = rows — halfrow;
the original matrix and exchanges the northeast and southwest data. The o -
)) W 2 [|
result is an image with k =~ 0 at the center. e ey~ « > [»
. .) Take[matdat, —rowrem, halfcoll},
3: FourierImagePlot takes input Fourier-transformed data, rearranges the akelnaiebihaiionicolionl
ake[matdat, halfrow, halfcol]}

diffraction image and produces an image with k ~ 0 at the center. 7!
]
5: This will be a row similar to (1) above, but with the diffraction pattern |

2 FourierlmagePlot[data_] :=
a“d.] USted' 3| ListDensityPlot[KZeroAtCenterlAbs[datall, Mesh —> False,

ImageSize — 144, FourierColor, DisplayLater]

Full Screen

4| Fourierimage = FourierimagePlotlFourierDatal

Show|[GraphicsArray[{Xtallmage, Fourierlmage,
5 ImagePlot[ChoplinverseFourier[FourierDatall}],
ImageSize - 1000, DisplayNow]

Close

Quit

b

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2006/Notebooks/L18/Lecture-18.nb
http://pruffle.mit.edu/3.016-2006/pdf/L18/Lecture-18-3.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-18/HTMLLinks/index_3.html
http://pruffle.mit.edu/3.016-2006/html/Lecture-18/HTMLLinks/index_3.html

Lecture 18 MATHEMATICA®) Example 4

Diffraction Patterns of Defective Lattices

notebook (non-evaluated) pdf (evaluated)

html (evaluated)

Data from the perfect lattice is used to create a defect by scalar multiplying with another matrix with a small

hole created with zeroes.

1: HoleFunc uses the size of the data to create a matrix of ones with a !
rectangular region of zeroes at a specified position and size.

3: A 12 x 12 hole is created at position 28, 28. :

4: The hole is multiplied by the original perfect crystal to create a defect
and the diffraction pattern is obtained.

IS

5: The defect gives rises to “diffuse” scattering near k=0.

HoleFunc[data_, xc_, yc_, twicew_, twiceh_] :=
Module[{nrows, ncols}, nrows = Dimensions[datall[11];
ncols = Dimensionsldatall[2]]; Table[
IffAnd[Abs[j — xc] <= twicew, Abs[i — yc] <= twiceh],
0, 1], {i, nrows}, {j, ncols}]];

XtalData = Transpose[
ColumnDuplicateNsq[RowDuplicateNsq[latcell, 3], 3]];

| 3.016 Home

3| hole = HoleFunc[XtalData, 28, 28, 6, 6];

XtalData = Transpose[
ColumnDuplicateNsq[RowDuplicateNsq(latcell, 3], 3]];

XtalData = hole = XtalData;

Xtallmage = ImagePlot[XtalDatal;

FourierData = Fourier[XtalDatal;

Fourierlmage = FourierimagePlot[FourierDatal;

Show[GraphicsArray[{Xtallmage, Fourierimage,
ImagePlot[ChoplinverseFourierlFourierDatall1}],
ImageSize - 1000, DisplayNow]

PRI

Full Screen

Close

o

Quit

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2006/Notebooks/L18/Lecture-18.nb
http://pruffle.mit.edu/3.016-2006/pdf/L18/Lecture-18-4.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-18/HTMLLinks/index_4.html
http://pruffle.mit.edu/3.016-2006/html/Lecture-18/HTMLLinks/index_4.html

Lecture 18 MATHEMATICA® Example 5

Diffraction Patterns from Lattices with Thermal ‘Noise’

notebook (non-evaluated) pdf (evaluated) html (evaluated)
Functions to create a larger family of two-dimensional lattices are developed with a variable that simulates
random deviation from a perfect position.

MakeLattice[W_, H_, latvecA_,

1: MakeLattice takes input for the width and height of the resulting lattice jatiecoRleize SYandtange ks

Module[{result = Table[0, {i, H}, {j, W}], lata= -1, latb = -1,

image, structures for the lattice vectors and the number of repeats to R A e (G Tk
. o . = < [[311 =
produce, a size for the ‘atom,” and a random amplitude from which to B P i A 3.016 Home
0 o . . o = * [[21] * [[2]],
simulate noise. This function is not very well-constructed and doesn’t ypos, = Modlatas atvecAlz] et -latvecBll2
5 o o untouched[[ypos, xpos]] = False;
always work perfectly. I'll improve it someday. %pos += RandomInteger, randrangel;

ypos += Random([Integer, randrange];

3: This will display the original ‘perfect’ lattice, its resulting diffraction pat- el e e 1= €
3 a a o o Mod i, W, 1111 = 1;i++];] H
tern, and the inverse fourier image of the diffraction pattern. gy e T
lata++]; result <<| ‘ | ’ | >’|

5: This will illustrate the effect of adding thermal noise: a diffuse ring will]

. a0 . . latdata = MakeLattice[400, 400, {0, 20, 40},
be superimposed on the original diffraction pattern. 2 B oy 4. (6, ot et — Povreniatdetal |

Show[GraphicsArray[
{ImagePlotllatdatal, FourierlmagePlotlfourlat],
ImagePlot[ChoplInverseFourierlfourlatl]]}],
ImageSize - 1000, DisplayNow]

The noise is simulated by making small random displacements
of each "atom" about its site in the perfect crystal, then
computing the Fourier transform of the resulting somewhat
imperfect crystal...

Full Screen

thermallatdata =
4| MakeLattice[400, 400, {0, 20, 40}, {16, 4, 25}, 4, (-2, 2}];
thermalfourlat = Fourierlthermallatdatal;

Show[GraphicsArray[{ImagePlotlthermallatdatal,
FourierlmagePIot[thermalfourIaﬂ,
ImagePlot[ChoplinverseFourierlthermalfourlat!]]}], Close

ImageSize - 1000, DisplayNow]

o

Quit

o

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2006/Notebooks/L18/Lecture-18.nb
http://pruffle.mit.edu/3.016-2006/pdf/L18/Lecture-18-5.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-18/HTMLLinks/index_5.html
http://pruffle.mit.edu/3.016-2006/html/Lecture-18/HTMLLinks/index_5.html

Lecture 18 MATHEMATICA®) Example 6

Using an Aperature to Select Particular Perioidicities in a Diffraction Pattern

notebook (non-evaluated) pdf (evaluated) html (evaluated)
This is a function designed to select particular regions from fourier transforms of a perfect lattice and the
perturbation of a perfect lattice, and then display eight images in two columns. The left column of graphics
illustrates (from top to bottom) the ”clean” input image, the entire fourier transform with the rectangular
aperature illustrated, the "reconstructed image” that derives from the fourier transform of the aperature region,

and finally a magnified image of the fourier transform within the aperature only.
Compare[sharpdata_, sharpfourierdata_, 3.016 Home
. — . X diffusedata_, d\ffusgfour_ierdata_, Ap_Ceme_rx_,

A B The adjusted (k = 0 at center) input data from the Fourier transforms of P L R I T e LT

the reference lattice and one that will create a ‘diffuse’ pattern. e D T30l AT I 51 1

(+Ax) shiftedsharpfourier = KZeroAtCenter[sharpfourierdata]
B,C The diffraction images Of the data (»g*)shlﬂeddlffusefour\er = KZeroAtCenterldiffusefourierdatal
‘ (+Cx) sharpfourimage = ListDensityPlot[Abs[shiftedsharpfourier]];
. — - . Dy
E,F Data from only a selected portion of values Ak, Ak, of the input data. diffusefourimage = ListDensityPlotlAbsshifteddiffusefourier] «| <«|» | »»
)] g .) (+... Compute Aperature Function... »);
This data should only have the periodicities of the original lattice for these Evsharplourieraperature = _
aperature = shiftedsharpfourier;
Selected Values (+Fx)diffusefourieraperature -

aperature . shifteddiffusefourier;
L . R . o (+G=)sharpapimage = Show[sharpfourimage, Aperature];
G-L The images associated with all the data and their reconstructions. (+Hodiffuseapimage =
Show[diffusefourimage, Aperature];
o o (+lx)sharpfourmagimage =
M Producmg the array Of grapthS. ListDensityPlot[Abs[shiftedsharpfourier]];
(+Jx)diffusefourmagimage =
ListDensityPlotl Abslshifteddiffusefourier]]; Full Screen
(+K+)sharprevfourimage =
ListDensityPlot[Abs[ChoplInverseFourier|
KZeroAtCenter[sharpfourieraperature]]]]];
(+L+)diffuserevfourimage = ListDensityPlot[
Abs[Chop][InverseFourier|
KZeroAtCenter[diffusefourieraperature]]]]];
(+M=x)Show[GraphicsArray[{
{ImagePlot[sharpdata], ImagePlotldiffusedatal},
{sharpapimage, diffuseapimage},
{sharprevfourimage, diffuserevfourimage},
{sharpfourmagi , diffusefourr i

Close

}
I
I

Quit

o

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2006/Notebooks/L18/Lecture-18.nb
http://pruffle.mit.edu/3.016-2006/pdf/L18/Lecture-18-6.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-18/HTMLLinks/index_6.html
http://pruffle.mit.edu/3.016-2006/html/Lecture-18/HTMLLinks/index_6.html

Lecture 18 MATHEMATICA® Example 7

Visualizing Simulated Selected Area Diffraction

notebook (non-evaluated) pdf (evaluated)
Examples of selecting particular periodicities from ideal input and ‘noisy’ input data.

1:

10:

An ideal lattice and its Fourier transform are computed.

A ‘thermal’ perturbation of the ideal lattice and its Fourier transform are
computed.

An example of selecting only those periodicities within 50 increments of
k=0.
Creating input data where the ‘phonon modes’ have anisotropic ampli-
tudes.

If the ‘thermal vibration’ appears only in the vertical direction, the re-
sulting diffraction pattern gets ‘streaked’ in the horizontal direction.

N

(%)

IS

o

[

=

©

10

html (evaluated)

latdata =
MakeLattice[400, 400, {0, 20, 40}, {16, 4, 25}, 4, {0, 0};
fourlat = Fourierllatdatal;

thermallatdata =
MakelLattice[400, 400, {0, 20, 40}, {16, 4, 25}, 4, (-1, 1}];

thermalfourlat = Fourierlthermallatdatal;

Comparellatdata, fourlat,
thermallatdata, thermalfourlat, 0, 0, 50, 50]

3.016 Home

Comparellatdata, fourlat, thermallatdata,
thermalfourlat, 100, 100, 25, 25]

thermallatdata, thermalfourlat, 20, 30, 15, 15]

Compare[latdata, fourlat,
thermallatdata, thermalfourlat, 30, 30, 15, 15]

Compare[latdata, fourlat,

Comparellatdata, fourlat, |
thermallatdata, thermalfourlat, 35, 25, 15, 15] |

Modify the function MakeLattice to make "noise" anisotropic

MakelLattice][W_, H_, latvecA_, latvecB_, size_,
Xrandrange_, Yrandrange_] := (xdetails in notebook:)

The following data only has fluctuations in the vertical direction:

thermallatdata = MakeLattice[400, 400,
{0, 20, 40}, {16, 4, 25}, 4, {0, 0}, {-4, 4}];
thermalfourlat = Fourier[thermallatdatal;

The resulting Fourier transform gets "streaked" horizontally

Comparellatdata, fourlat,
thermallatdata, thermalfourlat, 0, 0, 200, 200]

PRI

Full Screen

Close

Quit

o

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2006/Notebooks/L18/Lecture-18.nb
http://pruffle.mit.edu/3.016-2006/pdf/L18/Lecture-18-7.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-18/HTMLLinks/index_7.html
http://pruffle.mit.edu/3.016-2006/html/Lecture-18/HTMLLinks/index_7.html

Lecture 18 MATHEMATICA®) Example 8

Discrete Fourier Transforms of Real Images

notebook (non-evaluated) pdf (evaluated) html (evaluated)

A image in graphics format, such as a .png, contains intensity as a function of position. If the function is
gray-scale data, then each pixel typically takes on 28 discrete gray values between 0 and 255. This data can be
input into MATHEMATICA®) and then Fourier transformed. Images used here and below can be obtained from
http://pruffle.mit.edu/3.016 /Images.

Importing an image into Mathematica, .png is some of
1: An image in a number of different graphics formats can be imported into ™" gaphics data types that Mathematica can process. 3.016 Home
. (Note: all of the images below can be downloaded from
MATHEMATICA@ Wlth Import. http://pruffle.mit.edu/3.016/Images/

Anlmage = Import["/Users/ccarter/classes/

3: The image data is stored in a complicated format, but the gray values |,
3016/Images/fourier_xtal_data.png"];

(indexed as integers between 0 and 255) are stored as the first item in the !
ﬁrSt hSt' 3| ImageData = Anlmagel[1, 111/255; | ﬂﬂﬁﬂ

6: This illustrates the original image, its diffraction pattern, and recon- 4[pmensionsiimageDatal |

|

structed image. 5| FourierlmageData = Fourier[ImageDatal;

Show[GraphicsArray[{ImagePlot[ImageData],
FourierlmagePlot[FourierimageDatal,

2| Show[AnIimage, DisplayNow]

ImagePlot[Chop[InverseFourier[FourierimageDatal]]}],
ImageSize - 1000, DisplayNow]

Full Screen

Close

Quit

o

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2006/Notebooks/L18/Lecture-18.nb
http://pruffle.mit.edu/3.016-2006/pdf/L18/Lecture-18-8.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-18/HTMLLinks/index_8.html
http://pruffle.mit.edu/3.016/Images
http://pruffle.mit.edu/3.016-2006/html/Lecture-18/HTMLLinks/index_8.html

N N
Lecture 18 MATHEMATICA®) Example 9 I

Selected Area Diffraction on Image Data

notebook (non-evaluated) pdf (evaluated) html (evaluated)
An function, ImageFourierAperature , that reads in the name of an image file and information about which

regions of g—space to select is developed.

ImageFourierAperature[imagefile_,
Apxmin_, Apxmax_, Apymin_, Apymax_] :=

d c . . 9 =) Module[{theimage = Import[imagefile], dims,
A fourierdata is the shifted fourier transform of the image-file’s data. AN G o e
o 0 c B d = fourieraperature, apimage, fourmagimage,
C apemture is a matrix of zeroes and ones representlng the region in k—space [’;\Sf/)f%l:‘f:g:g;gi Ezfrz‘:‘fgyeﬂg[lh xur, yurj,
1 : Fourier[[thein:age[lt 111/255)]]; 3.016 Home
tO be retalned' (+B+)fourimage = ListDensityPlot[Abslfourierdatal,

Mesh —> False, ImageSize - 144,

H This will display four images. To the right of the orginal image will be the FourierColor, DisplayLater];
J o a H o 5 . dims = Dimensionslfourierdatal;
diffraction pattern with an indication of where the aperature is located. nrows = dimsl(11]; ncols — dimsl(21l;
. . o o R L R xIl = Round|ncols/2 + Apxminncols/2];
Below the diffraction image will be a magnification of the aperature region. yll= Roundintows /2 + Apymin »nrows /2
0 &g . o . . xur = Round[ncols/2 + Apxmax s ncols/2 J;
Below the original image will be the reconstructed image obtained from yur = Roundinrows/ 2 + Apymax s nrows/ 2]
. ' . N xll = If[xll <1, 1, xll]; xur = If[xur > ncols, ncols, xur]; << ‘ ’ >’
only those periodicities available in the aperature. Y= iy <. 1, il yur = fyur > o, rrows, yur

Table(If[And[i = ylI, i = yur, j = xlI, j = xur], 1, 0],

1 i, nrows}, {j, ncols}J;

(+D=) fourieraperature = aperature « fourierdata;

(+Ex) apimage = Show[fourimage, Graphics|{

Huel.1667, 1, 1], Thickness[2/nrows!,
Line[{{xIl -1, yll -1},
{xur+1, yll—1}, {xur+1, yur+1},
{xl=1, yur+1}, {xll -1, yll= 1}}]}]];

If[xIl < 1, 1, xII]; xur = If[xur > nrows, nrows, xurl;

Iffyll < 1, 1, ylI]; yur = If[yur > ncols, ncols, yur];

(+F+) fourmagimage = ListDensityPlot[
Abslfourierdata[[Rangelyll, yur], Rangel[xll, xur]]]],
Mesh —> False, FourierColor, DisplayLater];

G=) revfourimage = ListDensityPlot[Abs[Chop[
InverseFourier[KZeroAtCenter([fourieraperature]]]],
Mesh - False, DisplayLater];
(+H=) Show|GraphicsArray][{
{theimage, apimage},
{revfourimage, fourmagimage}
)
1, ImageSize - 1000, Close
GraphicsSpacing - {.001, .0}, DisplayNow];

o Full Screen

1

Quit

o

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2006/Notebooks/L18/Lecture-18.nb
http://pruffle.mit.edu/3.016-2006/pdf/L18/Lecture-18-9.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-18/HTMLLinks/index_9.html
http://pruffle.mit.edu/3.016-2006/html/Lecture-18/HTMLLinks/index_9.html

N N
Lecture 18 MATHEMATICA® Example 10 I

Visualizing Selected Area Diffraction on Image Data

notebook (non-evaluated) pdf (evaluated) html (evaluated)
Examples and interpretations of using the function ImageFourierAperature on several input files. Images used
here and below can be obtained from http://pruffle.mit.edu/3.016/Images.

ImageFourierAperature[
1| "/Users/ccarter/classes/3016/Images/penrose.png",
1-4 Examples of selecting diffraction spots from an image of a penrose tiling. =hh=thil
The ‘streaks’ come from the lines between tiles. Picking out particular & | oo asess/3016/mages/penrose.png'.
. o -0.1,0.1,-0.2,0.2
image lines of similar tilt in the reconstructed image.] 3.016 Home |
ImageFourierAperature[
5: Picking out particular periodicities allows one to image a selected set of 3| 7ers/ccanerasses/2016/images/penrose.png”
oriented grains in a polycrystal. ImageFourierAperaturel
4| "/Users/ccarter/classes/3016/Images/penrose.png",
6: Of course, one is not limited to playing with images of crystals and %, 2 I £
tlhngs i) s IrrlageFourierAperature[,
'/Users/ccarter/classes/3016/Images/polycrystal.png",
i «| «|» ||
6 ImageFourierAperature[

"/Users/ccarter/classes/3016/Images/AB.gif", -1, 1, -1, 1]

ImageFourierAperature[
7| "/Users/ccarter/classes/3016/Images/AB.gif",
-0.5, 0.5, -0.05, 0.05]

ImageFourierAperature[
8| "/Users/ccarter/classes/3016/Images/AB.gif",
-0.05,0.05, 0.5, 0.5] Full Screen

Close

o

Quit

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2006/Notebooks/L18/Lecture-18.nb
http://pruffle.mit.edu/3.016-2006/pdf/L18/Lecture-18-10.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-18/HTMLLinks/index_10.html
http://pruffle.mit.edu/3.016/Images
http://pruffle.mit.edu/3.016-2006/html/Lecture-18/HTMLLinks/index_10.html

Lecture 19: Ordinary Differential Equations: Introduction

Reading:
Kreyszig Sections: 1.1, 1.2, 1.3 (pages2-8, 9-11, 12-17)

Differential Equations: Introduction

Ordinary differential equations are relations between a function of a single variable, its derivatives, and M
the variable:

d'y(z) d*'f(z) dPy(z) dy(@)
F N | = 19-1
e T R D (19-1)
A first-order Ordinary Differential Equation (ODE) has only first derivatives of a function. «| | | »
d
APy (a).2) = 0 (19-2)

A second-order ODE has second and possibly first derivatives.

s X X
F (d;;g). d‘z(x),y(m),x> = (19-3)

Full Screen

For example, the one-dimensional time-independent Shrédinger equation,

o

Close
h d*(x) 2
— 5y TU@N(@) = By(@)
or
h d2 uit
~ 2 TUD | G(ayite) - Bow) =0 -

is a second-order ordinary differential equation that specifies a relation between the wave function,
¥(x), its derivatives, and a spatially dependent function U(x). ©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

time, in value, in cost, in color, etc. For example, differential equations exist for modeling quantities

such as: volume, pressure, temperature, density, composition, charge density, magnetization, fracture

strength, dislocation density, chemical potential, ionic concentration, refractive index, entropy, stress,

etc. That is, almost all models for physical quantities are formulated with a differential equation.
The following example illustrates how some first-order equations arise:

Differential equations result from physical models of anything that varies—whether in space, in I I u I-

3.016 Home

PRI

Full Screen

Close

Quit

o

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

Lecture 19 MATHEMATICA®) Example 1

Iteration: First-Order Sequences

notebook (non-evaluated)

pdf (evaluated)

html (evaluated)

Sequences are developed in which the next iteration only depends on the current value; in this most simple case

simulate exponential growth and decay.

1:

EzampleFunction taking two arguments is defined: the first argument
represents the iteration and the second represents a single parameter ex-
pressing how the current iteration grows. The value at the i + 1'® iteration
is the sum of the value of the ™ plus a times value of the i*!iteration.
If this is a bank account and interest is compounded yearly, then the
i®"iteration is the value of an account after i years at a compounded an-
nual interest rate of «. This function has improved performance (but
consumes more memory) by storing its intermediate values. Of course,
the function would iterate for ever if an initial value is not specified. . .

Because the initial value and the ‘growth factor’ a deterimine all subse-
quent iterations, it is sensible to ‘overload’ FxampleFunction to take an
extra argument for the intial value: here, if EzampleFunction is called
with three arguments and the first argument is zero, then the initial value
is set; otherwise it is a recursive definition with intermediate value storage.

Trajectory is an example of a function that builds a list by first-order
iteration; its resulting list structure is plotted with ListPlot.

To visualize the behavior as a function of its initial value, several plots
can be superposed with MultipleListPlot from the MultipleListPlot
package. If a > 0, the function goes to +0o depending on the sign of the
initial value. For a fixed o every point in the plane belongs to one and
only one trajectory associated with an initial value and that «.

If @ < 0, the function asymptotically goes to zero, independent of the
initial value. In this case as well, the plane is completely covered by
non-intersecting trajectories.

Suppose a function, F[i], changes proportional to its current size,
i.e., Fli+1] = F[i] + oFfi]

ExampleFunction[i_, alpha_] := ExampleFunctionli, alpha] =
1 ExampleFunction[i — 1, alpha] +

alphax ExampleFunctionli — 1, alpha]

3.016 Home

The function needs some value at some time (an initial condition)
from which it obtains all its other values:

i

2[ExampleFunction[0, 0.25] = /4 [

3[ExampleFunction[18, 0.25] [

ExampleFunction[0,0.25] = /4 above serves as an initial value
for the function. The initial value and « determine the value at
any later time. The initial value can be expressed as another
parameter for the function:

PRI

ExampleFunction[0, alpha_, InitialValue_] := InitialValue
ExampleFunction[Increment_Integer, alpha_,
4 InitialValue_] := ExampleFunctionli, alpha, InitialValue] =

ExampleFunction[i — 1, alpha, InitialValue] +
alphax ExampleFunction[i - 1, alpha, InitialValue]

5

Trajectory[alpha_, Steps_, InitialValue_] := Table[
ExampleFunction[i, alpha, InitialValue], {i, 0, Steps - 1}]

6] ListPlotiTrajectory[0.01, 300, 0.0001], PlotJoined - Truel | Full Screen

7[<< Graphics MultipleListPlot" [

Plotting curves for a range of intial values, but fixed @ >0

MultipleListPlot[Trajectory[.01, 300, —.5],
8| Trajectory[.01, 300, .5], Trajectory[.01, 300, 1],
Trajectory[.01, 300, 1.5], PlotJoined - True]

A similar plot for negative « value. In either case each point in
space correstponds a particular initial value for a fixed &

Close

MultipleListPlot[Trajectory[-.01, 300, —.5],
Trajectory[-.01, 300, .5], Trajectory[-.01, 300, 1],
Trajectory[-.01, 300, 1.5], PlotJoined - True]

©

o

Quit

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2006/Notebooks/L19/Lecture-19.nb
http://pruffle.mit.edu/3.016-2006/pdf/L19/Lecture-19-1.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-19/HTMLLinks/index_1.html
http://pruffle.mit.edu/3.016-2006/html/Lecture-19/HTMLLinks/index_1.html

The previous example is generalized to a discrete change At of a continous (i.e., time-like) parameter
t. The following example demonstrates first-order Fuler finite differencing or Euler integration. It is
an integration approximation because the method uses a finite time step At to approximate f(t) =
fto tA(t)dt for a known first-order differential equation df /dt = A(t) where f(to) is an initial condition.
In this example, the iteration sequence approximates

(f(t = 0),f (A1), fF2AL),...) ~
df

d
(FE=0) fpr(A0) = St =00+ | At fup(20) = fun(200) + AAt,...)
= t=At

= 0), A(t = 0)At, A(t = AD)AL, ... 5 016 Home
(19-4) _soiorene|

PRI

Full Screen

Close

o

Quit

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

Lecture 19 MATHEMATICA® Example 2

First-Order Finite Differences

notebook (non-evaluated)

pdf (evaluated)

html (evaluated)

Two functions that ‘grow’ lists by using simple forward Euler finite differencing are constructed.

1:

The function ForwardDifferenceV1 is defined with four arguments: ar-
gument 1 is a placeholder for another function that determines how each
increment changes (i.e., the function df/ft); argument 2 is the initial
value; argument 3 is the distrete forward difference (i.e., At); argument
4 indicates the size of the list that will be returned. The function uses
Module to hide an internal variable representing the current value of the
list, and AppendTo to incrementally grow the list. In a following example,

NestList and NestWhileList will be used to generate more efficient
functions than the ones generate by AppendTo here.

exampleFunction is defined to to pass to sequence-generating functions—
it plays the role of df /dt in Eq. 19-4.

ListPlot will produce a plot of the exemplary result which is a list of
length 500.

ForwardDifference V1 is unsatisfactory because the x-axis of the plot
is the iteration and not the time-like variable that is more physical; so
it is generalized with ForwardDifferenceV2 which also takes arguments
for the initial value and the final value of the continuous parameter. This
function returns a list containing lists (z;, f(z;)) also suitable an argument
to ListPLot.

Create a function to return a list of values by forward differencing
with a function (these examples were modified from those found
in “"Computer Science with Mathematica" by Roman E. Maeder,
Cambridge University Press, (2000).)

ForwardDifferenceListV1[AFunction_,
InitialValue_, delta_, ListLength_Integer] :=
Module[{TheResultList = {InitialValue},
1 TheValue = InitialValue},
Do[TheValue = TheValue + delta AFunction[TheValuel;
AppendTo[TheResultList, TheValue],
{ListLength}]; TheResultList]

2| exampleFunction[x_] := 0.1x

3

ForwardDifferenceListV1[exampleFunction, 1, 0.01, 500]

4| result // Short

result = |

5[ListPlotiresult, PlotJoined - True]

Write another version of this forward difference function that
returns a list of values

and the "x" value for subsequent use in ListPlot, this one will take
X, and y(x,) as an argument in a list

6| ClearlForwardDifferenceListV2] |

ForwardDifferenceListV2[
AFunction_, x0_, fx0_, delta_, Xlast_| :=
Module[{TheResultList = {{x0, fx0}},
TheValue = fx0, CurrentX = x0},

7 While[CurrentX < Xlast,

CurrentX = CurrentX + delta;

TheValue = TheValue + delta AFunction[TheValuel;

AppendTo[TheResultList, {CurrentX, TheValue}]];
TheResultList]

result =

8 ForwardDifferenceListV2[exampleFunction, 0, 1, 0.01, 4];

9| result // Short |

3.016 Home

PRI

Full Screen

Close |

10| ListPlotlresult] |

Quit

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2006/Notebooks/L19/Lecture-19.nb
http://pruffle.mit.edu/3.016-2006/pdf/L19/Lecture-19-2.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-19/HTMLLinks/index_2.html
http://pruffle.mit.edu/3.016-2006/html/Lecture-19/HTMLLinks/index_2.html

Lecture 19 MATHEMATICA® Example 3

Nested Operations

notebook (non-evaluated)

pdf (evaluated)

html (evaluated)

The concept of nesting operations to produce finite differences is demonstrated. The MATHEMATICA® notion

of a pure function is utilized with an example.

1:

Construct a function, StepOnce , that operates on its first argument (the
pair {z;,y;(x;)}) with an input function dy/dx and a discrete increment
0. The function returns a list (the pair {z;+1,y(x;+1)}) representing the
finite difference approximation at “time” x; + ¢.

Here, a specific case is developed by defining a function that explicitely
defines both the input function (here exampleFunction) and the fixed
increment (here At = 0.01). The result is a function that takes a single
Z-Y pair.

Instead of the forward difference techniques that used AppendTo to grow
a list of z-y pairs—here, NestList is used to build a list (result) by
repeatedly (400 times) applying a function to the result at the previous
iteration.

Here, NestList is called with a pure function which is indicated by the &
that appears the StepOnce [#,exampleFunction,0.01]& definition; the
is a placeholder for the functions argument. NestList calls this pure
function repeatedly starting with the first argument (here {0,1}) and
stores intermediate values in a list.

In the next few steps, the goal is to generate such trajectories for a variety
of initial conditions. This is achieved by creating and saving plots as
Graphics Objects. In this step, rules (DisplayLater and DisplayNow) are
defined that can be passed to plotting functions that control whether the
created Graphics Object is displayed or not.

A function is defined that creates a Graphics object for a trajectory as a
function of its sole argument representing the initial value. dd

A list of trajectories for initial values (—4,—3.5,...,3.5,4.0) are plotted
together.

Because each iteration is the same, the iteration can be
considered a functional operation, for the case considered above,
{Xis1, Vie1} = X+ 6, yi+ 6 f(y;)}. Therefore a "Incrementing
Operator" can be obtained that updates the values:

1 {x+ delta, y + delta AFunction[y]}

StepOnce[{x_, y_}, AFunction_, delta_] := ‘
3.016 Home

i

Then, the trajectory should be obtained from:
{{xo,yo},StepOnce[{x0,yo}], StepOnce[StepOnce[{x0,yo}]], ...}
This is what the built-in Mathematica function

NestList[function, initialvalue,depth] does:

2

OurStepOncel[{x_, y_}] = ‘

StepOncel{x, y}, exampleFunction, 0.01]
% “ <> | d g

ListPlot[‘

3[result = NestListOurStepOnce, (0, 1}, 400J;

4[ListPlotlresult]

Using a Mathematica trick of a *pure function" one can eliminate
the intervening function (OurStepOnce) definition:

NestList[StepOnce[#, exampleFunction, 0.01] &, {0, 1}, 400]]

DisplayLater = DisplayFunction - Identity;
DisplayNow = DisplayFunction - $DisplayFunction;

Full Screen

Ipli_] :=
7 ListPlot[NestList[StepOnce[#, exampleFunction, 0.01] &,
{0, i}, 400], DisplayLater];

This will plot a family of related curves, each for a different
starting value of the iterated function:

8[Show[Table[lplil, {i, -4, 4, .5}], DisplayNow] [

To summarize what was done up to now, we've seen how a
given function can be changed incrementally by stepping forward
the independent variables and calculating a corresponding
change in the function's value. By doing so, we trace out
trajectories in space, the paths of which depend on the starting
values of the independent variables.

Close

o

Quit

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2006/Notebooks/L19/Lecture-19.nb
http://pruffle.mit.edu/3.016-2006/pdf/L19/Lecture-19-3.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-19/HTMLLinks/index_3.html
http://pruffle.mit.edu/3.016-2006/html/Lecture-19/HTMLLinks/index_3.html

Geometrical Interpretation of Solutions

The relationship between a function and its derivatives for a first-order ODE,

dy(z)
dx

B(,y(z),z) =0 (19-5)
can be interpreted as a level set formulation for a two-dimensional surface embedded in a three-
dimensional space with coordinates (v, y, z). The surface specifies a relationship that must be satisfied
between the three coordinates.
If y/(z) can be solved for exactly,

W) _ flay) (19-6)
then y'(x) can be thought of as a height above the z-y plane.
For a very simple example, consider Newton’s law of cooling which relates the change in temperature,
dT'/dt, of a body to the temperature of its environment and a kinetic coefficient k:

9T _ _por— 1) (19-7)
dt

It is very useful to “non-dimensionalize” variables by scaling via the physical parameters. In this way,

a single ODE represents all physical situations and provides a way to describe universal behavior in

terms of the single ODE. For Newton’s law of cooling, this can be done by defining non-dimensional

temperatures and time with © = T'/T, and 7 = kt, then if T, and k are constants:

do(r)
dr

—(1-0)

3.016 Home

PRI

Full Screen

Close

Quit

o

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

Lecture 19 MATHEMATICA® Example 4

The Geometry of First-Order ODES

notebook (non-evaluated)

pdf (evaluated)

html (evaluated)

The surface representation provides a useful way to think about differential equations—much can be inferred

about a solution’s behavior without computing the solution exactly. This is shown for a simple case of Newton’s

law of cooling Equation 19 and an artificial case.

1:

For first-order ODEs, behavior is dominated by whether the derivative
term is positive or negative. Here, a 3D graphics object is created for a
gray-colored horizontal plane at z = 0. This is achieved by combining (in
a list) the SurfaceColor directive in a Graphics3D object, and then
using Plot3D to create the plane with delayed display.

This will create the surface associated with Newton’s law of cooling with
the zero plane. This case is very simple. The sign of the change of ©
depends only the sign of 1 — © and therefore d©/dt = 0 is the parametric
curve (a line in this case) (d©/dt = 0,0 = 1,7). That is, if © = 1 at
any time 7 it will stay there at all subsequent times (also, at all previous
times as well). Because ©(7) will always increase when © < 1 and will
always decrease when © > 1, the solutions will asymptotically approach
0=1.

The asymptotic behavior can be further visualized by plotting a first-
order difference representation of how the solution is changing in time,
i.e, (dr,d®) = dr (1,%42) This can be obtained with PlotVectorField
from the PlotField package. Here the magnitude of the arrows is scaled
by setting dr = 1.

dy

dt
the behavior can be inferred whether the derivative lies above or below

the zero-plane (i.e., the sign of the derivative).

A more complex case = ysin (ﬁ) can be visualized as well and

PlotVectorField provides another method to follow a solution trajecto-
ries.

Newton's law of cooling %: -k(T - T,) can be written in the
non-dimensional form (:T@: 1-0
T

In the general case, d—‘: will depend on both ® and t, i.e., (:T(: =
de
dr
shown in the following plot (in this specific case there is no t
dependence):

(®,1). This the equation of a surface in three dimensions, as

BN

3.016 Home

ZeroPlane[xmin_, xmax_, ymin_, ymax_] :=
{Graphics3D[SurfaceColor[GrayLevell0.61]],
Plot3D[0, {tau, xmin, xmax}, {©, ymin, ymax]},
PlotPoints —> 4, DisplayFunction —> Identity]};

Show[PlotSDP -0, {tau, -1,1}, {©, -2, 3},
cesLabel - (', 0, 20+
T
ZeroPlane[-1, 1, -2, 3], DisplayFunction —>
$DisplayFunction, ViewPoint —> {17.830, 10.191, 4.064)]

}, DisplayFunction —> IdemityJ,

PRI

3[<< Graphics PlotField"

|

PlotVectorField[{1, 1 - ©}, {tau, 0, 4},

8 {®, -2, 4}, Axes - True, AxesLabel - {"7", "@"}]

|

Full Screen

Slightly more complicated example: dl: y sin(i—-),
; dt 1+t+y
o

dt,dy) = dt(1,ysi
(dt,dy) (,ysmHHy

yt
m], {t, 0, 10}, {y, 0, 10},

Show[PlotSDly Sin[
d
AxesLabel - {"t", "y", "—y”}, PlotPoints - 40,
DisplayFunction —> Idemily], ZeroPlane|0, 10, 0, 10],

DisplayFunction —> $DisplayFunction,
ViewPoint —> {14.795, 5.556, 13.731)]

Close

. . yt
. PIotVectorFleId“1, y Sln[Tonl I8 {t, 0, 10},

{y, 0, 10}, Axes — True, AxesLabel - {"t", "y")]

Quit

I
o= |
o |

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2006/Notebooks/L19/Lecture-19.nb
http://pruffle.mit.edu/3.016-2006/pdf/L19/Lecture-19-4.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-19/HTMLLinks/index_4.html
http://pruffle.mit.edu/3.016-2006/html/Lecture-19/HTMLLinks/index_4.html

Separable Equations

If a first-order ordinary differential equation F'(y,y,z) = 0 can be rearranged so that only one variable,
for instance y, appears on the left-hand-side multiplying its derivative and the other, x, appears only
on the right-hand-side, then the equation is said to be ‘separated.”

dy
g(y)% = f(x) (19-8)
g(y)dy = f(x)dx

Each side of such an equation can be integrated with respect to the variable that appears on that side:

Y a®
[gtman= [rieae (199)
y(zo) To
if the initial value, y(x,) is known. If not, the equation can be solved with an integration constant Cj,
& RIRIISES

/ o(y)dy = / f(@)dz + Co (19-10)

where C is determined from initial conditions. or
Full Screen

/ L = e (19-11)

Yinit ZTinit

where the initial conditions appear explicitely.

Quit

Bt
Close
e

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

Lecture 19 MATHEMATICA® Example 5

Using MATHEMATICA®) ’s Built-in Ordinary Differential Equation Solver

notebook (non-evaluated) pdf (evaluated)

html (evaluated)

MATHEMATICA® has built-in exact and numerical differential equations solvers. DSolve takes a representation

of a differential equation with initial and boundary conditions and returns a solution if it can find one. If

insufficient initial or boundary conditions are specified, then “integration constants” are added to the solution.

1:

10:

DSolve operates like Solve . It takes a list of equations containing
symbolic derivatives, the function to be solved for, and the dependent
variable. In this case, the general solution of d%—(;) = —zy(z) is returned
as a list of rules. The solutions are be obtained by applying the rules (i.e.,
y[x]/.dsol).

The solution will depend on an integration constant(s) in general. If ad-
ditional If more constraints (i.e., equations) are provided, then (provided
a solution exists) the integration constant is determined as well.

The solution is plotted by turning the “solution rule” into a single list
with Flatten. The plot is stored as a graphics object exactplot .

To see how finite differencing compares to the exact solution, the method
from an earlier example is used. Here, a the forward differencing function
is defined for the solution that was just obtained.

The previously defined forward differencing method is compared to the
exact solution.

Here, the method is generalized to take an argument for the size At.
NestWhileList is used with a pure function (where one arguments is
fixed by passing through res). A pure function is also defined for the
test of when to stop building the list—in this case, it stops when the first
element in the list (accumulated time) exceeds 10.

An animation which will visualize the effect of time-step on accuracy of
the Euler method is created. Show repeatedly called on ezactplot (the
exact solution) and a graphics object created from calling ListPlot on
res with different time-steps.

1[dsol = DSolve[y'lx] +x «ylx] =0, ylx], x] [

Note that the solution is given as a rule, just like for the function
Solve. Because no initial condition was specified, the solution
involves an unknown constant, C[1].

2[dsol = DSolve[{y'[x] + Sinlx] xylx] =0, yl0o] =1}, ylx], x] [

In this case an initial condition was specified for the differential
equation, so there is no undetermined constant in the solution.
The next statement extracts y(x) for plotting...

3[exactplot = Plot[ylx] /. Flattenldsoll, {x, 0, 10}]

4[ExampleFun[x_, y_] := —Sinlxly

StepOnce[{x_, y_}, AFunctionXY_, delta_] :=

e {x + delta, y + delta AFunctionXY[x, y]}

[

StepOncel{x, y}, ExampleFun, 0.01]

7[result = NestList[OurStepOnce, (0, 1}, 1000];

|
|
|
OurStepOncel[{x_, y_}] = ‘
|
|

B[forwarddifferenceplot = ListPlot[result, PlotStyle — {Huel11}]

Now we superpose the exact solution with that obtained by the
forward-differencing approximation.

9[Show([forwarddifferenceplot, exactplot] [

Generalize to see how the step-size on the forward differencing
scheme affects result

res[delta_] :=
NestWhileList[(StepOncel[#, ExampleFun, delta]) &,
{0, 1), @M1l < 10 &]

=)

Table[
Show[exactplot, ListPlot[resldell,
1 PlotStyle —> {Huel0.75 dell, Thickness[0.011},
PlotJoined —> True, DisplayFunction —> Identity],
PlotRange —> {{0, 10}, {0, 1}}], {del, 0.01, 1, 0.02}]

3.016 Home

Full Screen

Close

Quit

b

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2006/Notebooks/L19/Lecture-19.nb
http://pruffle.mit.edu/3.016-2006/pdf/L19/Lecture-19-5.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-19/HTMLLinks/index_5.html
http://pruffle.mit.edu/3.016-2006/html/Lecture-19/HTMLLinks/index_5.html

While the accuracy of the first-order differencing scheme can be determined by comparison to an
exact solution, the question remains of how to establish accuracy and convergence with the step-size &
for an arbitrary ODE. This is a question of primary importance and studied by Numerical Analysis.

3.016 Home

PRI

Full Screen

Quit

Bt
Close
e

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

Lecture 20: Linear Homogeneous and Heterogeneous ODEs

Reading:
Kreyszig Sections: 1.4, 1.5 (pages19-25, 26-32)

Ordinary Differential Equations from Physical Models

In engineering and physics, modeling physical phenomena is the means by which technological and
natural phenomena are understood and predicted. A model is an abstraction of a physical system,
often with simplifying assumptions, into a mathematical framework. Every model should be verifiable
by an experiment that, to the greatest extent possible, satisfies the approximations that were used to
obtain the model.

In the context of modeling, differential equations appear frequently. Learning how to model new
and interesting systems is a learned skill—it is best to learn by following a few examples. Grain growth
provides some interesting modeling examples that result in first-order ODES.

Grain Growth

In materials science and engineering, a grain usually refers a single element in an ensemble that com-
prises a polycrystal. In a single phase polycrystal, a grain is a contiguous region of material with the
same crystallographic orientation. It is separated from other grains by grain boundaries where the
crystallographic orientation changes abruptly.

A grain boundary contributes extra free energy to the entire system that is proportional to the
grain boundary area. Thus, if the boundary can move to reduce the free energy it will.

Consider simple, uniformly curved, isolated two- and three-dimensional grains.

3.016 Home

PRI

Full Screen

Quit

Bt
Close
e

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

Figure 20-18: lllustration of a two-dimensional isolated circular grain and a three-dimensional
isolated spherical grain. Because there is an extra energy in the system AGyp = 27 Ry and
AGsp = 47rR279b, there is a driving force to reduce the radius of the grain. A simple model
for grain growth is that the velocity (normal to itself) of the grain boundary is vy, = Mgy ygek
where My, is the grain boundary mobility and & is the mean curvature of the boundary. The
normal velocity vy, is towards the center of curvature.

A relevant question is “how fast will a grain change its size assuming that grain boundary migration
velocity is proportional to curvature?”

For the two-dimensional case, the rate of change of area can be formulated by considering the
following illustration.

3.016 Home |

PRI

Full Screen

Close

Quit

o

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

AA = vpAtds

Figure 20-19: A segment of a grain boundary moving with normal velocity v, will move a
distance v, At in a short time At. The motion will result in a change of area —AA for the
shrinking grain. Each segment, ds, of boundary contributes to the loss of area by AA =
— v, Atds.

Because for a circle, the curvature is the same at each location on the grain boundary, the curvature
is uniform and v, = Mgkgpygs = MgpYgs/R. Thus

dA 1

E = —Mgb"yngQWR B _27ngngb (20-1)
Thus, the area of a circular grain changes at a constant rate, the rate of change of radius is:

dA drR? dR

—D= = 2TR— = —27 M, 20-2

a ~ dt | at g9k (308
which is a first-order, separable ODE with solution:

R3(t) — R*(t = 0) = —2M i (20-3)

For a spherical grain, the change in volume AV due to the motion of a surface patch dS in a time
At is AV = v, AtdS. The curvature of a sphere is

1 il
— (= 20-4
Rsphere <R - R) (0)

3.016 Home

PRI

Full Screen

Quit

Bt
Close
e

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

Therefore the velocity of the interface is v, = 2Mgyg/R. The rate of change of volume due to the I N -
contributions of each surface patch is I

dv

2
—= —Mgwnger? — 8T MR == —4(67%) /3 My V/3 (20-5)

which can be separated and integrated:

V23(t) — V3(t = 0) = —constant; ¢ (20-6)

or

R2(t) — R?(t = 0) = —constantat (20-7) 3.016 Home

which is the same functional form as derived for two-dimensions.
The problem (and result) is more interesting if the grain doesn’t have uniform curvature.

PRI

=% u reen
§‘§ Full Scree

Close

Figure 20-20: For a two-dimensional grain with non-uniform curvature, the local normal velocity
(assumed to be proportional to local curvature) varies along the grain boundary. Because the
motion is in the direction of the center of curvature, the velocity can be such that its motion

increases the area of the interior grain for some regions of grain boundary and decreases the
area in other regions.

Quit

o

However, it can still be shown that, even for an irregularly shaped two-dimensional grain, A(t) —
A(t = 0) = —(COnSt)t. ©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

Integrating Factors, Exact Forms
Exact Differential Forms

In classical thermodynamics for simple fluids, expressions such as

dU =TdS — PdV

ou oU
= <as>vds+ <8V>de (20-8)
=0q + dw

represent the differential form of the combined first and second laws of thermodynamics. If dU = 0,
meaning that the differential Eq. 20-8 is evaluated on a surface for which internal energy is constant,
U(S,V) = const, then the above equation becomes a differential form

oU U
— — — 2_
0 (8S>Vds+<8V)SdV (20-9)

This equation expresses a relation between changes in S and changes in V' that are necessary to remain
on the surface U(S, V') = const.
Suppose the situation is turned around and you are given the first-order ODE

% =]\A{g;’; (20-10)

which can be written as the differential form
0= M(z,y)dz + N(z,y)dy (20-11)
Is there a function U(x,y) = const or, equivalently, is it possible to find a curve represented by

U(z,y) = const?

If such a curve exists then it depends only on one parameter, such as arc-length, and on that curve
dU(x,y) = 0.

The answer is, “Yes, such a function U(x,y) = const exists if an only if M (z,y) and N (z,y) satisfy

the Maxwell relations”
OM(z,y) ON(z,y)

oy Ox

(20-12)

3.016 Home

PRI

Full Screen

Close

o

Quit

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

Then if Eq. 20-12 holds, the differential form Eq. 20-11 is called an exact differential and a U exists
such that dU = 0 = M(z,y)dz + N(z,y)dy.

Integrating Factors and Thermodynamics

For fixed number of moles of ideal gas, the internal energy is a function of the temperature only,
U(T)-U(T,) = Cy(T —1T,). Consider the heat that is transfered to a gas that changes it temperature
and volume a very small amount:

dU =CydT = 6q + dw = dq — PdV

(20-13)
8q = CydT + PdV

Can a Heat Function ¢(7,V) = constant be found?
To answer this, apply Maxwell’s relations.

Homogeneous and Heterogeneous Linear ODES

A linear differential equation is one that does not contain any powers (greater than one) of the function
or its derivatives. The most general form is:
dy

Q(m)% + P(x)y = R(x) (20-14)

Equation 20-15 can always be reduced to a simpler form by defining p = P/Q and r = R/Q:

&+ by =r(z) (20-15)

If r(z) = 0, Eq. 20-15 is said to be a homogeneous linear first-order ODE; otherwise Eq. 20-15 is a
heterogeneous linear first-order ODE.

The reason that the homogeneous equation is linear is because solutions can superimposed—that is,
if y1(x) and ya(z) are solutions to Eq. 20-15, then y;(z) + y2(x) is also a solution to Eq. 20-15. This is
the case if the first derivative and the function are themselves linear. The heterogeneous equation is also
called linear in this case, but it is important to remember that sums and/or multiples of heterogeneous
solutions are also solutions to the heterogeneous equation.

3.016 Home

PRI
Full Screen

Bt
Close
e

Quit

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

(20-16)

It will be demonstrated below (directly and with a MATHEMATICA® example) that the homoge-
z)dx

neous equation has a solution of the form
y(z) = const e~ J o

To show this form directly, the homogenous equation can be written as

dy
i B —p(z)y

Dividing each side through by through by y and integrate
d
i =logy = — /p(:c)dx -+ const

Yy
)dx
s«]|

A= conste™ J P(®

which has solution
For the case of the heterogeneous first-order ODE, A trick (or, an integrating factor which amounts
to the same thing) can be employed. Multiply both sides of the heterogeneous equation by el pl@
(20-17)

Full Screen

exp | [ptetz] Y2t oxp | [)iz o) = exw | [)iz rio
(20-18)

Notice that the left-hand-side can be written as a derivative of a simple expression
d T
{exo | [ptetaz] i
a
Close

o

exp | [pieras]| B2 v exp | [pie1as| o) = 1
.y % {exp [/aff p(z)dz] y(x)} = exp [p(z)] r(x) (20-19)
(20-20) Qo

e / e [/ Z p(n)dn] dz}

V)) = exp(S/k). Entropy plays the role
©W. Craig Carter

which can be integrated and then solved for y(x)
o) =exp |~ [piesaz) {uta

' The statistical definition of entropy is S(T, V) = klog Q(U(T,V)) or Q(U(T,

of integrating factor.

http://pruffle.mit.edu/3.016-2006/

Lecture 20 MATHEMATICA®) Example 1

Using DSolve to solve Homogeneous and Heterogeneous ODEs

notebook (non-evaluated)

pdf (evaluated)

html (evaluated)

The solutions, Egs. 20 and 20-20, are derived and replacement rules are used to convert the Bernoulli equation
into a linear ODE.

1:

DSolve solves the linear homogeneous equation first-order ODE dy/dx +
p(x)y = 0. Two variables are introduced in the solution: one is the
‘dummy-variable’ of the integration in Eq. 20 which MATHEMATICA®
introduces in the form K$N and an integration constant which is given
the form C[N]J.

Here, a specfic p(x) is given, so the dummy variable doesn’t appear. . .

Furthermore, if enough boundary conditions are given to solve for the
integration constants, then the C[N] are not needed either.

DSolve solves the heterogeneous equation dy/x+ p(z)y = r(x) to give the
form Eq. 20-20. Note how the homogeneous solution is one of the terms
in the sum for the heterogenous solution.

This is an example for a specific case: p(z) = —1 and r(z) = €**.

The Bernoulli equation is a non-linear first order ODE, but a series of
transformations can turn it into an equivalent linear form.

Replacements for y(z) and its derivative are defined.

Using the replacements, PowerExpand, Simplify, and Solve produces
a linear first-order ODE for u(z) = [y(x)]*~¢.

Mathematica solves the general homogeneous linear first order
ODE:

1| DSolvely'lx] + plxlylx] =0, ylx], x]

The dummy integration variables and any integration constants
are picked by Mathematica.Specific problems can be solved as

follows 3.016 Home

2| DSolvely'lx] + @x + 1 ylx] =0, ylx], x] |

Boundary conditions are introduced in the following way to

generate a particular solution:

3| DSolvelfy'Ix] + @x + Dylx] == 0, ylol == 4}, ylx], x] |

Mathematica can solve the general heterogeneous linear ODE:

4| DSolvely'lx] + plx]ylx] =rlx], ylx], x] 44 | <4 | > | 144 |

5| DSolvely'lx] — ylx] = ¢2*, ylx], x]

The Bernoulli equation is a first-order nonlinear ODE that has a
form that can be reduced to a linear ODE

6| BernoulliEquation = y'Ix] + plxlylx] == rlx] (ylx})A(a)

The substitution y(x) = (u(x)™" * is made, resulting in a linear
ODE that can be solved for u(x):

1
7| yRep = ulxl™=
DyRep = D[yRep, x]

8| step1 = BernoulliEquation /. {ylx] - yRep, y'Ix] - DyRep}

9| step2 = PowerExpand[step1]

10| step3 = Simplify[step2]

1 | Solve[step3, u'lx]]

This last result is the first-order linear ODE that results from the
Bernoulli equation. Its solution gives the function u(x) which can
be converted back to y(x) with the relation y(x) = (u (x))"/".

Full Screen

Close

Quit

o

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2006/Notebooks/L20/Lecture-20.nb
http://pruffle.mit.edu/3.016-2006/pdf/L20/Lecture-20-1.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-20/HTMLLinks/index_1.html
http://pruffle.mit.edu/3.016-2006/html/Lecture-20/HTMLLinks/index_1.html

Example: The Bernoulli Equation

The linear first-order ODEs always have a closed form solution in terms of integrals. In general non-
linear ODEs do not have a general expression for their solution. However, there are some non-linear
equations that can be reduced to a linear form; one such case is the Bernoulli equation:

Yt @)y = @)y (20-21)

Reduction relies on a clever change-of-variable, let u(z) = [y(z)]'7¢, then Eq. 20-21 becomes

du
o L (1 — a)p(x) W= (1 — a) r(:[,‘) (20-22) 3.016 Home

which is a linear heterogeneous first-order ODE and has a closed-form solution.
However, not all non-linear problems can be converted to a linear form. In these cases, numerical

methods are required. ﬂ ﬂ ﬁ ﬂ

Full Screen
Close

Quit

o

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

Lecture 20 MATHEMATICA®) Example 2

Numerical Solutions to Non-linear First-Order ODEs

notebook (non-evaluated) pdf (evaluated) html (evaluated)
An example of computing the numerical approximation to the solution to a non-linear ODE is presented.
The solutions are returned in the forms of a list of replacement rules to InterpolatingFunction. An
InterpolatingFunction is a method to use numerical interpolation to extract an approximation for any point—
it works just like a function and can be called on a variable like InterpolatingFunction[0.2]. In addition to
the interpolation table, the definition specifies the domain over which the interpolation is considered valid.

NDSolve is a numerical method for finding a solution. An initial
condition and the desired range of solution are required.

3.016 Home

BN

1: Using NDSolve on a non-linear ODE, the solution is returned as a
InterpolatingFunction replacement list.

solution = NDSolve[
{Sin[2 Piy'[x1A2] == ylx]x, yl0] == 1}, y, {x, 0, 3.5}]

The results look kind of strange, perhaps, but they are a set of

2: This demonstrates how the numerical approximation is obtained at par- rulesthatprovide a function that interpolates between values.

Here is how to find the approximate solution at three

tiCulaI‘ Values. different values of x on the specified interval:
o[soion BRI

3: In this case, two solutions are found and Plot called on the replacement izroraicanas omd e soitons. e fror s rea and the
g second is complex. Below are plots of the real and imaginary
generates two curves. Here, Re is used to compute the real part of the s simPer e
numerical approximation.

3

Plot[Evaluate[Re[ylx! /. solution]], {x, 0, 3.5}, PlotStyle -
{{Huel1], Thicknessl0.011}, {Huel0.6], Thickness[0.011}}]

4

Plot[Evaluate[Im[y[x] /. solution]], {x, 0, 3.5}, PlotStyle - ‘

{{Huel1], Thicknessl0.011}, {Huel0.6], Thickness[0.011}}] Full Screen

Close

o

Quit

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2006/Notebooks/L20/Lecture-20.nb
http://pruffle.mit.edu/3.016-2006/pdf/L20/Lecture-20-2.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-20/HTMLLinks/index_2.html
http://pruffle.mit.edu/3.016-2006/html/Lecture-20/HTMLLinks/index_2.html

Lecture 21: Higher-Order Ordinary Differential Equations

Reading:
Kreyszig Sections: 2.1, 2.2 (pages45-52, 53-58)

Higher-Order Equations: Background

For first-order ordinary differential equations (ODEs), F(y'(x),y(z),z), one value y(z,) was needed to M
specify a particular solution. Recall the example in Lecture 19 of a first-order differencing scheme: at
each iteration the function grew proportionally to its current size. In the limit of very small forward
differences, the scheme converged to exponential growth.

Now consider a situation in which function’s current rate of growth increases proportionally to two ﬂ ﬂ ﬁ ﬂ
terms: its current rate of growth and its size.

Change in Value’s Rate of Change + « (the Value) + 3 (Value’s Rate of Change) = 0

To calculate a forward differencing scheme for this case, let A be the forward-differencing increment. Full Screen

Fi+2—Fi+1 . Fi+1_Fi F - F
(A A)—I—aFi—Fﬂ(Z—HZ):O

A A

and then solve for the “next increment” F; s if F;;1 and F; are known. Close

This indicates that, for second-order equations, two independent values are needed to generate the
‘solution trajectory.’

Quit

o

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

Lecture 21 MATHEMATICA®) Example 1

A Second-Order Forward Differencing Example

notebook (non-evaluated)

pdf (evaluated)

html (evaluated)

A second order differencing formula is developed for the case of constant growth and acceleration coefficients.

1:

10:

CurrentChangeperDelta is an example of a first-order finite difference.

Applying the first-order difference operator twice, a second-order dif-
ferencing operator is obtained. Notice that, as the higher the order of
difference operation goes, the number of surrounding points required to
evaluate the difference gets larger and larger—i.e., for the second order
difference, function values are needed at three different ¢ compared to two
different i for the first-order case.

For a particular case of d%y/dx? = —ady/dr — By, the two difference
operators replace the derivatives and a difference relation can be derived
as a function of parameters o and .

The difference operator is derived by solving the difference relation for
Fio—it will depend on the immediate last value F;;; and that value’s
antecedent F;. Therefore, any value—including the first one calculated—
requires two values to be specified.

Typically, the current j—value is expressed in terms of the (j — 1) and
(j — 2)—values. This form is generated by the replacement i — j — 2.

The difference operator is incorporated in GrowList : a function that
grows a list (input as ValuesList) using a difference A and parameters
« and 8. The two previous values in the list become localized variables in
a Module function. The Module returns a new list that is created using
Append to place the current value at end of the input list.

Here is an example of using GrowList once.

Using Nest the list can be grown iteratively to N times to generate a
sequence of length N + 2 (the first two values being specified).

ListPlot visualizes the results for different growth constants o and 3.

This is the current change or approximation to velocity

Fli+ 1] - Flil

1| CurrentChangePerDeltalF_, i_, A_] = A

Finite difference approximation to second derivative

CurrentChangeinCurrentChangeperDeltalF_, i_, A_] =
1

2 Simplify[Z(CurremChangePerDelta[F, i+1,A] —

CurrentChangePerDeltalF, i, A])]

3.016 Home

and its velocity, let these proportions be: -a and -

Let the acceleration is proportional to size of the current function

DifferenceRelation =
3| CurrentChangeinCurrentChangeperDeltalF, i, A] ==
—f CurrentChangePerDelta[F, i, A] - o Flil

4| ForDiffSol = Solve|DifferenceRelation, Fli + 21] // Flatten

5| ForDiffSolV2 = ForDiffSol /.i - j-2

RIS

GrowList[ValuesList_List, A_, a_, B_] := Module[

[

Append|ValuesList,
2xMinus1 — Minus2 +
A #(Bx(Minus2 — Minus1) — a A =Minus2)]]

{Minus1 = ValuesListl[-1]], Minus2 = ValuesListl[-21]},

7[result = GrowListl(1, 1), .001, 1, 1]

Generate a sequence of length 20 from initial values {1,1} for
A=0.001, a=1, =0.1

Full Screen

8| Nest[GrowList[#, .001, 1, .1] &, {1, 1}, 20]

9| ListPlot[Nest[GrowList[#, .001, 1, .11 &, {1, 1}, 20000]]

Change parameters for Growth Function (this shows that the

numerical solution does not converge to the accurate solution):

10| ListPlot[Nest[GrowList[#, 0.01, 0.5, 0] &, {1, 1}, 20000]]

Close

Quit

o

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2006/Notebooks/L21/Lecture-21.nb
http://pruffle.mit.edu/3.016-2006/pdf/L21/Lecture-21-1.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-21/HTMLLinks/index_1.html
http://pruffle.mit.edu/3.016-2006/html/Lecture-21/HTMLLinks/index_1.html

Linear Differential Equations; Superposition in the Homogeneous Case

A linear differential equation is one for which the function and its derivatives are each linear—that is
they appear in distinct terms and only to the first power. In the case of a homogeneous linear differential
equation, the solutions are superposable. In other words, sums of solutions and their multiples are also
solutions.

Therefore, a linear heterogeneous ordinary differential equation can be written as a product of
general functions of the dependent variable and the derivatives for the n-order linear case:

dy d2y d™y
0= fol@) + i(@) 22 + fa(@) 5+ + fale) T2
dy &y d'y (21-1)
= 5009 J L=, ==
(o), 112 o) o) (1 G G T
= f(m) - Dny
The homogeneous n'’-order linear ordinary differential equation is defined by fo(z) = 0 in Eq. 21-1:

d2y

0= H@ZL 1 L@ TL 4+ @)

=
dy d? dr Y
— (0, f1(2), fale)s > fal®)) (1, o dfidf) (21-2)

== thm(w) ° D:Ly

Equation 21-1 can always be multiplied by 1/f,(z) to generate the general form:
dy d%y d™y
= F Fi(z)—= + Fy(z)—5 —
0= Fy(z) + Fi(z)d +F(@) g o
dy d%y d™y (21-3)
= (F F F — .,
(Fo(@), Fa(a), Faa), -, 1)) - (1, 52, 50, 2
= F(z)- Dpy
For the second-order linear ODE, the heterogeneous form can always be written as:
d*y dy
SL 1 p(@) Y+ a@)y =r(@) (214

3.016 Home

PRI

Full Screen

Close

o

Quit

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

and the homogeneous second-order linear ODE is:

d?y dy
a2 +P($)% +q(xz)y =0 (21-5)

Basis Solutions for the homogeneous second-order linear ODE

Because two values must be specified for each solution to a second order equation—the solution can be
broken into two basic parts, each deriving from a different constant. These two independent solutions
form a basis pair for any other solution to the homogeneous second-order linear ODE that derives from
any other pair of specified values.

The idea is the following: suppose the solution to Eq. 21-5 is found the particular case of specified
parameters y(x = z9) = Ag and y(x = 1) = Ay, the solution y(z; Ag, A1) can be written as the sum
of solutions to two other problems.

y(; Ao, A1) = y(z, Ao, 0) + y(z,0, A1) = y1() + y2(=) (21-6)

where

y(zo, A0,0) = A9 and y(z1,A0,0) =0

(21-7)
y(x07O7A1) =0 and y(.f[?l, 07 Al) = Al

from these two solutions, any others can be generated.
The two arbitrary integration constants can be included in the definition of the general solution:

y(z) = Ciyi(z) + Crya(x) (21-8)
= (C1,C3) - (y1,2)

Second Order ODEs with Constant Coefficients

The most simple case—but one that results from models of many physical phenomena—is that functions
in the homogeneous second-order linear ODE (Eq. 21-5) are constants:

d? d
g 0T

=0 21-9
dxz? dx " ()

3.016 Home

PRI
Full Screen

Bt
Close
e

Quit

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

If two independent solutions can be obtained, then any solution can be formed from this basis pair.
Surmising solutions seems a sensible strategy, certainly for shrewd solution seekers. Suppose the
solution is of the form y(z) = exp(Az) and put it into Eq. 21-9:

(aX2 +bA+¢)e* =0 (21-10)

which has solutions when and only when the quadratic equation aA? + Az + ¢ = 0 has solutions for \.
Because two solutions are needed and because the quadratic equation yields two solutions:

_ —b+vb? —4dac

At 2a
21-11
) _ —b— Vb —dac ()
b 2a

or by removing the redundant coefficient by diving through by a:

—p g

S 2Ne
VESES 26 (;) v ol
e R A
where 5 =b/a and v = ¢/a.
Therefore, any solution to Eq. 21-9 can be written as
y(z) = CyeM® + C_e*-? (21-13)

This solution recreated with a slightly different method in the following MATHEMATICA®) example.

3.016 Home

PRI

Full Screen

Quit

Bt
Close
e

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

N N
Lecture 21 MATHEMATICA® Example 2 I

Solutions to the Homogeneous Linear Second Order ODE with Constant Coefficients

notebook (non-evaluated) pdf (evaluated) html (evaluated)
Even though MATHEMATICA®) is able to determine solutions to linear second-order ODEs with constant
coefficients directly, it is still instructive to use MATHEMATICA®) to derive these solutions.

Analysis of basis solutions to y" + gy' + yy = 0 in terms of
constant coefficients g and y

1: TheODE represents the left-hand side of any second-order ODE with
constant coefficients. It takes an argument for the name of the function

(i.e., y) and the dependent variable (i.e., z in y(z)). 2] TheODElY. : 3.016 Home
|
|

TheODE[function_, var_] := Dl[functionlvarl, {var, 2}] +
S Dlfunctionlvarl, var] + y functionlvar]

3| TheGuesslx_] = Explax]
3: This will serve as a ‘guess’ of a solution—if we can find A(s) that satisfy | :
the ODE, then the solution(s) are determined.

5: Using Solve with the guess inserted into TheODE will determine solu- Iheiworools i+and i+ are:

4[TheODE|TheGuess, xI

5| ASolution = Solve[TheODE[TheGuess, x| =0,]

tiion conditions on A—this will be a quadratic equation in . & [T R eV |
. . N 3 . 7 GeneralSolution[x_| := | 44| 4« > |)
6: By inspecting the solution, assignments can be made to the two possible ClLPlus| ExplAPIusx] + ClLMinus] ExplAMinus x] JJJJ
A. 8| TheODE[GeneralSolution, z] |
|

9| Simplify[TheODE[GeneralSolution, z]]

7: This is the form of the general solution in terms of two arbitrary constants.

9: This should show that the general solution always satisfies the ODE.
Full Screen

Close

o

Quit

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2006/Notebooks/L21/Lecture-21.nb
http://pruffle.mit.edu/3.016-2006/pdf/L21/Lecture-21-2.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-21/HTMLLinks/index_2.html
http://pruffle.mit.edu/3.016-2006/html/Lecture-21/HTMLLinks/index_2.html

Lecture 21 MATHEMATICA® Example 3

Characterizing the Solution Behavior for the Second-Order ODE with Constant Coefficients

notebook (non-evaluated)

pdf (evaluated)

html (evaluated)

>
Because the fundamental solution depend on only two parameters 5 and v, the behavior (i.e., whether A < 0

and S\ = 0) of all solutions can be visualized in the -3 plane.

1:

Reduce is a function for determing the conditions on parameters (here
B and ~ assumed to be real numbers) such that an expression satisfies
particular constraints. The result will create the following graphic.

This will create a plot that distinguishes two regions in the - plane:
above v = 32/4, the) are real; below, the \ are complex and oscillatory
solutions appear (because exp(r + 10) = exp(r)(cos(0) + 2sin(h))).

Graphics and Text create annotation; Show combines annotation and

the plot.

This will create a plot for the conditions that the $8()\) are real and either
positive or negative. The sign of the real part of A in exp(Ax) deter-
mines whether the solution grows without bound (R(A) > 0) or shrinks
asympotically towards 0 (A < 0).

This creates graphics to annotate and display together with the plot.
The extra function StyleForm allows the passage of options (such as
FontColor, FontFamily, etc.) to be passed simply.

Reduce determines the conditions on § and - so that both A are positive
and real. These will be unbounded and non-oscillating solutions.

The conditions will be annotated by greating a graphical object.

Here the curves and annotation are created for the case of mixed real roots
(i.e., Ay > 0 and A_ < 0—one growing and one decaying non-oscillatory
solutions)

The final region to be determined and annotated is the one with the
monotonically decaying solutions A_ < A_ < 0.

Collecting all the graphical objects together into one image that was used
to construct Fig. 21-21.

1| Reduce[APlus € Reals && AMinus e Reals, {8, ¥}, Reals]

2| CplexReal = Plot[322/4, {8, -1, 1}, AxesLabel - {"B", "y"}]

CplexRealAnnote = Show[CplexReal, Graphics[Text]

Graphics|Text["Real Roots", {0.75, 0.05}]]]

"Complex\nCongugate\nRoots", {0.25, 0.25}, {-1, 1}]],

3.016 Home

CplexPosNeg = ParametricPlot[{0, t},
{t, 0, .25}, PlotStyle - {Thickness[0.015], Huelol},
DisplayFunction — Identity]

IS

CplexPosNegAnnote = Show[CplexPosNeg,
Graphics|Text[StyleForm["Positive\nReal\nPart",
FontColor - Huel0l], {-.5, 0.15}, (-1, 1}]],
Graphics[Text[StyleForm["Negative\nReal\nPart",
FontColor - Huel0l], {.5, 0.15}, {1, 1111,
DisplayFunction - $DisplayFunction]

«| «|»|m]

6| CplexPlot = Show[CplexRealAnnote, CplexPosNegAnnote]

7| Reduce[{APlus > 0, AMinus > 0}]

AnnotePosRealRoots =
8| Graphics|Text[StyleForm["Positive Roots",
FontColor - Huel.6l], {-1.0, 0.025}, {1, 0}]]

9[Reducel(APlus > 0, AMinus < 0}]

MixedRealRoots =
Plot[0, {t, -1, 1}, PlotStyle - {Huel0.6], Thickness[0.015]},
DisplayFunction — Identity]
AnnoteMixedRealRoots = Show[MixedRealRoots,
Graphics|Text[StyleForm["Mixed Real Roots",
FontColor - Huel.61], {0.2, -0.1}, {-1, 0}]],
DisplayFunction - $DisplayFunction]

=)

[Reducel(aPius <0, AMinus <0}]

AnnoteNegRealRoots =
Graphics|Text[StyleForm["Negative Roots",
FontColor - Huel.611, (1.0, 0.025}, {1, 0}]]

N

1 Show|[CplexPlot, AnnotePosRealRoots,
AnnoteMixedRealRoots, AnnoteNegRealRoots]

Full Screen

Close

Quit

o

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2006/Notebooks/L21/Lecture-21.nb
http://pruffle.mit.edu/3.016-2006/pdf/L21/Lecture-21-3.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-21/HTMLLinks/index_3.html
http://pruffle.mit.edu/3.016-2006/html/Lecture-21/HTMLLinks/index_3.html

The behavior of all solutions can be collected into a simple picture: I I

bl
G
sl
(@ p)

Roots are Complex Conjugates

Y

Positive Real Part Negative Real Part I

3.016 Home

i

RORIRNLS
Positive Roots Negative Roots

Positive and Negative

N,
N

'Roots are Real

Full Screen

Close

Figure 21-21: The behaviors of the linear homogeneous second-order ordinary differential equa-
2
tion Z—z% + ﬂj—z + vy = 0 plotted according the behavior of the solutions for all 8 and ~.

o

Quit
The case that separates the complex solutions from the real solutions, v = (3/2)? must be treated
separately, for the case v = (8/2)? it can be shown that y(z) = exp(8z/2) and y(x) = zexp(Bz/2)
form an independent basis pair (see Kreyszig AEM, p. 74). ©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

Boundary Value Problems

It has been shown that all solutions to % +4 % +7y = 0 can be determined from a linear combination
of the basis solution. Disregard for a moment whether the solution is complex or real, and ignoring
the special case v = (3/2)2. The solution to any problem is given by

y(x) = CLeM® + C_e’=° (21-14)

How is a solution found for a particular problem? Recall that two values must be specified to get a
solution—these two values are just enough so that the two constants C. and C_ can be obtained.

In many physical problems, these two conditions appear at the boundary of the domain. A typical
problem is posed like this:

Solve (@) (@)
Yy\r Y\
iy i - dx
subject to the boundary conditions

+ ky(z) =0 on0<z<L (21-15)

or, solve

cy(x) | dy(z)
m— 3 +v 9 + ky(x) =0 on 0 <z < oo (21-16)

subject to the boundary conditions

gis — [l and y(z=L)=0

When the value of the function is specified at a point, these are called Dirichlet conditions; when
the derivative is specified, the boundary condition is called a Neumann condition. It is possible have
boundary conditions that are mixtures of Dirichlet and Neumann.

3.016 Home

PRI

Full Screen

Quit

Bt
Close
e

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

Lecture 21 MATHEMATICA®) Example 4

Determining Solution Constants from Boundary Values

notebook (non-evaluated) pdf (evaluated) html (evaluated)
Here is an example of taking the general solution with undetermined constants and using boundary conditions
to determine a specific solution.

GeneralSolution[x_] :=
CPlus ExplAPlus x] + CMinus ExplAMinus x|

. .. . b, ; e | :
1‘ Geﬂeralsolutzon 1S the SOhlthn tO y + ﬁy + ’yy i O Wlth undetermlned Second order ODEs require that two conditions be specified to
Constants Cplus and Cminus generate a particular solution. For y(0) = 0 and y(L)=1
SolutionOne =
2: To find the constants for a particular solution the boundary conditions, 2| SovellGeneraiSoionol 0, GeneraiSalutonLl =11 0100 cme
y(0) = 0 and y(L) = 1 where y(x) is the general solution, are used with
Solve to determine the constants.

SpecificSolutionOne =
Simplify[GeneralSolutionlx] /. SolutionOne]

Second example with different form of boundary condition:

3: The form of the particular solution is obtained by back-substituting the y©=1andy(-0
solution for the constants into the general solution. 4 DGen = DiGeneraSolutionlx], xI | «l > | "
4: For application of a Neumann condition, the symbolic form of the deriva- s S(Jslg(:égrggg%@s(;;rnomm =1,(DGen /. x - 0) =0, J
tive is required. | '

SpecificSolutionTwo =
Simplify[GeneralSolutionlx] /. SolutionTwo]

6: The particular solution for boundary conditions ¢'(0) = y(0) = 0 is ob-
tained by inserting these equations into Solve and subsequent replace-
ment into the general solution. Eull Screen

Close

Quit

o

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2006/Notebooks/L21/Lecture-21.nb
http://pruffle.mit.edu/3.016-2006/pdf/L21/Lecture-21-4.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-21/HTMLLinks/index_4.html
http://pruffle.mit.edu/3.016-2006/html/Lecture-21/HTMLLinks/index_4.html

Fourth Order ODEs, Elastic Beams

Another linear ODE that has important applications in materials science is that for the deflection of a
beam. The beam deflection y(z) is a linear fourth-order ODE:

i (EIde(x)) = w(x) (21-17)

dx? dx?

where w(x) is the load density (force per unit length of beam), E is Young’s modulus of elasticity for
the beam, and [is the moment of inertia of the cross section of the beam:

= / y?dA (21-18)
AX—sect

is the second-moment of the distribution of heights across the area.
If the moment of inertia and the Young’s modulus do not depend on the position in the beam (the
case for a uniform beam of homogeneous material), then the beam equation becomes:

d*y(x)

EI 7 = w(z) (21-19)

The homogeneous solution can be obtained by inspection—it is a general cubic equation Ypomeg(x) =
Co + Ciz + Coz® + C323 which has the four constants that are expected from a fourth-order ODE.

The particular solution can be obtained by integrating w(x) four times—if the constants of inte-
gration are included then the particular solution naturally contains the homogeneous solution.

The load density can be discontinuous or it can contain Dirac-delta functions F,d(z — x,) repre-
senting a point load Fj, applied at x = x,.

It remains to determine the constants from boundary conditions. The boundary conditions can be
determined because each derivative of y(z) has a specific meaning as illustrated in Fig. 21-22.

3.016 Home

PRI

Full Screen

Close

Quit

o

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

- e
L= Rt
ol
-
B 1 'y 1 _
| = o
v a #
Pt . -
n

bending moment

shear force Stiffness slope: &
Stiffness By _ M
R d@ ~ El

deé ~ El

Figure 21-22: The shape of a loaded beam is determined by the loads applied over its length
and its boundary conditions. The beam curvature is related to the local moment (imagine two
handles rotated in opposite directions on a free beam) divided by the effective beam stiffness.
Shear forces are related to the rate of change of moment along the beam.

(Polar Bear Photo Art Wolfe The Zone Network

http://classic.mountainzone.com/climbing/greenland /graphics/polar-bear.html)

There are common loading conditions that determine boundary conditions:

3.016 Home

PRI
Full Screen

Bt
Close
e

Quit

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/
http://classic.mountainzone.com/climbing/greenland/graphics/polar-bear.html

Free No applied moments or applied shearing force:
d%y
>
d3y

i

=0

boundary

=0

boundary

Point Loaded local applied moment, displacement specified.

_dy
 dx?

=M, 3.016 Home

boundary

y(.’L‘) ‘boundm’y =Y

Clamped Displacement specified, slope specified J
« <> [w]
dy
dx

:SO

boundary

Y (aj) | boundary — Yo

Full Screen

Close

Quit

o

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

Lecture 21 MATHEMATICA® Example 5

Visualizing Beam Deflections

notebook (non-evaluated) pdf (evaluated)

html (evaluated)

A method for solving and visualizing the deflection of a uniform beam is developed for typical boundary

conditions and load distributions

1:

BeamEquation takes arguments for the (unknown) deflection y and its
dependent argument z, a loading density w(z), and boundary condition
lists BC1 and BC2, and uses DSolve to return replacement rules for a
particular solution to the beam deflection equation (i.e., d*y/dax* = w(x)).

Clamp , PointLoad , and FreeEnd are functions that specify the typical
boundary conditions: Clamp takes an z-value where the clamp is applied,
the displacement (position) of the clamp and the clamps angle. Point-
Load takes a position, deflection, and applied torque; FreeEnd specifies
a point that is unloaded and untorqued.

noload is an example loading distribution where there is no applied load.

As an example of application of BeamEquation , here the solution for an
unloaded beam is calculated with a fixed horizontal clamp at the origin
and a fixed torque-free displacent at the end.

To plot the beam deflection, the solution condition is applied to y(z).
The function BeamViz collects the solution with the visualization for
beams of unit normalized length, and uniform normalized stiffness E1.

etc. Several different loading conditions and boundary conditions are
visualized as examples of Beam Viz

BeamEquation[y_, x_, w_, BC1_, BC2_] := DSolve[

i Flatten[{y""[x] == wlx], BC1, BC2}], ylx], x] // Flatten

Clamply_, x_, position_, slope_] =
{ylx] == position, y'lx] == slope}

PointLoad[y_, x_, position_, moment_] :=
{ylx] = position, y"[x] == moment}

FreeEnd[y_, x_] := {y"[x]=0, y"Ix] =0}

n

3.016 Home

3[noloadix] = 0 |

Clamply, 0, 0, 0], PointLoadly, 1, -.1, 0]]

BeamEquation[y, x, noload, |

Plot[Evaluate[
ylxI /. BeamEquationl[y, x, noload,
Clamply, 0, 0, 0], PointLoadly, 1, —.25, 0]]
], x, 0, 1}, PlotRange - {-0.5, 0.5}, AspectRatio - 1]

BeamViz[DistLoadx_, BC1_, BC2_] :=
Plot[Evaluate[
ylx] /. BeamEquationly, x, DistLoadx, BC1, BC2]]
, {x, 0, 1}, PlotRange - {-0.5, 0.5}, AspectRatio - 1,
PlotStyle —> {Thickness[0.03], Huel0l}]

=)

7| unitloadx_] = 1

8| BeamViz[unitload, Clamply, 0, 0, 0], FreeEnd]y, 1]

9[midioadix_| := ~10DiracDeltalx — 1/2]

PRI

Full Screen

10| BeamViz[midload, Clamply, 0, 0, 0], PointLoad[y, 1, 0, 0]]

11| BeamViz|midload, PointLoadly, 0, 0, 0], PointLoadly, 1, 0, 0l]

13| BeamViz|testload, PointLoad[y, 0, 0, 0], PointLoad][y, 1, 0, 0]]

boxload[x_] := -500x

14| 7 (UnitSteplx - (3/4— 1/8)] - UnitSteplx - (3/4 +1/8)])

15 Plotlboxioadx!, {x, 0, 1}]

|

|

|

|

1]

12| testload[x_] :=500+(1/2 — x) |
1]

|

|

16| BeamViz[boxload, Clamply, 0, 0, 0], Clamply, 1, 0, 0]]

Close

b

Quit

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2006/Notebooks/L21/Lecture-21.nb
http://pruffle.mit.edu/3.016-2006/pdf/L21/Lecture-21-5.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-21/HTMLLinks/index_5.html
http://pruffle.mit.edu/3.016-2006/html/Lecture-21/HTMLLinks/index_5.html

Lecture 22: Differential Operators, Harmonic Oscillators

Reading:
Kreyszig Sections: 2.3,2.4, 2.7 (pages59-60, 61-69, 78-83)

Differential Operators

The idea of a function as “something” that takes a value (real, complex, vector, etc.) as “input” and
returns “something else” as “output” should be very familiar and useful.
This idea can be generalized to operators that take a function as an argument and return another

function.
The derivative operator operates on a function and returns another function that describes how the

function changes:

Dlf(@)] = &
2
D[D[f(z)]] = D*[f(x)] = %
n n (22-1)
el 5

Dlaf(z)] =aD[f(x)]
Dlf(z) + g(x)] =D[f(z)] + Dlg(z)]

The last two equations above indicate that the “differential operator” is a linear operator.
The integration operator is the right-inverse of D

DHW@H—ﬂ/ﬂ@M] (22-2)

but is only the left-inverse up to an arbitrary constant.

3.016 Home

PRI

Full Screen

Close

Quit

o

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

Consider the differential operator that returns a constant multiplied by itself
Df(x) = Af(x) (22-3)

which is another way to write the the homogenous linear first-order ODE and has the same form as an
eigenvalue equation. In fact, f(z) = exp(Az), can be considered an eigenfunction of Eq. 22-3.
For the homogeneous second-order equation,

(D*+BD—7) [f(x)] =0 (22-4)
It was determined that there were two eigensolutions that can be used to span the entire solution space:
Flz) = CpehSi=C =" (22-5)

Operators can be used algebraically, consider the inhomogeneous second-order ODE
(aD* +bD + ¢) [y(z)] = 2° (22-6)

By treating the operator as an algebraic quantity, a solution can be found'?

1 b v — b(b? — 2
_(L_bp Y macne MV -209) 5 oty 40 (22-7)
GE2 ol it
3 3bx? 6(b%2 —ac)z 6b(b% — 2ac)
2D 3 N 3
c c c c

which solves Eq. 22-6.
The Fourier transform is also a linear operator:

FIf ()] =g(k) = j% / ® p@)eteds
ot (22-8)

Fig(k)] =f(z) = \/12; / " gk)e e dk

12This method can be justified by plugging back into the original equation and verifying that the result is a solution.

3.016 Home

PRI

Full Screen

Quit

Bt
Close
e

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

Combining operators is another useful way to solve differential equations. Consider the Fourier
transform, F, operating on the differential operator, D:

FID| T /) gtk gy (22-9)

Integrating by parts,

- L) [F= zkzx T L

If the Fourier transform of f(z) exists, then typically'® lim, .4 f(x) = 0. In this case,
FIDIf]] = —ikF[f(z)] (22-11)
and by extrapolation:

FID?[f]] = —k*FIf(2)]

(22-12)
FID S]] = (-1)""E"F[f (x)]

Operational Solutions to ODEs

Consider the heterogeneous second-order linear ODE which represent a forced, damped, harmonic
oscillator that will be discussed later in this lecture.

UG RECHONIE o o 5 o (22-13)

M
dig dt

13 Tt is not necessary that limg_,+oo f(xz) = 0 for the Fourier transform to exist but it is satisfied in most every case.
The condition that the Fourier transform exists is that

i Z | (@)ldz

exists and is bounded.

3.016 Home

PRI
Full Screen

Bt
Close
e

Quit

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

Apply a Fourier transform (mapping from the time (¢) domain to a frequency (w) domain) to both
sides of 22-13:

d?y(t) dy(t)
a2 TV

—MuFly] — wV Flyl + K Fly] = \E [6(w — wo) + 6(w + w,)]

FIM + K,y(t)] = Flcos(wot)]

(22-14)

because the Dirac Delta functions result from taking the Fourier transform of cos(w,t).
Equation 22-14 can be solved for the Fourier transform:

ol A @19

In other words, the particular solution Eq. 22-13 can be obtained by finding the function y(¢) that
has a Fourier transform equal the the right-hand-side of Eq. 22-15-or, equivalently, operating with the
inverse Fourier transform on the right-hand-side of Eq. 22-15.

MATHEMATICA® does have built-in functions to take Fourier (and other kinds of) integral trans-
forms. However, using operational calculus to solve ODEs is a bit clumsy in MATHEMATICA®) .
Nevertheless, it may be instructive to force it—if only as an an example of using a good tool for the
Wrong purpose.

3.016 Home

PRI

Full Screen

Quit

Bt
Close
e

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

Lecture 22 MATHEMATICA®) Example 1

Use of Fourier Transform for Solution to the Damped-Forced Harmonic Oscillator

notebook (non-evaluated)

pdf (evaluated)

html (evaluated)

A check is made to see if FourierTransform obeys the rules of a linear operator (Eq. 22-1) and define rule-

patterns for those cases where it doesn’t. Subsequently, an example the damped-forced linear harmonic oscillator

is Fourier transformed, solved algebraically, and then inverse-transformed for a solution.

1:

As of MATHEMATICA® 5.0, FourierTransform automatically imple-
ments Eqs. 22-12. Here, Table is used to demonstrate this up to 24
derivatives.

However, this will demonstrate that the “sum-rule” isn’t implemented
automatically (n.b., although Distribute would implement this rule).

Define rules so that the FourierTransform acts as a linear functional oper-
ator. ConstantRule is an example of a RuleDelayed (:>) that will allow
replacement with patterns that will be evaluated when the rule is applied
with ReplaceAll (/.); in this case, a Condition (/;) is appended to
the rule so that those cofactors which don’t depend on the transformation
variable, x, can be identified with FreeQ and those that depend on x can
be identified with MemberQ. DistributeRule uses Distribute to replace
the Fourier transform of a sum with a sum of Fourier transforms.

The linear rules are dispatched by a ReplaceRepeated (//.) that will
continue to use the replacement until the result stops changing.

Apply the Fourier transform to the the left-hand-side damped-second-
order ODE 22-13. ..

And, set the transform of the left-hand-side equal to the Fourier transform
of a forcing function cos(w,t). Solve for the Fourier Transform. ..
Back-transform the solution to find the particular solution to the damped
forced second-order ODE.

This is the general solution obtained directly with DSolve; it is the
solution to the homogeneous equation plus the particular solution that
was obtained by the Fourier transform method.

1 Table[FourierTransform[DIflx], {x, i}l, x, kI, i, 24}1 //
MatrixForm

2[FourierTransform[aflx] + bglx], x, k]

ConstantRule =

FourierTransform[(NoX_.) = (fun_), x_, k_] >
NoX FourierTransform(fun, x, k] /;
3 (FreeQ[NoX, x] && MemberQ[fun, x, Infinity])

DistributeRule =
FourierTransform[Plus[expr_], x_, k_] :>
Distribute[FourierTransform[expr, x, k], Plus]

4

FourierTransform[ax flx] + bvix] glx] + dplx], x, k] //.
DistributeRule //. ConstantRule

5 ODE2nd =
Mass D[ylt, {t, 2}] + Viscosity D[ylt], t] + SpringKy [t]

FrrODE2nd =
6| Factor[FourierTransform[ODE2nd, t, w] //. DistributeRule //.
ConstantRule]

7[rhs = FourierTransform[Cosl w0 tl, t, w] [

8[ftsol = Solve[FrrODE2nd == rhs, FourierTransform[ylt], t, w]] [

InverseFourierTransform[
FourierTransformlylt], t,] /. Flattenlftsoll,
w, t, Assumptions - w0 > 0]

©

GenSol = DSolve[
10 {Mass DIylt], {t, 2}] + Damper D[ylt], t] + SpringKylt] =
Cos[w, t], yl0l == 1, y'[0] == 0}, yli], 1]

FullSimplify[ylt! /. Flatten[GenSoll,
11| Assumptions —> w0 > 0 &&
Mass > 0 && Damper > 0 && SpringK > 0]

3.016 Home

PRI

Full Screen

Quit

Bt
Close
e

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2006/Notebooks/L22/Lecture-22.nb
http://pruffle.mit.edu/3.016-2006/pdf/L22/Lecture-22-1.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-22/HTMLLinks/index_1.html
http://pruffle.mit.edu/3.016-2006/html/Lecture-22/HTMLLinks/index_1.html

Operators to Functionals

Equally powerful is the concept of a functional which takes a function as an argument and returns
a value. For example S[y(z)], defined below, operates on a function y(x) and returns its surface of

revolution’s area for 0 < x < L:
L dy 2
Sly(z)] = 27r/ yi/1+ () dx (22-16)
0 dIL’

This is the functional to be minimized for the question, “Of all surfaces of revolution that span from
y(x = 0) to y(x = L), which is the y(x) that has the smallest surface area?”

This idea of finding “which function maximizes or minimizes something” can be very powerful and
practical.

Suppose you are asked to run an “up-hill” race from some starting point (z = 0,y = 0) to some
ending point (z = 1,y = 1) and there is a ridge h(x,y) = 2. What is the most efficient running route
y(z)?

14 An amusing variation on this problem would be to find the path that the path that a winning downhill skier should
traverse.

3.016 Home

PRI

Full Screen

Quit

Bt
Close
e

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

"::.:.:::.:.:..'?""'."!’
1 S s
0.75 1
0.5
0.25 0.8
0

L7

S
L

0.2

RURIE
Figure 22-23: The terrain separating the starting point (zx = 0,y = 0) and ending point
(x =1,y = 1). Assuming a model for how much running speed slows with the steepness of the
path—which route would be quicker, one (yi(z)) that starts going up-hill at first or another
(y2(z)) that initially traverses a lot of ground quickly?

Full Screen

A reasonable model for running speed as a function of climbing-angle « is
v(s) = cos(a(s)) (22-17)

where s is the arclength along the path. The maximum speed occurs on flat ground o = 0 and running
speed monotonically falls to zero as a« — 7 /2. To calculate the time required to traverse any path y(z)
with endpoints y(0) =0 and y(1) =1,

Close

o

== v(s) = cos(a(s)) = L = L = 1
dt ds2 + dh? \/1 " dh? \/1 4 __dn? Quit
ds dx?+dy?
(22-18)
d dz? + dy? dy® dh?
dt = =2 :m:\/d:r2+dy2+dh2: i T SR W. Craig Cart
U(S) COS(a(S)) dx dx ©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

So, with the hill h(z) = 22, the time as a functional of the path is:

Thy(z)] = /0 it jﬂyf 2 g (22-19)

There is a powerful and beautiful mathematical method for finding the extremal functions of func-

tionals which is called Calculus of Variations.
By using the calculus of variations, the optimal path y(z) for Eq. 22-19 can be determined:

(z) 2xv/1 4 422 + sinh ™1 (2z) (22.-20)
@) = 5
Yy 2\/5+ sinh71(2) 3.016 Home

The approximation determined in the MATHEMATICA®) example above is pretty good.

PRI

Full Screen

Quit

Bt
Close
e

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

Lecture 22 MATHEMATICA® Example 2

Functionals: Introduction to Variational Calculus by Variation of Parameters

notebook (non-evaluated)

pdf (evaluated)

html (evaluated)

An example of minimizing an integral of a particular form produced where the variational calculus method of

minimizing over all possible functions y(z) is replaced by a three-parameter family of functions y(z;a, b, ¢).

1:

Here, the “hill-function” in Eq. 22-18 specified as h(z) = 22 and a three-
parameter family of possible trajectories y(x;a, b, c) is specified: the pa-
rameters a, b, and ¢, that minimize the functional subject to boundary
condtiions will be determined.

The condition cubic equation satisfies the boundary conditions is deter-
mined using Solve which generates a rule that fixes two of the three free
parameters.

By integrating y(z) in Eq. 22-19, the functional equation is transformed to
a function of the remaining free variable. (It is faster to do the indefinite
integral evaluate the limits for the definite integral in a separate step.)

Plotting the time to trajectory traversal time as a function of the remain-
ing parameter, shows there is a minimum.

The minimizing condition can be determined with FindMinimum.

The approximation (i.e., cubic polynomial) is fully determined by back-
substitution of the mininimality condition.

The exact solution can be determined by a method called the calculus of
variations and is given here.

The cubic polynomial is a very good approximation to the exact solution.

The problem of iinding the minimizing function for the time

o= (2] (2 o

for all y(x) that sansnfy 1he specmed boundary condtions can be
solved by the calculus of variations.

An approximation to the optimal path from the infinite set of all
paths connecting y(x=0) = 0 toy(x=1) = 1 will be replaced by
looking at all second-order polynomials: y(x) = a + bx + cx®

h = xA2;
YGeneral = a + bx + ¢x%;

The general path must satisfy the boundary conditions:

YSatisifyingBCs = YGeneral /.
2 (Solvel{(YGeneral /. x - 0) =0, (YGeneral /. x - 1) =1},
{a, cll // Flatten)

There is one remaining free variable, it can be determined by
minimizing the integral

3 Timelnt = Integrate[
Sqrt[1 + (D[YSatisifyingBCs, x])*2 + (D[h, x)A2], X]

4| Time = Simplify[(Timelnt /. x - 1) — (Timelnt/. x - 0)]

5[Plot[Time, (b, -2, 2]]

6| Bminsol = FindMinimum[Time, {b, 0, 1}]

3.016 Home

PRI

Full Screen

7| YCubicSolution = YSatisifyingBCs /. Bminsoll[2]]

8| ApproxSolution = Plot[YCubicSolution, {x, 0, 1}]

YExactSolution =

(2x m + ArcSinh[2x])/ (2 V5 + ArcSinhl2]);

10| Series[YExactSolution, {x, 0, 6}] // Normal // N

= ition = Plot[YE: i
{x, 0, 1}, PIDISineA(Thickness[O 005), Huel11}]

11

12| Show[ApproxSolution, ExactSolution]

Close

Quit

i i

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2006/Notebooks/L22/Lecture-22.nb
http://pruffle.mit.edu/3.016-2006/pdf/L22/Lecture-22-2.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-22/HTMLLinks/index_2.html
http://pruffle.mit.edu/3.016-2006/html/Lecture-22/HTMLLinks/index_2.html

Harmonic Oscillators

Methods for finding general solution to the linear inhomogeneous second-order ODE

) |,y

dt? d

o Teyt) =F()

have been developed and worked out in MATHEMATICA® examples.
Eq. 22-21 arises frequently in physical models, among the most common are:

(22-22)

2
Electrical circuits: deltgt) plodig) 4 é[(t) =V (t)
2
Mechanical oscillators: M a digt) + nlodz(tt) + K y(t) = Fopp(t)
where:
Mechanical Electrical

Second | Mass M: Physical measure of the ratio | Inductance L: Physical measure of the

Order of momentum field to velocity ratio of stored magnetic field to current

First Drag Coefficient ¢ = 7l, Resistance R = pl,

Order (n is viscosity [, is a unit displacement): | (p is resistance per unit material length
Physical measure of the ratio environ- | [, is a unit length): Physical measure of
mental resisting forces to velocity—or | the ratio of voltage drop to current—or
proportionality —constant for energy | proportionality constant for power dissi-
dissipation with square of velocity pated with square of the current.

Zeroth | Spring Constant K,: Physical measure | Inverse Capacitance 1/C: Physical

Order of the ratio environmental force developed | measure of the ratio of voltage storage
to displacement—or proportionality con- | rate to current—or proportionality con-
stant for energy stored with square of dis- | stant for energy storage rate dissipated
placement with square of the current.

Forcing | Applied Voltage V (t): Voltage applied | Applied Force F(t): Force applied to

Term to circuit as a function of time. oscillator as a function of time.

For the homogeneous equations (i.e. no applied forces or voltages) the solutions for physically
allowable values of the coefficients can either be oscillatory, oscillatory with damped amplitudes, or,

3.016 Home

PRI

Full Screen

Close

Quit

o

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

completely damped with no oscillations. (See Figure 21-21). The homogeneous equations are sometimes
called autonomous equations—or autonomous systems.

Simple Undamped Harmonic Oscillator

The simplest version of a homogeneous Eq. 22-21 with no damping coefficient (b =0, R =0, or n = 0)
appears in a remarkably wide variety of physical models. This simplest physical model is a simple
harmonic oscillator—composed of a mass accelerating with a linear spring restoring force:

Inertial Force = Restoring Force

M Acceleration = Spring Force

Py(t) 22-23
M—5" = —Kuy(t) (22-23)
2
T dyt? + Ksy(t) =0

Here y is the displacement from the equilibrium position—i.e., the position where the force, F' =
—dU/dzx = 0. Eq. 22-23 has solutions that oscillate in time with frequency w:

y(t) = Acoswt + Bsinwt

22-24

y(t) = Csin(wt + ¢) ()

where w = /K /M is the natural frequency of oscillation, A and B are integration constants written
as amplitudes; or, C' and ¢ are integration constants written as an amplitude and a phase shift.

The simple harmonic oscillator has an invariant, for the case of mass-spring system the invariant

3.016 Home

PRI

Full Screen

Close

Quit

o

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

is the total energy:

Kinetic Energy + Potential Energy =

M2 K52_
20+2y—

Mdy2 Ks 5

e K? dt 2 (22-25)
A2w27 cos?(wt + ¢) + A2?s sin?(wt + ¢) =

Mu?

M
A? (w27 cos?(wt + @) + sin?(wt + ¢) =

A2Mw? = constant

There are a remarkable number of physical systems that can be reduced to a simple harmonic oscillator
(i.e., the model can be reduced to Eq. 22-23). Each such system has an analog to a mass, to a spring
constant, and thus to a natural frequency. Furthermore, every such system will have an invariant that
is an analog to the total energy—an in many cases the invariant will, in fact, be the total energy.

The advantage of reducing a physical model to a harmonic oscillator is that all of the physics follows
from the simple harmonic oscillator.

Here are a few examples of systems that can be reduced to simple harmonic oscillators:
Pendulum By equating the rate of change of angular momentum equal to the torque, the equation

for pendulum motion can be derived:
5 d%0 .
MR 2 + MgRsinf =0 (22-26)

for small-amplitude pendulum oscillations, sin(f) ~ 6, the equation is the same as a simple
harmonic oscillator.

It is instructive to consider the invariant for the non-linear equation. Because

A do (d%2
= <de e

3.016 Home

PRI

Full Screen

Close

Quit

o

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

Eq. 22-26 can be written as:

odf [d% -
MR 7\ 20 + MgRsin(0) =0 (22-28)
d | MR? (d§\®
. <dt> - Mchos(@)] =0 (22-29)
which can be integrated with respect to 6:
MR? (df\°
5 (dt) — MgR cos(f) = constant (22-30)

This equation will be used as a level-set equation to visualize pendulum motion.

Buoyant Object Consider a buoyant object that is slightly displaced from its equilibrium floating
position. The force (downwards) due to gravity of the buoy is ppouy9Viouy The force (upwards)
according to Archimedes is pyatergVsup Where Vi is the volume of the buoy that is submerged.
The equilibrium position must satisfy Viup—cq/Viouy = Pbouy/Pwater-

If the buoy is slightly perturbed at equilibrium by an amount éx the force is:

ik :pwaterg(v;ub—eq o 5on) i pbuoyg%uoy

(22-31)
i :pwatergéon

where A, is the cross-sectional area at the equilibrium position. Newton’s equation of motion for
the buoy is:
d%y
Mbuoyﬁ _ pwaterngy =0 (22—32)

so the characteristic frequency of the buoy is w = \/ s Y M powm

Single Electron Wave-function The one-dimensional Schrodinger equation is:

d’>y 2m
where U(x) is the potential energy at a position z. If U(x) is constant as in a free electron in a
box, then the one-dimensional wave equation reduces to a simple harmonic oscillator.

3.016 Home

PRI

Full Screen

Quit

Bt
Close
e

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

In summation, just about any system that oscillates about an equilibrium state can be reduced to a
harmonic oscillator.

3.016 Home

PRI

Full Screen

Close

Quit

o

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

Lecture 23: Resonance Phenomena, Beam Theory

Reading:
Kreyszig Sections: 2.8, 2.9, 3.1, 3.2, 3.3 (pages84-90, 91-96, 105-111, 111-115, 116-121)

Resonance Phenomena

The physics of an isolated damped linear harmonic oscillator follows from the behavior of the homoge-
neous equation:'®

d’y(t)
dit?
This equation is the sum of three forces:

dy(t)

M)
dt

+ nlo + Kgy(t) =0 (23-1)

inertial force depending on the acceleration of the object.
drag force depending on the velocity of the object.

spring force depends on the displacement of the object.

The system is autonomous in the sense that everything depends on the system itself; there are no
outside agents changing the system.

The zero on the right-hand-side of Eq. 23-1 implies that there are no external forces applied to the
system. The system oscillates with a characteristic frequency w = /K;/M with amplitude that are
damped by a characteristic time 7 = (2M)/(nl,) (i.e., the amplitude is damped o exp(—t/7).)

5 A concise and descriptive description of fairly general harmonic oscillator behavior appears at
http://hypertextbook.com/chaos/41.shtml

3.016 Home

PRI

Full Screen

Close

Quit

o

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/
http://hypertextbook.com/chaos/41.shtml

Lecture 23 MATHEMATICA®) Example 1

Simulating Harmonic Oscillation with Biased and Unbiased Noise

notebook (non-evaluated)

pdf (evaluated)

html (evaluated)

The second-order differencing simulation of a harmonic oscillator is modified to include white and biased stochas-

tic nudging.

1:

10:

GrowListGeneralNoise is extended from a previous example for simulat-
ing § 4+ By + ay = 0 (GrowList in example 21-1) and adds a random
uniform displacement y+ 6, 0 € (—randomamp, randomamp) at each iter-
ation. The ValuesList_List argument should be a list containing two lists:
the first list is comprised of the sequence of displacements y; the second list
records the corresponding stochastic displacement §. The function uses a
list’s two previous values and Append and to grow the list iteratively.

Exemplary data from 2 x 10° iterations (using Nest) is produced for the
specific case of A = 0.001, « =2, 8 = 0.

The displacements (i.e., first list) are plotted with ListPlot.

The random ‘nudges’ (i.e., second list) are also plotted.

Biased nudges are simulated with GrowListBiasedNoise . This extends
the unbiased example above, by including a wavelength for a cosine-biased
random amplitude. A sample, d, from the uniform random distribution as
above is selected and then multiplied by cos 27t/A. The time-like variable
is simulated with Length and the current data.

The biased data for approximately the resonance condition for the same
model parameters above is plotted with the biased noise.

GrowlListGeneralNoise[ValuesList_List, A_, a_,
randomamp_]| := Module[{Minus1 7ValuesL|sI[l1 =111,
Minus2 = ValuesList[[1, -2]],
noise = Random[Real, (—randomamp, randomamp}]},
{Append|ValuesListl[1]],
2%Minus1 — Minus2 + A =
(B+(Minus2 — Minus1) —a A +Minus2) + noise],
Append|ValuesListl[2]], noisel}]

GrowListSpecificNoiselInitialList_List] :=
GrowListGeneralNoiselInitialList, .001, 2, 0, 10A(-5)]

3| Nest[GrowListSpecificNoise, {{1, 1}, {0, 0}}, 10]

TheData =

4 Nest[GrowListSpecificNoise, {{1, 1}, {0, 0}}, 20000];

5| ListPlot[TheDatall 1111

6 ListPlotlTheDatal(2ll]

Now suppose there is a periodic bias that tends to kick the
displacement one direction more than the other:

GrowL|slBlasedNolse[Va\uesL\sl List,
A_, a_, B_, randomamp_, lambda_] :=
Module[{Minus1 = ValuesList[[1, —1]], Minus2 =

(Cos|2 r LengthlValuesListl[11]]/lambda] +
7 Random|[Real, {-1, 1}])},
{Append[ValuesList[1]],
2%Minus1 — Minus2 +
A #(B+(Minus2 — Minus1) —a A +Minus2) +
biasednoise],
Append|ValuesListl[2]], biasednoisel}]

ValuesList[[1, —2]], biasednoise = 0.5« randomamp «

GrowListSpecificBiasedNoiselInitialList_List] :=
GrowListBiasedNoisel[lInitialList, .001, 2, 0, 10A(~6), 4500]

| TheBiasedData =

Nest|GrowListSpecificBiasedNoise, {{1, 1}, {0, 0}}, 20000];

ListPlot[TheBiasedDatall 1111
ListPlot[TheBiasedDatall211]

3.016 Home

PRI

Full Screen

Close

LH

Quit

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2006/Notebooks/L23/Lecture-23.nb
http://pruffle.mit.edu/3.016-2006/pdf/L23/Lecture-23-1.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-23/HTMLLinks/index_1.html
http://pruffle.mit.edu/3.016-2006/html/Lecture-23/HTMLLinks/index_1.html

A general model for a damped and forced harmonic oscillator is

d?y(t) dy(t)
g
I e

where F,,, represents a time-dependent applied force to the mass M.

M

+ Koy(t) = Fapp(t) (23-2)

General Solutions to Non-homogeneous ODESs

Equation 23-2 is a non-homogeneous ODE—the functions and its derivatives appear on one side and
an arbitrary function appears on the other. The general solution to Eq. 23-2 will be the sum of two
parts:

Ygen (t) = Ypart (t) T Yhomog (t)

(23-3)
Ygen (t) = YFupp (t) + Yhomog (t)
@i miasig s NN Pl (nly)? > 4M K, Over-damped
Urgn it = Cre~ Mt 4 Cyte=IME (nl,)? = 4M K, Critical Damping (23-4)

Cre-IReAtgmar 4 o o—IReAite—llmAlt (17 V2 « 4ATK, Under-damped

where ypart = YF,,, is the solution for the particular Fyp, on the right-hand-side and ypomoq is the
solution for the right-hand-side being zero. Adding the homogeneous solution Ynomog to the particular
solution Ypart s equivalent to adding a “zero” to the applied force Fgyy,

Interesting cases arise when the applied force is periodic Fip,(t) = Fopp(t+T') = Fapp(t + 27 /wapp),
especially when the applied frequency, wepy is close to the the characteristic frequency of the oscillator

Wehar = V/ KS/M

Modal Analysis

For the case of a periodic forcing function, the time-dependent force can be represented by a Fourier
Series. Because the second-order ODE (Eq. 23-2) is linear, the particular solutions for each term in a
Fourier series can be summed. Therefore, particular solutions can be analyzed for one trigonometric

term at a time: 2 p
t t
oo , . dult)

M
dt? dt

+ Ky(t) = Fopp cos(Wappt) (23-5)

3.016 Home

PRI

Full Screen

Close

Quit

o

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

There are three general cases for the particular solution:

Condition Solution for F'(t) = Fupp cos(wappt)
Undamped,
Frequency- n=0
Mismatch (t) = Fapp c08(wappt)
2 _Ks 2 ypart —M(wh e)(Wh =)
Wehar M 75 app char app char app
Undamped, ‘
Frequency— n = 0 Ypart (t) e Fappt Sln(wappt)
Matched 5 K, " 2M wapp
Wehar = M = Wapp
Damped
n>0

Fopp €08(Wappt + Plag)

Ypart (t) = >
VMR, — wEp)? + P2
- uJappnlo
¢lag = tan L 5
M(wchar R wgpp)

The phenomenon of resonance can be observed as the driving frequency approaches the character-

istic frequency.

3.016 Home

PRI

Full Screen

Close

Quit

o

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

Lecture 23 MATHEMATICA® Example 2

Resonance and Near-Resonance Behavior

notebook (non-evaluated)

pdf (evaluated)

html (evaluated)

Solutions to my + ny + ky = Fopp cos(wappt) analyzed near the resonance condition wypp & Wepar = 1/ k/m.

208

The general solution will include two arbitrary constants C[1] and C[2]
in terms that derive from the homogeneous solution plus a part that
derives from the heterogeneous (i.e., forced) part.

Examining the form of the general solution at ¢t = 0, it will be clear that
the constants from the homogeneous part will be needed to satisfy arbi-
trary boundary conditions—most importantly, the constants will include
terms that depend on the characteristic and applied frequencies.

Here DSolve will be used yParticularSolution to analyze the particular
case of a forced (F'(t) = Fopp cos(wappt)) and damped harmonic oscillator
initially at resting equilibrium (y(¢ = 0) =1 and ¢'(¢ = 0) = 0).

The most interesting cases are the resonance and near resonance cases:
ResonantSolution is obtained by setting the forcing frequency equal to
the characteristic frequency.

To analyze the at-resonance case, the solution will be expanded to sec-
ond order for small viscosity with Series. Some extra manipulation is
required to display the results in a form that is straightforward to inter-
pret. Here, Map will be used with a pure function to simplify each term
produced by Series. First, the SeriesData object created by Series
is transformed into a regular expression with Normal. The pure function
will first transform any exp(z) into cosh(x) + sinh(x), then any fractional
powers will be cleaned up (e.g., V2 — x) assuming real parameters;
finally the individual terms will be simplified.

Apply a forcing function: Fa, COS(wappt)

To solve problems in terms of the mass and natural frequency,
eliminate the spring constant in equations by defining it in
terms of the mass and natural frequency.

1[Kspring = M wehar® [

Mathematica can solve the nonhomogeneous ODE with a
forcing function at with an applied frequency:

yGeneralSol =
Simplify[ylt] /. DSolve[My"[t] + 5y'[t] + Kspringylt] =
Fapp Cos[wappt], ylt], t]l[11])

n

Consider the behavior of the general solution at time t=0. This
will show that the homogeneous parts of the solution are needed
to satisfy boundary conditions, even if the oscillator is initially at
rest at zero displacement (i.e., y(0) =y (0) = 0).

3[Simplify[yGeneralSol /. t —> 0] [

Consider the particular case of anequillbrium at-rest oscillator

yParticularSol = Simplify[
4 yltl /. DSolve[(My"[t] + ny'lt] + Kspringylt] = Fapp
Cos[wappt], ylol ==0, y'lo] == 0}, ylt], tjl[11]]

The resonant solution is the case: wapp — wchar

5[ResonantSolution = Simplify[yParticularSol /. wapp — wchar] [

ResonantSolutionSmallViscosity =
6| Map|[Simplify[PowerExpand [ExpToTrigl#l]] &,
Normal[Series[ResonantSolution, {n, 0, 2}]]]

ResonantSolutionSmallViscosityDetuned =
Map(Simplify[PowerExpand [ExpToTrigl#1]] &,
Normal[Series[yParticularSol, {wapp, wchar, 1}, {, 0, 2}]1]

=

The leading behavior could have been obtained directly, viz

ResonatSolZeroViscosity = Simplify[ylt] /.
8 DSolve[(My"lt] + Kspringylt! == Fapp Coslwchartl,
ylol == 0, y'lo] == 0}, ylt], tj{[11])

This illustrates how near resonance wgp, ~ Wehar can be analyzed in the small viscosity limit. Here, Series
first expands around 7 = 0 to second order and then around small dw = Wapp — Wehar-

Setting the viscosity to zero a priori is possible and returns the leading order behavior, but the asymptotic

behavior for small parameters cannot be ascertained.

3.016 Home

PRI

Full Screen

Close

o

Quit

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2006/Notebooks/L23/Lecture-23.nb
http://pruffle.mit.edu/3.016-2006/pdf/L23/Lecture-23-2.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-23/HTMLLinks/index_2.html
http://pruffle.mit.edu/3.016-2006/html/Lecture-23/HTMLLinks/index_2.html

Lecture 23 MATHEMATICA® Example 3

Visualizing Forced and Damped Harmonic Oscillation

notebook (non-evaluated) pdf (evaluated) html (evaluated)

Create a Mathematica function that returns the solution for
specified mass, viscous term, characteristic and applied

1: This function solves the heterogeneous damped harmonic oscillator ODE freauencies

L g 3 1 y[M_, n_, wchar_, wapp_]:= Chop[
(where F(t) = cos(wappt)) for any input mass, damping coefficient, and | e A e el (e

Spring constant]\4’7 n, k - Mwsha,,- . wapptl, yl0l == 1, y'l0] == 0}, ylt], t] // Flatten]
d d h 1d h 1 1 . Undamped Resonance: 3.016 H
5 — L 5 ome |
2: Un afmpe resonance Wepar = Wapp = 1/2 should show lmearly growing 2| Plot(Evaluatelyl1, 0, 1/2, 1/21], It, 0, 200}, PlotPoints - 200] |
amphtude. Undamped Near Resonance:

3: Near resonance will show a beat-phenomena because of ”de-tuning.” 3]
{t, 0, 200}, PlotPoints — 200]

Plot[Evaluate[y[1, 0, 1/2 + 0.05, 1/2]], |

4: Damped resonance will show that the amplitudes approaching to a finite Damped Resonance:
asymptotic limit. 4[PlotiEvaluately[1, 1/10, 1/2, 1/21], , 0, 200]] |

«| «|» ||

Overdamped Resonance:

6: The beats will still be apparent for the damped near resonance condi-
tion, but the finite damping coefficient will prevent the amplitude from
completely disappearing.

5[PlotiEvaluatelyl1, 10, 1/2, /211, {t, 0, 200)] |

Damped Near Resonance:

6

Plot[Evaluate[y[1, .05, 1/2 + 0.05, 1/2]],
{t, 0, 200}, PlotPoints - 200]

Heavily damped Near Resonance:

7 Plot[Evaluate[y[1, 2.5, 1/2 + 0.05, 1/2]],

Full Screen
{t, 0, 200}, PlotPoints - 200] |

Close

o

Quit

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2006/Notebooks/L23/Lecture-23.nb
http://pruffle.mit.edu/3.016-2006/pdf/L23/Lecture-23-3.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-23/HTMLLinks/index_3.html
http://pruffle.mit.edu/3.016-2006/html/Lecture-23/HTMLLinks/index_3.html

Resonance can have catastrophic or amusing (or both) consequences:

3.016 Home

| RURIEIEY

21

Figure 23-24: Picture and illustration of the bells at Kendall square. Many people shake the
handles vigorously but with apparently no pleasant effect. The concept of resonance can be Full Screen
used to to operate the bells efficiently Perturb the handle slightly and observe the frequencies
of the the pendulums—select one and wiggle the handle at the pendulum’s characteristic
frequency. The amplitude of that pendulum will increase and eventually strike the neighboring
tubular bells. Close
From Cambridge Arts Council Website:
http://www.ci.cambridge.ma.us/”CAC/public_art_tour/map_11_kendall.html
Artist: Paul Matisse Title: The Kendall Band - Kepler, Pythagoras, Galileo Date: 1987
Materials: Aluminum, teak, steel
T

Handles located on the platforms allow passengers to play these mobile-like instruments, which are suspended in arches G
between the tracks, " Kepler” is an aluminum ring that will hum for five minutes after it is struck by the large teak hammer

above it. "Pythagoras” consists of a 48-foot row of chimes made from heavy aluminum tubes interspersed with 14 teak

hammers. " Galileo” is a large sheet of metal that rattles thunderously when one shakes the handle. ©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/
http://www.ci.cambridge.ma.us/~CAC/public_art_tour/map_11_kendall.html

Figure 23-25: Animation Available in individual lecture, deleted here because of filesize con-
straints The Tacoma bridge disaster is perhaps one of the most well-knownfailures that re-
sulted directly from resonance phenomena. It is believed that the the wind blowing across
the bridge caused the bridge to vibrate like a reed in a clarinet.(Images from Promotional
Video Clip from The Camera Shop 1007 Pacific Ave., Tacoma, Washington Full video Available

http://www.camerashoptacoma.com/)

3.016 Home

PRI

Full Screen

Quit

Bt
Close
e

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2006/Lecture-23-screen.pdf
http://pruffle.mit.edu/3.016-2006/Lecture-23-screen.pdf
http://www.camerashoptacoma.com/
http://www.camerashoptacoma.com/

Lecture 24: Systems of Ordinary Differential Equations

Reading:
Kreyszig Sections: 4.1, 4.2 (pages131-135, 136-139)

Systems of Ordinary Differential Equations

The ordinary differential equations that have been treated thus far are relations between a single M
function and how it changes:
dny dn—ly dy
F(—,—,...,—,y,2) =0 24-1
(dx” dzn—1 dc’”?) @
Many physical models of systems result in differential relations between several functions. For example, ﬂ ﬂ ﬁ ﬂ
a first-order system of ordinary differential equations for the functions

(y1(x),y2(x), ..., yn(z)) is:

dn

= iy (@), y2(2), . yn(2), 2) Full Screen
Y2 — hon(@), 9202 - 4(),) i
W — fln (@), 92(a), . (),) LB
or with a vector notation, .
W) _ Fig) L3,

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

Example: The Spread of a MIT Joke

The predator-prey model serves as the classical example of a system of differential equations. This is
a (possibly humorous) variant of the predator-prey problem.

Suppose there is a fairly bad joke that circulates around the student population. Students either
know the joke or they don’t and thus can be divided into two populations:

Jaded, J Knows the joke, and if someone tries to tell it to them, they interrupt with, “Yeah, Yeah. I
heard that one. It’s pretty, like, stupid.”

Naive, N Never heard the joke or has forgotten it.

As the joke spreads, or as students graduate, or students forget the joke, or as new students are
admitted to MIT, the populations change.

We will try to construct a model that reflects how the populations change each day.

We will suppose that freshman enter MIT a constant daily rate; in order to keep the population
of students regulated, the admissions office accepts freshman at a rate that depends on how many of
4000 slots are open. Therefore, freshman enter MIT, and thus the Naive population at a daily rate of:

dersh I 4000 — (J+N)
R 365

(24-4)

Students have a lot of things on their mind (some of which is education) and so they tend to be
forgetful. Students who know the joke tend to forget at rate ¢/year. Suppose that a fraction, ¢, of the
Jaded students forget the joke each year—these students leave the J-group and enter the N-group at
a daily rate:

dJ
forg B ayJ .

dt 365 (24-5)
deorg ., _OéAJ i —aJ

dt 365

It is closely held secret that Susan Hockfield, MIT’s president, has an odd sense of humor. At each
commencement ceremony, as the proud candidates for graduation approach the president to collect their
hard-earned diploma, President Hockfield whispers to the student, “Have you the joke about...?” If

3.016 Home

PRI

Full Screen

Close

Quit

o

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

the student says, “Yes. I have heard that joke. It is wvery funny!!!” then the diploma is awarded.
However, if the student says, “No. But, I am dying to hear it!!!”, the president’s face drops into a sad
frown and the student is asked to leave without collecting the diploma.'®

Therefore, only students in the J-group can graduate. Let’s assume that at any one time, 1/3 of
the jaded students have satisfied the graduation requirements, and of this group 99% will graduate:

dIgar 0.99J/3

dt 365~ 7 474:6)

The joke spreads in proportion to its “funniness coefficient” and the probability that a naive student
runs into a jaded student:

dJSpTd L paJN

= —¢JN

dt 3652
dNgpra _ ¢aJN SIN @40
dt 3652

Therefore, an iterative model for the student population that knows the joke is:

Naive Fraction(Tomorrow) =Naive Fraction(Today) + Change in Naive Fraction

24-8
Jaded Fraction(Tomorrow) =Jaded Fraction(Today) + Change in Jaded Fraction (24-8)
or
4000 — (N; + J;)
Nit1 =N J; — $JiN;
" el 365 S (24-9)

Jit1 =J; + ¢J; Ny — vJ; — aJ;

16This event is an annual source of confusion and embarrassment for the students’ proud families—and a source of
sadistic amusement to the attending faculty (who have an even stranger sense of humor than Hockfield’s).

3.016 Home

PRI

Full Screen

Close

Quit

o

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

Lecture 24 MATHEMATICA®R) Example 1

Iterative Example of Predator-Prey Simulation

notebook (non-evaluated)

pdf (evaluated)

html (evaluated)

Functions to the simulate system of iterative equations, Eq. 24-8, are developed.

1:

FreshmanEntranceRate takes the current Jaded and Naive populations
and returns how many students are admitted to the Naive popuation each
day.

The number of students that forget the joke each day is proportional to
the current Jaded population.

Because only Jaded students can graduate, GraduationRate is propor-
tional to the current Jaded population.

JokeSpreadRate depends linearly on the probability that a Jaded meets
a Naive student, and therefore the spread rate depends on the product of
the two populations.

TomorrowsNaive and TomorrowsJaded advance the two populations by
one day.

If the two populations are kept in a two-item list, then TomorrowsPopu-
lation will advance the entire population list.

FreshmanEntranceRate[Naive_, Jaded_] :=

1" (4000 — Jaded + Naive))/365;

About half the people who know the joke forget it each year and
only the Jaded know the joke. The model for how many forget
the joke each day is:

PopulationForgetfullness = .5;
2| ForgotJoke[Naive_, Jaded_] :=
PopulationForgetfullness + Jaded/ 365

3.016 Home

The model for how many leave each day by graduating is:

GraduationCoefficient = 0.99 (1/3);
3| GraduationRate[TodaysNaive_, TodaysJaded_] :=
GraduationCoefficient TodaysJaded/365;

The rate that the joke spreads will determine how many of the
Naive will become Jaded. The probability that a Naive meets a
Jaded who tells the joke is proportional to the joke funniness and
the daily probability that the two meet.

«| «|» ||

JokeFunniness = 0.35;
4| JokeSpreadRate[Naive_, Jaded_] :=
JokeFunniness « Naive + Jaded/ (365 « 365)

TomorrowsNaive[TodaysNaive_, TodaysJaded_] :=
TodaysNaive +

5] FreshmanEntranceRate[TodaysNaive, TodaysJaded] —

JokeSpreadRate[TodaysNaive , TodaysJaded] +

ForgotJoke[TodaysNaive , TodaysJaded]

TomorrowsJaded[TodaysNaive_, TodaysJaded_] :=
TodaysJaded +

6 JokeSpreadRate[TodaysNaive, TodaysJaded] —

ForgotJoke[TodaysNaive , TodaysJaded] —

GraduationRate[TodaysNaive , TodaysJaded]

TomorrowsPopulation[{TodaysNaive_, TodaysJaded_}] :=
7| {TomorrowsNaive[TodaysNaive, TodaysJaded],
TomorrowsJaded|[TodaysNaive , TodaysJaded]}

Full Screen

Close

Quit

o

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2006/Notebooks/L24/Lecture-24.nb
http://pruffle.mit.edu/3.016-2006/pdf/L24/Lecture-24-1.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-24/HTMLLinks/index_1.html
http://pruffle.mit.edu/3.016-2006/html/Lecture-24/HTMLLinks/index_1.html

Lecture 24 MATHEMATICA®R) Example 2

Visualizing the Spread of Jokes at MIT

notebook (non-evaluated)

pdf (evaluated)

html (evaluated)

The behavior of the iterative model presented in the above example are visualized.

1:

Here, NestList is used with the TomorrowsPopulation to create a se-
quence of population-lists, starting at {N, J} = {400,600}, for five con-
sectutive days.

The results of NestList are repeatly plotted by using Table at 50 day
intervals. This will create sequence of plots that can be collected into an
animation. In this case, an initial population of {0, 0} will asymptotically
approach {4000,0}; at very long times, no one would graduate, one one
would enter MIT, and no one would know the joke. This is not only bad
policy, but the system is unstable. ..

In a similar animation to the above, any small positive perturbation from
the {0,0} population will initially be driven towards the {4000,0} so-
lution, but will ‘veer’ away and then rush towards another asymptotic
solution.

To examine the behavior for a variety of initial populations, iteration
sequences are generated for 50 different initial random populations, and
then represented with an (undisplayed) graphics object. Each trajectory
is identified with a random color.

The graphics example above indicates that trajectories tend towards a sta-
ble fixed point. The numerical value of the fixed point can be determined
by iterating the list until the result ceases to change numerically. This
method is implemented in the function FixedPoint which is insensitive
to the initial population.

Here, the fixed point is used to create a small ‘window’ in PlotRange so
that the local behavior can be observed.

1| NestList[TomorrowsPopulation, {400, 600}, 5]

For an animation of a population of {Naive, Jaded} = {0,0}

Table[ListPlot[NestList[TomorrowsPopulation, {0, 0}, i],
PlotJoined - True, PlotStyle - {Huel1], Thickness[o. o1l},
AxesLabel - {"Naive", "Jaded"},

PlotRange —> {{0, 4000}, {0, 4000}}], {i, 10, 2500, 50}]

From the above animation, one might conclude that the
population will stably climb toware {4000,0}. In the following
animation, an initial population of {1,1} shows that a small

pertubation away from having "no jaded students to tell the joke"

has very different long-term behavior

Table[ListPlot[NestList[TomorrowsPopulation, {1, 1}, i,
PlotRange —> {{0, 4000}, {0, 4000}}, PlotJoined — True,
PlotStyle — {Huel1], Thicknessl[0.011},

AxesLabel - {"Naive", "Jaded"}], {i, 10, 2500, 50}]

Now calculate trajectories for a variety of initial conditions for the
jaded and naive populations, selected randomly, then plot them
on the naive—jaded plane:

graphicslist = Table[ListPlot[NestList[TomorrowsPopulation,
{4000 + Random(l, 4000 = Randoml]}, 8000],
PlotRange - All, PlotJoined - True,
PlotStyle - {RGBColor[Randoml],
Randoml], Randomll], Thickness[0.0051},
DisplayFunction — Identity], i, 1, 50}]

Show[graphicslist, DisplayFunction - $DisplayFunction,
5| Axeslabel - {"Naive", "Jaded"},
PlotRange —> {{0, 4000}, {0, 8000}}]

The trajectories' convergence point calculated numerically:

6| fp = FixedPoint[TomorrowsPopulation, {800, 2300}, 20000]

winsize = 107(-8);

plotrange = {{fpl[1]] - winsize, fpll11] + winsize},

7 {fpll21] — winsize, fpll2]] + winsize}}

Show|graphicslist, DisplayFunction — $DisplayFunction,
AxesLabel - {"Naive", "Jaded"}, PlotRange —> plotrange]

3.016 Home

PRI

Full Screen

Close

LH

Quit

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2006/Notebooks/L24/Lecture-24.nb
http://pruffle.mit.edu/3.016-2006/pdf/L24/Lecture-24-2.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-24/HTMLLinks/index_2.html
http://pruffle.mit.edu/3.016-2006/html/Lecture-24/HTMLLinks/index_2.html

The stability and behavior of the iterative model 24-8 can be analyzed by replacing the coupled
iterative equations with coupled ODEs:

dN 4000 — (N + J)

t+aJ —¢JN

i i (24-10)
o =¢pJN —vJ —aJ

A critical point is one at which the left-hand side of Equations 24-2, 24-3, or 24-10 vanish—in other
words, a critical point is a special value of the vector ¢(z) where the system of equations does not
evolve. For the system defined by Eq. 24-10, there are two critical points
o+ 4000 — v — «
) JSt&b S — m——

¢ ¢ + 36576
However, while a system that is sitting exactly at a critical point will not evolve, some of the critical
points are not stable. There are three broad categories of critical points:'”

LV —14000, Joik: =10} and (Nstab = (24-11)

Stable Any slight perturbation of the system away from the critical point results in an evolution back
to that critical point. In other words, all points in the neighborhood of a stable critical point
have a trajectory that is attracted back to that point.

Unstable Some slight perturbation of the system away from the critical point results in an evolution
away from that critical point. In other words, some points in the neighborhood of an unstable
critical point have trajectories that are repelled by the point.

Circles Any slight perturbation away from a critical point results in an evolution that always remains
near the critical point. In other words, all points in the neighborhood of a circle critical point
have trajectories that remain in the neighborhood of the point.

Reduction of Higher Order ODEs to a System of First Order ODEs

Higher-order ordinary differential equations can usually be re-written as a system of first-order differ-
ential equations. If the higher-order ODE can be solved for its largest derivative:

dny = F(dnfly dany dy

ST T Tl T

" There are others that will be discussed later.

t) (24-12)

3.016 Home

PRI

Full Screen

Close

Quit

o

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

then n — 1 “new” functions can be introduced via

Yo(t) = y(t)
dy dyo
e =
yl() dt dt
_d’y dy
wlt) =7m = 4
(24-13)
=@y _ s
Yn—1\0) = "gn=1 T T
d™y Gl Ml dy dyn—1
yn(t)ETZ (?7 n727"'577):
dt dt dt dt dt
or
Yo U1
n Y2
d
e : — : 24-14
=1 . (24-14)
Yn—2 Yn—1
Yn—1 F(ynflayn*Qa"'aylayOat)

For example, the damped harmonic oscillator, M ij+nl,y+ Ksy = 0, can be re-written by introducing
the momentum variable, p = Mv = My, as the system:

dy _ p

dt M

g Sl (24-15)
dt = sY — Nilop

which has only one critical point y =p =0.
The equation for a free pendulum, M R?0 + MgRsin(f) = 0, can be re-written by introducing the
angular momentum variable, w = M Rf as the system,

i@ By
dt MR
b (24-16)

=" —Mgsin(6)

3.016 Home

PRI

Full Screen

Close

o

Quit

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

which has two different kinds of critical points: (w = 0,0 = neyenm) and (w = 0,6 = nygqgm).
4
Finally, the beam equation ET % = w(x) can be rewritten as the system:

Yy Mslope
i Mslope _ %
de | M S

S w(z)

where mgqpe is the slope of the beam, M is the local bending moment in the beam, S is the local
shearing force in the beam, and w(z) is the load density.
This beam equation does not have any interesting critical points. 3.016 Home

Linearization of Systems of ODEs

The fixed point plays a very important role in understanding the behavior of non-linear ODEs.

The general autonomous non-linear ODE can be written as: ﬂ ﬂﬁﬂ
Y1 Fi(y1,92,- -1 Yn)
dy d | v2 F(y1,y2,- -+, Yn) .,
s — = =F ol 24-18
dt dt (y17y27 7yn) ()
Full Screen
Yn Fn(ylay27--'7yn)
The fixed points are the solutions to:
Fl(y{7ygavy’rfll) a
i e T T A _ = |
Flyi,02:-500) = | . =0 (24-19)
FN(y{7y2fv ,y"];)
If the fixed points can be found, then the behavior near the fixed points can be analyzed by linearization. G
Letting & = ¢ — §/ be a point near a fixed point, then a linear approximation is:
d -
—0=Jé (24—20) ©W. Craig Carter

dt

http://pruffle.mit.edu/3.016-2006/

where

0F, ‘_‘ O0F> |_’ OF, ’_’
TR R T
1 2 n
dy> g Bya lyf oy2 gt
i | (24.21)

*gFé |f %5; |5t]

o | OF, |

ayn gf .« o PR ayn gf

Equation 24-20 looks very much like a simple linear first-order ODE. The expression

§t) = et = 0) (24-22)
might solve it if the proper analog to the exponential of a matrix were known. 5016 H
Rather than solve the matrix equation directly, it makes more sense to transform the system into '

one that is diagonalized. In other words, instead of solving Eq. 24-20 with Eq. 24-21 near the fixed
point, find the eigenvalues, \;, of Eq. 24-21 and solve the simpler system by transforming the ¢ into

the eigenframe #:
dny RURIE

=\
dt 1
N
dt (24-23)
i Full Screen
dnn,
o >\n n
dt g

for which solutions can be written down immediately:

m(t) = m(t =0)eM
ma(t) = ma(t = 0)e*!

Close

(24-24)

M (t) = 0a(t = 0)e**

If any of the eigenvalues of J have a positive real part positive, then an initial condition near that
fixed point will diverge from that point—stability occurs only if all the eigenvalues are negative. ©W. Craig Carter

Quit

o

http://pruffle.mit.edu/3.016-2006/

Lecture 24 MATHEMATICA® Example 3

Analyzing the Stability for the MIT Joke

notebook (non-evaluated)

1:

pdf (evaluated)

These expressions are the right-hand-sides of Eqs. 24-10.

A fixed point appears whenever the right-hand-sides of a system of coupled
ODEs vanish. In this case, there will be two solutions defined in the list
associated with fizedpoint .

MITModel will be defined as a short-hand for the replacement rule asso-
ciated with the parameters used in Example 24-1.

Therefore, for the ODE model, this will calculate fixed points.

This is the Jacobian (i.e., Eq. 24-21) for Eq. 24-10.

The Jacobian analyzed at the fixed points, fizedpoint , will produce the
characteristic matrix for the stability of each point.

A list is created with the Eigenvalues associated with the Jacobian at
each fixed point.

The MIT model shows that there are two fixed points. The one with
negative real parts of its eigenvalues is the stable solution and it has a
slow oscillatory part.

html (evaluated)
It is shown that the MIT has an unstable and a stable fixed point for the parameters utilized in Example 24-1.

The Joke-Model as the system of ODEs:

i = (4000 - (N +J))/365-¢ JN +a' J

s ¢ NJ-yJ-ad

Find the fixed points:

Ndot = (4000 — (N + J))/365 — ¢JN + aJ

M ddot = gIN - yJ - ad

2| fixedpoint = Solvel(Ndot =0, Jdot =0, (N, JI]

3| MITModel = (¢ —> 0.75/(365+365),
a->0.5/365, y —> 0.99(1/3)/365};

4 fixedpoint /- MITModel

Calculate the jacobian:

Jacob = {
{D[Ndot, N], D[Ndot, J1},
5 {D[Jdot, NI, D[Jdot, JI}

I
Jacob // MatrixForm

Find the Jacobian at the fixed points:

JacobFixedPoints = Simplify[Jacob /. fixedpoint];
JacobFixedPointsl[11] // MatrixForm

7| JacobFixedPointsl[21] // MatrixForm

Compute eigenvalues of the Jacobian at the fixed point

evals = {EigenvalueslJacobFixedPointsl[111],

g EigenvalueslJacobFixedPointsl[211]}

MITModel = {¢ > 0.35/(365+365),

9 a->0.5/365, y —> 0.99(1/3)/365);
fixedpoint /. MITModel

evals /. MITModel

3.016 Home

PRI

Full Screen

Close

Quit

o

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2006/Notebooks/L24/Lecture-24.nb
http://pruffle.mit.edu/3.016-2006/pdf/L24/Lecture-24-3.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-24/HTMLLinks/index_3.html
http://pruffle.mit.edu/3.016-2006/html/Lecture-24/HTMLLinks/index_3.html

Lecture 25: Phase Plane Analysis and Critical Points

Reading:
Kreyszig Sections: 4.1, 4.2 (pages131-135, 136-139)

Phase Plane and Critical Points

A few examples of physical models that can be represented by systems of first-order differential equa-
tions:

yl(t) Fl(ylayQa""t) Fl(?77t)

dy d | %) Fy(y1,92,---,1) Fy(9,t) -

. — = = = F . t 25-1
yn(t) Fn(y1,y2,---,1) Fn(9,t)

and, furthermore, it has been shown that many higher-order systems of ODEs can be reduced to larger
systems of first-order ODEs.

The behavior of systems of first-order equations can be visually interpreted by plotting the tra-
jectories y(t) for a variety of initial conditions g(¢ = 0). An illustrative example is provided by the
equation for the pendulum, M R20 + MgRsin# = 0. can be re-written with the angular momentum w
as the system of first-order ODEs

ﬁ W
dt MR (25-2)
d—w = —Mgsinf
m
which was shown in Lecture 22 to have solutions:
| 2
ST MgRcosf = E, (25-3)

Eq. 25-3 can be used to plot the the trajectories in the phase plane.

3.016 Home

PRI

Full Screen

Close

o

Quit

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

05 E
b O)>
-05
-1
-15 /\ /

0

3.016 Home

Figure 25-26: Example of the phase plane for the pendulum equation. The small closed orbits

are the stable harmonic oscillations about the stable position e. The larger orbits are those with

increasing energy until the energy is just large enough that the pendulum rises to its unstable ﬂﬂﬁﬂ
(]

equilibrium position |. The two kinds of fixed points (i.e., the stable and unstable points where
w=0= 0) regulate the portrait of the phase plane. (Note: The word “phase” here should not
be confused with the common usage of phase in materials science. In the current context for
example, the phase represents the positions and momenta of all the particles in a system—this Full Screen
usage is important in statistical mechanics. However, the word “phase” in materials science
and engineering is usually interpreted as a portion of material that lies within an identifiable
interface—this usage is implied in “equilibrium phase diagrams.”)

Identify Fixed Points If all the points in the phase plane where di/dt = 0 can be established,
then these fixed points can be used as reference points around which the phase-behavior will be

determined.
Quit

Behavior for a wide variety of initial conditions can be comprehended by the following approach: Close

Linearization At each fixed point, Linearization is obtained by expanding Eq. 25-1 to first order in

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

17 = 4 — Yaxed, the zeroth-order term vanishes by construction:

OFy oF OF;
m(t) zil Joxea Y2 |Faea OUN | Gesea m
d n2(t) . 72
Y1 | =
" — Yfixed 25_4
dt : : -) : (25-4)
v (t) OFy OFy NN
Oy Ufixed Oyn Ufixed

Eigenvalues/Eigenvectors When the system Eq. 25-4 is transformed into a coordinate frame in
which the matrix is diagonal, then each component of 7eigen-frame has a trajectory that is unaffected
by the others and determined by only the diagonal entry associated with that component.

The 7eigen-frame are the eigenvectors of Eq. 25-4 and the diagonal component is its associated
eigenvalue.

Fixed Point Characterization If the eigenvalue is real, then any point that lies in the direction of
its eigenvector will evolve along a straight path parallel to the eigenvector. If the real eigenvalue
is negative, that straight path will asymptotically approach the origin; if the eigenvalue is positive
the trajectory will diverge along the straight-path towards infinity.

If the eigenvalue is imaginary, then the trajectory will circulate about the fixed point with a
frequency proportional the eigenvalue’s magnitude.

If the eigenvalue, \ is complex, its trajectory will both circulate with a frequency proportional to
its imaginary part and diverge from or converge to the fixed point according to 7, exp(Re).

If any one of the fixed points has an eigenvalue with a positive real part, the fixed point cannot
be stable—this is because “typical” points in the neighborhood of the fixed points will possess
some component of the unstable eigenvector.

Stability of Critical Points

For the two-dimensional linear system

= (e 255)

3.016 Home

PRI

Full Screen

Close

Quit

o

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

can be analyzed because the eigenvalues can be calculated directly from the quadratic equation.

Every two-by-two matrix has two invariants (i.e., values that do not depend on a unitary transfor-
mation of coordinates). These invariants are the trace, T of the matrix (the sum of all the diagonals)
and the determinant D. The eigenvalue equation can be written in terms of these two invariants:

M-TA+D=0 (25-6)
The discriminant A = T? — 4D appears in the solutions to the eigenvalues:

S N

At 5

(25-7)
There are five regions of behavior:
A >0 The eigenvalues are real.

Eigenvalues both positive An Unstable Node: All trajectories in the neighborhood of the
fixed point will be directed outwards and away from the fixed point.

Eigenvalues both negative A Stable Node: All trajectories in the neighborhood of the fixed
point will be directed towards the fixed point.

Eigenvalues opposite sign An Unstable Saddle Node: Trajectories in the general direction
of the negative eigenvalue’s eigenvector will initially approach the fixed point but will diverge
as they approach a region dominated by the positive (unstable) eigenvalue.

A < 0 Eigenvalues are complex conjugates—their real parts are equal and their imaginary parts have
equal magnitudes but opposite sign.

Real parts positive An Unstable Spiral: All trajectories in the neighborhood of the fixed
point spiral away from the fixed point with ever increasing radius.

Real parts negative An Stable Spiral: All trajectories in the neighborhood of the fixed point
spiral into the fixed point with ever decreasing radius.

The curves separating these regions have singular behavior. For example, where T" = 0 for positive
D, the eigenvalues are purely imaginary and trajectories circulate about the fixed point in a stable
orbit. This is called a center and is the case for an undamped harmonic oscillator.

3.016 Home

PRI

Full Screen

Close

Quit

o

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

The regions can be mapped with the invariants and the following diagram illustrates the behavior. I I I-

Determinant

Eigenvalues are complex conjugates

negativereal part positivereal part
unstable spiral unstable spiral

both negative both positive
stable node unstable node

ORRAFIE SIS
27
7 "

Igenvalues are Real

Trace)

Figure 25-27: lllustration of the five regions according to their behavior near the fixed point.

At the point where the five regions come together, all the entries of the matrix of coefficients are
zero and the physical behavior is then determined by expanding Eq. 25-1 to the next highest order at

which the coefficients are not all zero.

[
3.01

(@ p]

3.016 Home

i

PRI

Full Screen

Close

o

Quit

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

N N
Lecture 25 MATHEMATICA®) Example 1 I

Functions to Analyze Fixed Points for Two-Dimensional Systems

notebook (non-evaluated) pdf (evaluated) html (evaluated)
Several functions are defined that identify the type of fixed point, their stability and the orientation of the stable
and unstable eigenvectors.

EigenConsistencylevall_, eval2_] :=
IffAnd[And[Imleval1l # 0, Imleval2] # 0],

1: FEigenconsistency takes two eigenvalues as arguments and checks if they I ol
derive from a real 2 x 2 matrix. If the eigenvalues are complex and the [gosmiviea ez =
matrix is real, then the two eigenvalues must be complex conjugates. . '”Q,”ﬂ}ﬁg{;;,"‘e”;{;ﬂ(‘ffjc[[ﬁzjﬁ_]]<°J' [] 3.016 Home
. .48 . R 3 IflOr[Releval1l > 0, Releval2] > 0], Printl"Unstable"],
2: Figenstability determines the sign of the real part of each eigenvalue and Printl"Stable Orbits about Fixed Point'l]
i 1 1 1 ’ 113 EigenTrajectorylevall_, eval2_] :=
uses Print to display a friendly message about the solution’s stability. e etae] = o1, PrintChculaiont
. . 2 . 4 Ifi(s1 = SignlReleval1ll) # (s2 = Sign[Releval2ll),
3: From the nature of the two eigenvalues, FigenTrajectory will print a Printl"Saddle"], Printl"Node'l]
friendly message about the fized point type. EigenDescriptionlevali_, eval2_] =

4| Module[t}, EigenConsistencylevali, eval2];
EigenStability[evali1, eval2]; EigenTrajectory[evall, eval2]] “ ‘ ’ >’

4: FEigenDescription collects the previous three messaging functions into a
. . EigenDescription[-1 +i, =1 —i]
Slngle function. EigenConsistency(1 + i, 1]

EigenDirector[eval_, {ex_, ey_}] =

6: FigenDirector takes a the stucture resulting from Eigensystem and Modulel{theta N(180+ Andtaniex, eyl/l), ileval > 0,

[

5 . . . Print["Unstable (A=", I, ") direction is 6 =", thetal];
uses the orientation of the eigenvectors and ArcTan to describe the local Hleval <0, Print'Stable 0" oval
ientation of any stable or unstable directions [econnis el
rien .
" 4 LinearDescription[a_, b_, c¢_, d_| = Full Screen
5 Modul b 11, 12, g 2},
7: LinearDescription takes the entries of a 2 x 2 matrix, calculates the ooy - Eigensyatomiita. by fo. it
o a 3 o g evall = Choplesys|[1, 1]1]; eval2 = Chop[esysI[1, 2]]];
eigensystem, removes any numerically trivial parts with Chop and then | evect = Choplesysii2, 11i) evec2 = Choplesysli2, 2111
. o o . EigenDescription[evall, eval2];
proceeds to call all the previous messaging functions to give a complete PrMCEigsrualuss ~, oy, " and, oviz)
n . 5 . ndlImlevaltl == 0, Imlevall == 0],
description of the fixed points behavior. EigenDirectorlevalt, evect];

Close

EigenDirector[eval2, evec2]]; esys] |

8| LinearDescription([1, .1, 1, -3]

Quit

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2006/Notebooks/L25/Lecture-25.nb
http://pruffle.mit.edu/3.016-2006/pdf/L25/Lecture-25-1.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-25/HTMLLinks/index_1.html
http://pruffle.mit.edu/3.016-2006/html/Lecture-25/HTMLLinks/index_1.html

Lecture 25 MATHEMATICA® Example 2

Visualizing the Behavior at a Fixed Point in the Plane

notebook (non-evaluated)

pdf (evaluated)

html (evaluated)

A function for visualizing the behavior of a fixed point with oriented arrows is constructed.

1:

Linsol , with four arguments representing the Jacobian entries, calculates
the solution for an initial point picked randomly from the domain (—10 <
x < 10),(—10 < y < 10). In this case, the fixed point is assumed to
have been translated to the origin. It calls DSolve, on a coupled pair of
first-order ODEs and uses Random to generate the initial conditions.

This function takes the entries for the Jacobian and then uses
ParametricPlot to plot the solution returns from LinSolve . However,
the results are not very easy to interpret: one can’t discern the direction
of the tragjectory, nor the nature of an fixed point.

Graphics‘Arrow‘ has arrow graphics objects to indicate the direction.

CritPointPlotPointsMany is an elaborate function that provides four
graphical views of a critical point by computing and plotting a large
number of trajectories emanating from random intial points. This func-
tion illustrates an example of the use of optional function-arguments in
howmany_:100 (i.e., the number of random trajectories to compute) which
defaults to 100 if that argument is left off the function when it is called.

4A Compute the eigensystem and assign it to esys, LinearDescription will

also print information about the critial point.

4B funcs is a list of solution-pairs for different initial points.

4C Show will be called recursively to add graphical objects to a list 1stack.

lstack is a placeholder for plots that contain arrows.

LinSolla_, b_, c_, d_] :=
{xltl, p[t])/ Flanen[

1 DSolve[(x'lt] = ax[t] + bpltl, p'lt] = cx[t] + dplt],
x[0] == Random(Real, {10, 10}],
plo] = Randoml[Real, {-10, 10}1}, {x[t], pltl}, t]]

CritPointPlotla_, b_, ¢_, d_] :=
2 ParamechIot[Eva\uatelLmSoIIa b, c, dll,
{t, 0, 20}, PlotRange - {{-15, 15}, {-15, 15}}]

3[<< Graphics'Arrow’ [

CritPointPlotPointsMany[a_, b_, ¢_, d_, howmany_:100] :=|

Module[{esys, evall, eval2, funcs, data, lendata, gstack, Ip,
rstack, Istack, magrange, rstackmag, Istackmag},

(+Ax) esys = LinearDescription[a, b, c, dI; Print[esys];
evall = esys|[1, 1]]; eval2 = esys|[1, 2]];
(#B+) funcs = Table[Chopl[LinSol[a, b, c, d]],
{i, howmany}J; (+C+) Istack = {}; rstack = {};
For[imany = 1, imany < howmany, imany ++,
(+Dx)data = Chop[Table[Evaluate[
funcs[[imany]] /. t - itime], {itime, 0, 20, .1}]];
lendata = Lengthldatal; gstack = {Huel0l, Arrow[
datal[11], datal[2]], HeadScaling - Absolute]};
(+Ex) Forliend = 4, iend < lendata/2, iend += 8,
(«Fx=)AppendTo[gstack, Hueliend = 0.66 «2/lendatal];
(+G+)AppendTo[gstack, Arrow[datalliend - 111,
4 datalliendll, HeadScaling - Absolute]]];

(+H#)Ip = ListPlot[data, PlotJoined - True,
AspectRatio - 1, PlotRange — {{-15, 15}, {-15, 15}},
PlotStyle - HuelRandoml1],

DisplayFunction — Identity];

(+1)Istack = Show(Ip, Graphics[gstack], Istack];

(+Js)rstack = Show[lp, rstack]];
(«Ks)lf[Or[Relevalil > 0, Releval2] > 0],

magrange = {{-60, 60}, {-60, 60}},

magrange = {{-1, 1}, {-1, 1}];
rstackmag = Show[rstack, PlotRange — magrange];
Istackmag = Show]Istack, PlotRange —» magrangel];
(+Lx)Show[

GraphicsArray|{{Istack, rstack}, {Istackmag, rstackmag}}],

ImageSize — 1000,

DisplayFunction - $DisplayFunction]]

5[CritPointPlotPointsMany[-1, 0.25, 0.75, —1] [

Items D—J are in the body of a loop over each of the

homany trajectories. 4D: data is created for 20 discrete points at equal At = 0.1 along the current trajectory.

A red arrow object is created at the beginning of the trajectory and stored in gstack. 4E: This will loop over
points the first half of the data. Items F—G are within the loop’s body. 4F: The color of the arrow will shift
towards blue with time. 4G: The arrow object is added to gstack. 4H: The data is plotted with ListPlot.
41: This combines the contents of the plot and the two graphics-lists and assigns it to 1stack—this iteratively

grows lstack. 4J: rstack will only contain plots and no arrows. 4K: To focus on the long-time behavior, the

PlotRange will need to be large (like a telescope) for unstable systems and small (like a microscope) for stable

fixed points. The If will pick the appropriate PlotRange. 4L: GraphicsArray produces an array of plots.

3.016 Home

PRI

Full Screen

Close

Quit

LH

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2006/Notebooks/L25/Lecture-25.nb
http://pruffle.mit.edu/3.016-2006/pdf/L25/Lecture-25-2.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-25/HTMLLinks/index_2.html
http://pruffle.mit.edu/3.016-2006/html/Lecture-25/HTMLLinks/index_2.html

Unstable Manifolds

The phase portraits that were visualized in the above example help illustrate a very powerful mathe-
matical method from non-linear mechanics.

Consider the saddle-node that has one positive (unstable) and one negative (stable) eigenvalue.
Those initial points that are located in regions where the negative (stable) eigenvalue dominates are
quickly swept towards the fixed point and then follow the unstable direction away from the fixed point.
Roughly speaking, the stable values are ‘smashed’ onto the unstable direction and virtually all of the
motion takes place near the unstable direction.

This idea allows a large system (i.e., one in which the vector ¢(¢) has many components) to be
reduced to a smaller system in which the stable directions have been approximated by a thin region
near the trajectories associated with the unstable eigenvalues. This is sometimes called reduction of
“fast variables” onto the unstable manifolds.

3.016 Home

PRI

Full Screen

Quit

Bt
Close
e

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

Lecture 26: Separation of Variables and Solutions to Common ODEs

Reading:
Kreyszig Sections: 5.3, 5.5, 5.6 (pages177-180, 189-197, 198-202)

Special Functions: Solutions to Common ODEs

Most calculators have a button that evaluates the eigensolution to the simple first-order ODE dy/dt =
Ay. Also, most calculators have buttons that evaluate the eigensolutions to the simple second-order
ODE: d?y/dt? = \y.

Of course, these are also just the exponential and trigonometric functions.

However, there are many more simple differential equations that follow from physical models and
these also have known solutions that are not simple combinations of sines, cosines, and exponentials.
The solutions to these differential equations are called special functions. MATHEMATICA®) has an
extensive list of special functions and these are collected in its help browser.

For example, the positions of a vibrating drum head are modeled with in cylindrical coordinates by
Bessel’s equation:

d’h dh
72 +r— + (K22 —mHh =0

dr?2 " dr (26-1)
,&2h dh

PR T, + (o —m*)h =0

where in the second equation p = kr. The displacement of the drum is h(r); k is related to an inverse
wavelength (e.g., the wavelength would be the radius of the drum divided by the number of maxima
in the drum head shape) and m is the mode (e.g., the number of maxima traversing the drum by 27
in a circular direction).

There two solutions to Bessel’s equation and the general solution is the sum the two:

h(r) = Crdm(kr) + CoYp, (kr)

h(p) = C1Jm(p) + C2Y(p) (26-2)

3.016 Home

PRI
Full Screen

Bt
Close
e

Quit

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

where J,,(x) is called (naturally enough) an order-m Bessel function of the first kind and Yy, (z) is
called (naturally enough) an order-m Bessel function of the second kind. These are analogous to the
sines and cosines, but for a different ODE.

Another equation that appears in models of the angular deformations of body in a central force
potentials (for example, the ion distribution about a fixed charge; or, the Schrodinger equation for the
electron in a hydrogen atom) in spherical coordinates is Legendre’s equation:

Mentl d= m?
p——at 3 — 1 _ E:
sinf do (Sln9d9)+ [€(€+) sin20} 2
-) (26-3)
i (1- Q)di g | e Sl S
dpu B ag 1— 2|7

where = cos so that —1 < u < 1. The value £ is related to the number of modes in the 6 direction
and m is related to the number of modes in the ¢ direction.
Legendre’s equation has two solutions:

E(p) = C1Pm (1) + C2Qum (1) (26-4)

The eigensolution P, (u) is called (again, naturally enough) order m Legendre functions of the first
kind and Q,,(u) are called order Im Legendre functions of the second kind.
There are many other types of special functions.

3.016 Home

PRI

Full Screen

Quit

Bt
Close
e

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

N N
Lecture 26 MATHEMATICA®) Example 1 I

Visualizing special functions.

notebook (non-evaluated) pdf (evaluated) html (evaluated)
The ODEs that produce Bessel, Legendre, LaGuerre, and Hypogeometric functions are solved and these special
functions are visualized.

Bessel's equation

1: This is Bessel’s equation for y(z). 1[BesselODE = y'lx] + xyxl + 02~ 2)ylx] = |
2| DSolve[BesselODE, ylx], x] |

3: MyPlotStyle is a function to set PlotStyle for a given number of curves

A MyPIo!SIer[HowMa_ny,Integer] =
so that their colors are spread over Hue from red (0) to blue (0.66). 3| TelliHuel0 66/ HowMany, Tricknesslo 01l 3.016 Home |

4: This will produce at plot of the zeroeth Bessel’s function of the first kind
(BesselJ) and zeroeth Bessel’s function of the second kind (BesselY)/

{x, 0, 20}, PlotStyle - MyPlotStyle[2]]

Plot[{BesselJ[0, x], BesselY[0, x}, |

Plot[{BesselJ[1/2, x], BesselY[1/2, I}, |

solutions. {x, 0, 20}, PlotStyle > MyPlotStyle[2]]
I o y Legendre's equation
6: This is two-parameter form of Ledendre’s equation for y(x). | | | I
6| LegendreODE = (1 - x?) y"[x] —2xy'Ix] +((nh+1)ylx] =0 | 44| 4« > |)
8: This is another form of Ledendre’s equation for y(x). 7 DSalvelLogondreODE, yix x |
14: This will produce solutions to Laguerres’s equation for y(z). ATEGLEE A EEE = ,
1 =x®)y"Ixl —2xy'lx] +[n(n+1)7 1Tx2]yli =0

9| DSolve[AnotherFormLegendreODE, ylxI, x|

Plot[{LegendrePI[0, x], LegendreQI[0, x]},

e {x, =1, 1}, PlotStyle - MyPlotStyle[2]]

Full Screen

Plot[{LegendreP[1, x], LegendreQ[1, x]},

il {x, =1, 1}, PlotStyle - MyPlotStyle[2]]

Plot[Evaluate[Table[LegendrePl[i, x], {i, 0, 10}]],

i {x, =1, 1}, PlotStyle - MyPlotStyle[11]]

Plot[Evaluate[Table[LegendreQli, x], {i, 0, 10}]],

e {x, =1, 1}, PlotStyle - MyPlotStyle[11]]

Hypergeometric and Laguerre special functions Close

14| DSolvexy"Ix] + (g + 1 - x)y'Ix] + p ylx] =0, ylx], x] |

15[Plot[LaguerreL[4, 1, xI, [, =5, 15}] |

Quit |

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2006/Notebooks/L26/Lecture-26.nb
http://pruffle.mit.edu/3.016-2006/pdf/L26/Lecture-26-1.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-26/HTMLLinks/index_1.html
http://pruffle.mit.edu/3.016-2006/html/Lecture-26/HTMLLinks/index_1.html

Partial Differential Equations: Separation of Variables

Many ordinary differential equations that arise in practice derive from methods to solve partial differ-
ential equations.

In other words, the solution to the partial differential equation involving ¢(z, vy, z,t) and its partial
derivatives with respect to x, y, z, and t can sometimes be reduced to the solution of several ordinary
differential equations.

In practice, most of the partial differential equations that can be solved analytically are solved by
the method of separation of variables. Separation of variables works by isolating one of the variables
onto one side of equality—it is best described by simple example and here the one-dimensional wave-
equation is a prototype. The wave-equation (e.g., the time (¢)-dependent propagation of a scalar
quantity (h) such as height, density, charge, etc. in a single direction x is:

0?h(z,1) = 0?h(z,1)
ot? 0x?

(26-5)

where v is the phase-velocity v = w/k, w is the angular frequency describing how rapidly the phase of
the wave changes as it moves past a fixed position and k = 27/ is the wave-number.

Consider a specific case in which waves are propogating in a guitar string of length L—this will
give Dirichlet boundary conditions at the guitar’s nut and saddle:

f (e =M= and ey =W) — (26-6)

(two boundary conditions—one for each spatial derivative). The shape of plucked string gives the
initial condition; for example, this could be modeled with a triangular shape:

Ax/l (s =
Jllfer: W) = { L . (26-7)

where the string is plucked at a position z = £ with a displacement A at time t = 0.
The separation of variables method begins with the assumption that the function can be factored
into independent functions of the dependent variables. For Eq. 26-5, this assumption is written as:

h(z,t) = x(x)7(t) (26-8)

3.016 Home

PRI

Full Screen

Close

Quit

o

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

If this is inserted into Eq. 26-5, and both sides are divided by v?x(z)7(¢) then

LI 2T 25 ()
v27(t) di2 x(z) dx?

Note that both sides of Eq. 26-9 depend on different variables and observe Fig. 26-28.

' / u /////
/l/ i
i

e
Ui W//I/m Ul
I et I1fjjittrern
//m////,’,’,” //m/'//'//// i ll/!lul/l ! ,”’I/////////"/’”’f' 1
i ////n Il u///’///'///”' [,/I/N'/ //II//// 7/”/’/”” 1] ’717/7
(il ///

// //u , illl
u I

//////

Figure 26-28: If two functions, T'(t) and X (z),
then they can only be constant x(z) = 7(t) =\

depend on different variables and are equal,

Thus, both sides of Eq. 26-9 can be set equal to a separation constant \:

1 d%x d’x
———= =) —Ax=0
x(z) dx? = dz2 X7
and
1 d?r d*r \otr
— = or — — =
v27(t) di? dt?

(26-10)

(26-11)

3.016 Home

PRI

Full Screen

Close

Quit

LH

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

For Eq. 26-10, the boundary conditions (Eq. 26-6) can also be written in terms of x(x):
x(x=0)=0 and x(x=L)=0 (26-12)

As advertised, ODEs are generated (Eqgs. 26-10 and 26-11) in the process of solving the PDE 26-5.
As only Eq. 26-10 has a boundary condition, it is solved first; in general its solution appears as:

Ay exp(VAz) + By exp(—VAzx) 0.25in ifA > 0
A_ cos(v—Az) + B_sin(v—Az) 0.25in ifA <0

The boundary conditions 26-12 place an initial restriction on the separation constant A > 0 and specify
that x(z) must be a sum of sines and cosines. Furthermore, trying to solve Eqs. 26-12 at =z = 0
shows that A_ = 0; at x = L, solutions must coincide with any of the zeroes of the eigenfunction

sin(kz) = sin(v/—Ax), or
—n?n?

An = T k2 n=1,23,... (26-14)

The A, (or equivalently the k,) become eigenvalues of the ODE and generate an infinity of eigenfunc-
tions with independent amplitudes A,: xn(z) = A, sin(nmz/L).

This infinity of eigenfunctions are needed to satisfy the initial conditions Eqs. 26-7, but first the

solution to the second ODE 26-11 must be obtained for the the restriced set of eigenvalues for the

separation constant:

‘;Z + n;;TQUQT =0 (26-15)
so that, in general,
O cos(mg”t) Lo sin(m;’t) (26-16)
and therefore with Eq. 26-8, the superposition of all solutions is
oo
W) = Y Tt xn(®)
o (26-17)

= nmwut nmwut nmwx
= E 1 <€n cos 17 + O,, sin > sin =
n=

3.016 Home

PRI

Full Screen

Quit

Bt
Close
e

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

And the initial conditions become
Z Tn(0) X0 (z Z Ep sin — il (26-18)

(the sine (odd) coefficients are not needed in this case) and determination of the coefficients is reduced
to the Fourier representation. For the initial conditions in Eq. 26-7, these can be computed using
Eq. 17-10:

2 i 2l
AL# sin =71

n="——>"5"""=— 26-19
(2mn)24(L — ¢) ()
giving a solution:
ey 2 nmot nwT
h(x,t i 26-2
) Z(m)?z@ 0 Sl W 26:29)

The Shrodinger equation for a central potential serves as a more involved example for the method
of separation of variables and is provided in the following section.
Special Functions in the Eigenfunctions of the Hydrogen Atom

The time-independent Shrodinger for the electron in a hydrogen atom is a partial differential equation
involving three spatial variables. If the mass of the nucleus can be considered very large compared to
that of an electron, then it is reasonable to fix the center of a spherical 1/r—potential at the origin and
use spherical coordinates (7,6, ¢) to express the Shrodinger equation:'®

h2
Y+ Vi =Ey
2m

e B 1.5 W 1 0 0 12 Ze2
2me |:T‘2 or (87‘) = 72 sin 6 99 <Sm089>) r2sin20({%¢2] 7 €oT R

Here, ¢ wraps around like longitude and ¢ goes north and south from the equator (=0) like latitude.

(26-21)

8To treat the hydrogen atom more accurately, the reduced mass m = 1/(1/m + 1/M), weighted coordinates Z =
(mzm + Mxa)/M ete., and relative positions Az = x,, — zum, ete., would produce PDEs for the entire system and for
the relative positions.

3.016 Home

PRI

Full Screen

Close

Quit

o

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

Because the potential depends only on r, the initial separation is between the radial and angular
parts,

P(r,0,9) = p(r)Y (6,) (26-22)
which separates Eq. 26-21 into

1d [5dp 2mr? Ze?
2@ (22 E
pdr <T dr) i (el €oT

~Y |sin606 \""" 80) T sin?6 042

(26-23)

Therefore, the two sides must be equal to a separation constant A. The radial part becomes

1 d ([5dp Lty Ze? A
—Rai(i 0 e B 26-24
r2 dr (7“ dr>+[h2 < 60’/”) r2]p Y (ol

and the angular part becomes

+AY =0 (26-25)

NG R 5 N 1 8271/
i sin” 0 0¢?

Solutions to Eq. 26-25 are related to the spherical harmonics and can be derived through another
separation of variables. Putting

Y(0,9) =0(0)P(s) (26-26)
into Eq. 26-25 gives
1d*® 9 —sinf d do 9
——— = — = —_— 1 _— — 1 2 —2
B dg? m o <51n9d9) Asin” 6 (26-27)

where the separation constant, —m?, is explicitly set to a negative quantity reflecting that ® must have

periodic solutions, i.e., the two separated ODEs are:
_d*®

2

1 d de m? 2525)
| = sin 0 d6 <Sm9d0> ()\ N sin29> F

3.016 Home

PRI

Full Screen

Close

o

Quit

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

The first of these has the same form as Eq. 26-10 (solutions given by Eq. 26-13) but here the solutions
will be written as
D) = AL ™ L A_e ¢ (26-29)

because the wavefunction is complex in general. Here, m, indicated how many maxima that the
latitudinal part of ¢ will have, and the two different A multiply wavefunctions that are out-of-phase
by 7. Either solution can be obtained by changing the sign of m, therefore in general

1
V2T

where the prefactor normalizes ® so that f027r ¢, ®r dop = 1.
The second of Eqgs. 26-28 has the same form as Eq. 26-3 for which the relevant solution (because
they are bounded) if an only if

P (9) = ™ m=0,+1,+2,... (26-30)

A=¢l+1) and |m|<{¢ for ¢=0,1,2,... (26-31)

Putting all of this together and normalizing, the spherical harmonic part of the H-atom orbital (Eq. 26-
25) is:

- 204+ 1 (£ — |m|)! o
g J(m)\/ I (0T |m|)!Pg,m(c0s 6)e (26-32)
where o(m) =1 if m <0 or m even, and o(m) = —1 for odd-positive m.

Finally, for the radial part of the H-atom orbital (Eq. 26-24) with A = ¢(¢ + 1) becomes an ODE in
1 d [,dp 2me Ze? £(¢ 4=)
r2 dr <r dr) i [h? (607”) = 4 (26-33)

where E < 0 defines a bound state.
This equation can also be solved analytically, and it has integer eigenvalues n > ¢ > |m|:

Pre(r) = —\/<22)3 o 1); exp(_Zr) <_2ZT>ZLn+1,2z+1 <ﬁ) (26-34)

nag) 2n[(n+0)!] nag nay

3.016 Home

PRI

Full Screen

Close

o

Quit

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

where ag = h%eg/m.e? is the Bohr radius and the L, is yet another special function—c’est LaGuerre
polynomials.
The Hydrogen orbitals are visualized in the following example.

Lecture 26 MATHEMATICA® Example 2

Visualizing the Hydrogen atom eigenfunctions

notebook (non-evaluated) pdf (evaluated) html (evaluated)
This example is still in progress—it has not been check for accuracy yet.

Functions to display v ¢ will be developed.
Lengths will be normalized so that the Bohr radiusis 1 and Z =

1: This example will be completed at a later date. :

«n_] := «lnl = —
n

M AIn_, L] == An, LI= M;‘-:]?
2n (Factorialln + LI)

prefactor{n_, I_] := prefactor[n, I = A[n,] (2 x[n)*?

spherefactor(l_, m_] :=
21 + 1 Factorialll - m]

47 Factorialll + ml

2| spherefactor(l, m] =

3.016 Home

«| «|» ||

SquareRadialPart[n_, |_, p_] := (prefactor[n, I]
Exp[-p] (2 p)' LaguerreL[n—1-1, 21 + 1, 2 p])°

SquareAngularPart[l_, m_, prob_, 6_, ¢_] :=
(+0 is longitude:)
Module[{ctheta = Coslé], r},
r = prob = (spherefactor(l, m] LegendrePll, m, cthetal)?;
Return{r Cos|[¢] ctheta, r Sin[¢] ctheta, rSinl6l}]

1

Full Screen

5[<< Graphics FilledPlot’ |

6| << Graphics’ParametricPlot3D" |

Close

Quit

b

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2006/Notebooks/L26/Lecture-26.nb
http://pruffle.mit.edu/3.016-2006/pdf/L26/Lecture-26-2.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-26/HTMLLinks/index_2.html
http://pruffle.mit.edu/3.016-2006/html/Lecture-26/HTMLLinks/index_2.html

Index

:= delayed evaluation, 50
—

rules, 39
*, 36

Mathematica’s matrix multiplication, 72

/
replacement, 39
/., 48, 257
//, 36
//., 257
Vo oy 2 [
:=>, 48
1=, 183
1>, 257
g, ks
<<, 59, 60
=, 35, 183
== 35
>> 59
7, 36
(1, 36
$DisplayFunction, 118
$RecursionLimit, 51
o, 36
Assumptions
use in Simplify, 53
Integrate
using Assumptions, 54

Simplify

using Assumptions, 53
Simplify doesn’t simplify Vz2?, 53
{}, 38
3D ViewPoint Selector, 64
3D animation

example, 118

Abs, 90, 209
academic honesty

MIT policy, 14
A11, 38
Ampere’s law, 187
amplitude vectors, 198
AnimateTruncatedFourierSeries, 200
animation

examples of, 118

of random walk, 66
animations

of time-dependent phenomena, 117
anisotropic surface energy

example of integrating over surface, 175
Apart, 53
aperature, 216
aperatures in reciprocal space, 213
Append, 240, 268
AppendTo, 118, 222, 223
Approzfunction, 141
ApproxPlot, 141

3.016 Home

PRI

Full Screen

Quit

Bt
Close
e

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

ArcCos, 35 beam equation, 249

arclength, 132 as system of first-order ODEs, 282
as a parameter, 133 BeamFEquation, 252
ArcTan, 290 BeamViz, 252
area vector, 109 beat phenomena
Arg, 90 animation of, 118
array of charges Beats, 189
visualization example, 64 Beethoven, 189
Arrhenius plots Bendy, 134
functions to create, 62 Bernoulli equation, 236, 237
AScalarFunction, 138 Bessel functions, 294 M
AspectRatio, 65 Bessel’s equation, 293, 295
assigned reading, 17 BessellJ, 295
Assuming, 195 BesselY, 295
Assumptions, 53 Bohr radius, 302 « <|»|m
assumptions Boomerang, 191 JJJJ
simplifying roots, 53 Boston
asymptotic behavior, 225, 271 distance to Paris, 150
autonomous systems, 263 boundary conditions
AxesLabel, 37 Dirichlet and Neumann, 247 Full Screen
AxesOrigin, 65 boundary values
axis labels, 37 in second order ODEs, 247
Brakke, Ken
basis functions, 198 The Surface Evolver, 152 Close
basis vectors, 86
eigenvalue representations, 116 C[1], 271
beam boundary conditions c[2], 271
clamped, 251 C[N], 236
free, 250 cadence, 189 Quit
point load, 251 calculator buttons, 293
beam deflections on fancy calculators, 293

visualization, 252 calculus of many variables, 136 ©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

calculus of variations, 260, 261
Calculus‘FourierTransform¢, 199
Calculus‘VectorAnalysis‘, 150, 151, 158, 175,
181

calendar

course, 18

homework, 16
Cartesian, 158
CartesianCoordinatesofClity, 150
Cases, 48
Cell, 118
center fixed point, 288
chain rule

for several variables, 138
changing variables

jacobian, 161
characteristic frequency

for harmonic oscillator, 271
chemical element data

examples of plotting, 63
Chop, 54, 85, 93, 290
Chord, 189
Circle, 65
CityData, 150
Clamp, 252
Clear, 31
clearing all variables, 35
clearing previously defined variables, 35
CMYKColor, 118
codimension, 129
Coefficient, 53, 122
coefficient matrix

form in Mathematica, 79
Collect, 37, 53
ColorFunction, 64, 148, 209
colors
in contour plots, 64
ColumnDuplicateNsq, 207
columns of a matrix, 72
complex conjugate, 91
complex numbers
opearations on
polar representation, 92
operations on, 90
polar representation, 92
raising to a power, 94
geometrical interpretation, 94
relations to trignometric functions, 94
spanning vectors for, 89
complex plane, 91
complex roots to polynomial equations
examples, 95
ComplexExpand, 90, 95
compliance tensor, 78
computation speed
using memory to increase, 51
computational efficiency
linear systems of equations, 80
Condition, 48, 257
conditions
finding parameters subject to constraint, 245
conjugation
as a reflection in the complex plane, 91
conservative, irrotational, curl free fields, 154

3.016 Home

PRI

Full Screen

Quit

Bt
Close
e

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

ConstantRule, 257 curl of a vector functions and path independence, I I u I-

ConstFunction, 173 157
constraints CurrentChangeperDelta, 240
determining parametric conditions, 245 curvature
ContourPlot, 64, 127, 148, 163, 185 formula in terms of arclength, 132
ContourPlot3D, 31, 173 grain boundary, 229
contours of constant potential, 64 curvature vector, 132
convolution of two functions, 206 curve
convolution theorem, 206 local orthonormal frame, 133
physical interpretation, 206 CurveLineSequence, 130
coordinate systems curves and surfaces, 129 3.016 Home
gradients and divergence computations, 151 displaying together
Coordinate Transformations, 150 example, 131
coordinate transformations, 150 curves in space
CoordinatesFromCartesian, 150 examples of, 124 ﬂﬂﬂﬂ
coupled differential equations CylinderIntegrandd(, 181
using DSolve, 291 cylindrical coordinate system
course calendar, 18 vectors in, 67
CrazyFun, 141 cylindrical coordinates, 150
creating simple lattice images in Mathematica, 207 form of gradient and divergence, 151 Full Screen

critical point, 280

critical point stability D, 44,_124
example of two dimensional linear system, 287 dampl'n.g
CritPointPlotPointsMany, 291 critical, 269 Close
Cross, 122 damping factors, 262
cross product Dashing, 62
data

geometric interpretation, 121

CrossProduct, 175 in plots, 63
Curl, 158 delayed assignment, 49 Quit

delayed assignment :=, 30
delayed evaluation :=, 50
delayed evaluation := G, Crig Ot

o

curl
interpretations, 152
curl free, irrotational, conservative fields, 154

http://pruffle.mit.edu/3.016-2006/

when not to use in function definitions, 183 Dirac delta function

delayed graphics Fourier transforms, 256
example, 130 Dirac delta functions, 205
delayed ruleset, 48 Dirac-delta function
delta functions, 205 as point load on beam, 249
DeMoivre’s formula, 92 Directory, 59
density conservation Dirichlet boundary conditions, 247
Parseval’s theorem, 205 discrete Fourier transforms with Mathematica, 209
density fields of extensive quantities, 135 discriminant, 288
derivatives DisplayForm, 38
example, 54 DisplayFunction, 130 3016 Home
derivatives of integrals, 160 DisplayFunction — $DisplayFunction, 130
derivatives of scalar functions, 135 DisplayLater, 207, 223
Det, 74, 79, 82, 122 DisplayNow, 207
determinant, 74 Distribute, 257 « <|»|m
determinants Distribute Rule, 257 JJJJ
properties of, 84 Div, 181
detuning divergence
near resonance, 272 example calculation and visualization, 148
diagonalization interpretations, 149 Full Screen
for system of linear ODEs, 283 divergence theorem, 177
diagonalize a matrix, 105 example of Hamaker interaction, 181
difference relation, 240 example of London Dispersion Interaction, 181
differential equations, 218 relation to accumulation at a point, 178 Close
differential forms in thermodynamics, 233 Divisors, 46
differential operators, 253 Do, 43, 118, 124
diffraction, 202 DotProduct, 175
simulated, 207 drum head, 293
diffusion equation DSolve, 227, 236, 252, 257, 271, 291 b
example solution to point source in two dimen- duration, 189
sions, 127

Dimensions, 38, 72, 95 efficiency ©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

storing intermediate iteration values, 220
eigenbasis, 116
transformations to, 105
Eigenconsistency, 290
FEigenDescription, 290
FEigenDirector, 290
eigenframe representation of surface patch, 168
eigenfunction, 254
eigenfunctions and eigenvalues, 298
Figenstability, 290
Eigensystem, 98, 290
eigensystem
for system of linear ODEs, 283
eigensystems
example of four spring-connected masses, 101
harmonic oscillator, 99
lattice vibrations, 100
one-dimensional Shrédinger wave equation, 102
stress and strain, 112
FEigenTrajectory, 290
eigenvalue
of an operator, 254
Eigenvalues, 32, 98, 284
eigenvalues
in analysis of critical point stability, 288
Eigenvectors, 98
eigenvectors, eigenvalues, and eigensystems for ma-
trix equations, 96
Einstein summation convention, 77
elastic energy density, 78
electrical circuits as harmonic oscillators, 262
electrostatic potential

above a triangular patch of constant charge
density, 163
Eliminate, 76
embedded curve, 136
embedded curves in surfaces
visualization example, 131
embedded surface, 136
embedding space, 129
energy dissipations and quadratic forms, 114
Euler integration, 221
Evaluate, 32, 118, 182184, 189
evena and odd functions, 192
EvenAmplitude Vectors, 198
FEvenBasisVector, 198
FEvenTerms, 198
exactplot, 227
Example function
AScalarFunction, 138
AnimateTruncatedFourierSeries, 200
ApproxPlot, 141
Approxfunction, 141
BeamEquation, 252
BeamViz, 252
Beats, 189
Bendy, 134
Boomerang, 191
CartesianCoordinatesofCity, 150
Chord, 189
Clamp, 252
ColumnDuplicateNsq, 207
ConstFunction, 173
ConstantRule, 257

3.016 Home

PRI

Full Screen

Close

Quit

o

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

CrazyFun, 141 GrowList, 240, 268

CritPointPlotPointsMany, 291 HoleFunc, 211

CurrentChangeperDelta, 240 ImageFourier Aperature, 216, 217

CurveLineSequence, 130 JokeSpreadRate, 278

CylinderIntegrandf¢, 181 KZeroAtCenter, 210

DisplayLater, 207, 223 LeavingKansas, 153

DisplayNow, 207 LinSolve, 291

DistributeRule, 257 LinearDescription, 290, 291

EigenDescription, 290 Linsol, 291

EigenDirector, 290 LondonCylinderPotential, 185

EigenTrajectory, 290 MITModel, 284 M
Eigenconsistency, 290 MakeLattice, 212

Eigenstability, 290 MyPlotStyle, 295

EvenAmplitudeVectors, 198 Note, 189

EvenBasisVector, 198 OddBasisVector, 198 « <|»|m
EvenTerms, 198 OddTerms, 198 JJJJ
ExampleFunction, 220 PathDeplnt, 158

FVecLondon, 181 PointLoad, 252

FlowerPot, 131 PrettyFlower, 134

ForwardDifferenceV1, 222 ReduceHalfHalf, 199 Full Screen
ForwardDifferenceV2, 222 ReducedFunction, 200

FourierColor, 209 ResonantSolution, 271

FourierData, 209 RowDuplicateNsq, 207

FourierImagePlot, 210 SimplePot, 151 Close
FourierImage, 209 SphericalCoordinatesofCity, 150

FreeEnd, 252 StepOnce, 223

FreshmanEntranceRate, 278 SurfaceParametric, 173

GeneralSolution, 248 SurfaceTension, 175

GraduationRate, 278 TheODE, 244 Quit
GraphFunction, 173 ThreeHolePotential, 148

GrowListBiasedNoise, 268 TomorrowsJaded, 278

GrowList GeneralNoise, 268 TomorrowsNaive, 278 ©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

TomorrowsPopulation, 278, 279
Trajectory, 220
ValuesList_List, 268
VectorFunction, 158
Vines, 131

Xtallmage, 207, 209
aperature, 216

cadence, 189

duration, 189

exactplot, 227
exampleFunction, 222, 223
factorial, 51

fixedpoint, 284
fourierdata, 216
gradfield, 148

latcell, 207

noload, 252

potential, 148
randomwalk, 66

res, 227

showcurveline, 130
showcurve, 130
showline, 130

wulffline, 65
yParticularSolution, 271

density fields, 135
extent of chemical reaction, 128
extremal functions, 258

Factor, 37, 53, 74
factorial, 51
factorial function
examples of defining, 51
False, 35
fast and slow variables, 292
fast fourier transforms, 208
Fick’s first law, 126
Fick’s second law, 178
fields of intensive quantities, 135
file stream, 59
FindInstance, 158
FindMinimum, 44, 261
FindRoot, 44, 57
finite differences, 222
first-order Fuler finite differencing, 221
first-order finite difference operator, 240
first-order ordinary differential equations
geometry, 224
fixed point
stability, 280
fixed point characterization, 287

3.016 Home

PRI

Full Screen

ExampleFunction, 220

exampleFunction, 222, 223

executing command with shift-enter
difference between entering text, 33

Expand, 37, 53

exponential growth and decay, 220

extensive quantities

fixed point type, 290
FixedPoint, 279
fizedpoint, 284 Quit
Flatten, 95, 227

FlowerPot, 131

ﬂux, 126 ©W. Craig Carter

Bt
Close
e

http://pruffle.mit.edu/3.016-2006/

visualization of flux through surface, 177
FontColor, 245
FontFamily, 245
For, 43
force
relations to stress, 109
forces
in harmonic oscillator model, 263
forcing graphical display
DisplayFunction—$DisplayFunction, 118
ForwardDifferenceV1, 222
ForwardDifference V2, 222
Fourier, 209
Fourier series, 193
complex form, 201, 203
example functions for computing, 198
example of convergence of truncated, 198
plausibility of infinite sum, 193
the orthogonality trick, 194
Fourier transform
as a linear operator, 254
as a method to solve ODEs, 255
as limit of infinite domain Fourier series, 203
Fourier transforms, 202
higher dimensional, 204
Fourier transforms on graphical images, 215
FourierColor, 209
FourierCosCoefficient, 199, 200
FourierData, 209
fourierdata, 216
FourierImage, 209
FourierImagePlot, 210

FourierSinCoefficient, 199
FourierTransform, 257
FourierTrigSeries, 199
FreeEnd, 252
FreeQ, 257
Frenet equations, 133
freq, 189
frequency

harmonic oscillator, 263
FreshmanEntranceRate, 278
FrontEnd, 33
FullSimplify, 37
function basis, 242
function decomposition into odd and even parts,

3.016 Home

192 “| <|»|»m»
function definitions in Mathematica JJJJ
when to use = or :=, 182

function defintions
restrictions on the arguments, 51
functionals, 258
functions
creating in Mathematica, 47
defining with patterns, 49
storing intermediate values, 220
functions in programming, 41
functions of functions, 258
functions that remember previously calculated val-
ues., 51
fundamental theorem of calculus
generalizations to higher dimensions, 176
relation to divergence and Stokes’ theorem,
176

Full Screen

Close

Quit

o

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

fundamental theorem of differential and integral
calculus, 165

funniness coefficient, 277

FVecLondon, 181

Gauss’ law, 187
GeneralSolution, 248
Geometry ‘Rotations, 105
Gibbs phenomenon, 200
Grad, 151
grad, div, and curl, 147
gradfield, 148
gradient field, 126
gradient of scalar function
path independence, 157
gradients, 138, 144
example calculation and visualization, 148
grading policy, 13, 15
GraduationRate, 278
grain boundary energy, 230
grain boundary mobility, 231
grain growth, 229
Gram-Schmidt, 105
GramSchmidt, 105
graph surfaces
visualization example, 173
GraphFunction, 173
Graphics, 31, 65, 118, 245
graphics
animation examples, 118
building up descriptive graphics step-by-step,
245

delayed display of, 223
graphics primitives, 65
graphics in mathematica
examples, 61
Graphics lists, 118
graphics lists, 223
graphics object, 65
Graphics Objects, 62, 223
Graphics Primitives, 65
Graphics’, 62
Graphics-lists, 118
Graphics3D, 225
Graphics‘Arrow‘, 291
Graphics‘ContourPlot3D*, 173
Graphics‘ParametricPlot3D‘, 175
Graphics‘ParametricPlot‘, 131
Graphics‘PlotField3D‘, 153
Graphics‘PlotField¢, 127, 148
GraphicsArray, 141, 210, 291
Green’s theorem in the plane
relation to Stoke’s theorem, 166
turning integrals over simple closed regions to
their boundaries, 164
visual interpretation, 165
visualization, 176
GrowList, 240, 268
GrowListBiasedNoise, 268
GrowListGeneralNoise, 268

3.016 Home

PRI

Full Screen

Close

Quit

o

harmonic oscillator
as system of first-order ODEs, 281

buoys, 265 ©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

characteristic frequency, 267

damped forced ODE, 255

forces in, 267

Fourier analysis of forcing term, 269

pendulum, 264

resonance behavior, 267

single electron wave function, 265

solutions using Fourier transforms, 255
harmonic oscillators, 262

instances in different physical phenomena, 262

harmonics, 202

heat capacity at constant volume
example of changing variables, 161

heat flux and temperature gradients, 145

help browser, 40

hermits and skewhermits, 104

heterogeneous linear first-order ODE, 234

HoleFunc, 211

homework calendar, 16

homogeneous linear first-order ODE, 234

If, 46, 189, 291
Im, 90, 95
image depth, 117
ImageFourier Aperature, 216, 217
ImageSize, 37
Import, 215
importing data, 58
increment structure, 43
initial condition, 221, 296
input and output, 58
input /output, 58
InputForm, 88
integrals
example, 54
Integrate, 57, 163, 167, 195
integrating factors, 233
use in thermodynamics, 234
integration
over surface, 174
integration along a path, 156

homogeneous second order ordinary differential equa-integration along curve

tions, 239
homogeneous second-order linear ODE
constant coefficients, 242
Hue, 62, 64, 88, 95, 295
hydrogen atom
visualizing electron orbitals, 299
hydrostatic stress, 110
hyper-surface, 129

Identity, 130
identity matrix, 73

using arclength, 133
integration constants

form in Mathematica, 227

form of in Mathematica, 236
integration over irregularly shaped domain

example, 163
intensive fields

chemical potential, 135

pressure, 135

temperature, 135
intermediate output, 43

3.016 Home

PRI

Full Screen

Close

Quit

o

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

InterpolatingFunction, 238
intial iteration value, 43
invariant

in harmonic oscillator, 264
invariants

of two-by-two matrix, 288
Inverse, 74, 80
inverse Fourier transform, 256
inverting parametric form of curve, 133
irrotational, curl free, conservative fields, 154
isobars and the weather, 145
isopotentials, 64

jacobian, 161
Join, 207
joke
the MIT, 276
jokes
model for spread, 276
JokeSpreadRate, 278

K$N, 236

Kendell T-stop bells, 273
kernel, 34

killing vectors, 82

kinetic coefficient, 224
KZeroAtCenter, 210

lab reports

format, 12
LaGuerre polynomials, 302
Laguerres’s equation, 295
laplacian

example calculation and visualization, 148
latcell, 207
late policy, 16
LeavingKansas, 153
lecture notes

use of, 17
Ledendre’s equation, 295
Legendre equation, 294
Legendre functions, 294
Length, 72, 268
level set surfaces

visualization example, 173
Limit, 54, 195
limits

example, 54
line integration, 133
linear equations

adding homogeneous solutions to the nonho-

mogeneous solutions, 81
existence of solutions, 77
linear first-order ODEs
integral form of solution, 237
linear indepence, 75
linear operators
defining rules for, 257
linear ordinary differential equations, 234
linear superposition of basis functions, 242
linear system of equations, 77
linear systems of equations
computational efficiency, 80

linear systems of ordinary differential equations,

275

3.016 Home

PRI

Full Screen

Close

Quit

o

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

linear transformations, 88 loops in programming, 41
defining rules for, 257
visualization examples, 88
linear vector spaces, 86
LinearAlgebra‘Orthogonalization, 105

LinearDescription, 290, 291 Make[:attice, 212
linearization, 142 Map, 63, 189, 271

linearization of systems of ODEs Markov chains, 220
materials science and mathematics, 11

analysis of critical point stability, 282
LinearSolve. 80 Mathematica 3.016 Home
liner differential equations availability, 12

superposition of solutions, 241 getting information, 40

linear transformation of vectors, 70 LondonCylinderPotential, 185 I I - I

magic integral theorems, 164
magnetic fields
magnetization and, 187

Linsol, 291 help browser, 40
LinSolve, 291 Mathematica function
Li”slto?:)g *, 36 RIRIRAL
fiet® /., 48, 257
of Graphics Objects, 223 //-7‘2:57
Listable, 189 //, 36
ListDensityPlot, 207 /3, 48, 257 Full Screen
ListPLot, 222 -4, 48
ListPlot, 44, 63, 220, 222, 227, 240, 268, 291 =, 183

2,y 207

converting lists into simple lists, 95 5y 43 Close
i, 99, 60

lists

local orthonormal frame on curve, 133)
localized variables, 240

localized varibles, 46 =, 35, 183

logical equalities, 79 Ly 99

logical equality, 30, 35 7,36 Quit
LogPlot, 62 Abs, 90, 209

London Interaction between cylinder and point, All, 38
184 Apart, 53 ©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

AppendTo, 118, 222, 223 Cross, 122

Append, 240, 268 Curl, 158

ArcCos, 35 DSolve, 227, 236, 252, 257, 271, 291

ArcTan, 290 Dashing, 62

Arg, 90 Det, 74, 79, 82, 122

AspectRatio, 65 Dimensions, 38, 72, 95

Assuming, 195 Directory, 59

Assumptions, 53 DisplayForm, 38

AxesLabel, 37 DisplayFunction — $DisplayFunction, 130

AxesOrigin, 65 DisplayFunction, 130

BesselJ, 295 Distribute, 257 M
BesselY, 295 Divisors, 46

CMYKColor, 118 Div, 181

C[1], 271 DotProduct, 175

C[Q], 271 DO, 43, 118, 124 4 <> |»
C[N], 236 D, 44, 124 JJJJ
Cartesian, 158 Eigensystem, 98, 290

Cases, 48 Figenvalues, 32, 98, 284

Cell, 118 Eigenvectors, 98

Chop, 54, 85, 93, 290 Eliminate, 76 _ Fullsereen |
Circle, 65 Evaluate, 32, 118, 182—-184, 189

CityData, 150 Expand, 37, 53

Clear, 31 Factor, 37, 53, 74

Coefficient, 53, 122 False, 35 Close
Collect, 37, 53 FindInstance, 158

ColorFunction, 64, 148, 209 FindMinimum, 44, 261

ComplexExpand, 90, 95 FindRoot, 44, 57

Condition, 48, 257 FixedPoint, 279

ContourPlot3D, 31, 173 Flatten, 95, 227 Quit
ContourPlot, 64, 127, 148, 163, 185 FontColor, 245

CoordinatesFromCartesian, 150 FontFamily, 245

CrossProduct, 175 For, 43 ©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

FourierCosCoefficient, 199, 200 LogPlot, 62

FourierSinCoefficient, 199 Map, 63, 189, 271

FourierTransform, 257 MatrixForm, 31, 32, 72

FourierTrigSeries, 199 MatrixRank, 76, 82

Fourier, 209 MeltingPoint, 63

FreeQ, 257 MemberQ, 257

FullSimplify, 37 Module, 46, 222, 240

Grad, 151 Mod, 189, 191

GramSchmidt, 105 MultipleListPlot, 220

Graphics3D, 225 NlIntegrate, 57, 163, 167, 184

GraphicsArray, 141, 210, 291 NSolve, 57 M
Graphics, 65, 118, 245 Needs, 60, 62

Hue, 62, 64, 88, 95, 295 NestList, 222, 223, 279

Identity, 130 NestWhileList, 222, 227

If, 46, 189, 291 Nest, 44, 207, 240, 268 « <|»|m
ImageSize, 37 Normalize, 105 JJJJ
Import, 215 Normal, 54, 141, 271

Im, 90, 95 Notebook, 31

InputForm, 88 NullSpace, 76

Integrate, 57, 163, 167, 195 NumberQ, 38 __FullSereen |
InterpolatingFunction, 238 N, 35

Inverse, 74, 80 Octahedron, 88

Join, 207 Off[General::spell], 36

KS$N, 236 Options, 37 Close
Length, 72, 268 0O, 54

Limit, 54, 195 PLotLabel, 37

LinearSolve, 80 ParamatricPlot, 62

ListDensityPlot, 207 ParametricPlot3D, 124, 131, 173

ListPLot, 222 ParametricPlot, 113, 118, 291 $
ListPlot, 44, 63, 220, 222, 227, 240, 268, 291 Part, 38

Listable, 189 Permutations, 38, 85

List, 38 Pi, 90 ©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

Play, 189

Plot3D, 127, 148, 173, 185, 225
PlotJoined, 63

PlotPoints, 64

PlotRange, 62, 118, 279, 291
PlotStyle, 37, 62, 295
PlotVectorField3D, 153
PlotVectorField, 127, 148, 225
Plot, 30, 32, 37, 62, 118, 189, 191, 238
Polygon, 88

PowerExpand, 236

Prime, 46

Print, 43, 46, 290

RGBColor, 62

Random, 291

Rational, 35

Reduce, 245

ReplaceAll, 48, 257
ReplaceRepeated, 257

Re, 90, 95, 238

RuleDelayed, 257

Save, 59

ScaleFunction, 127

SeriesData, 54, 271

Series, 54, 141, 271
SetAttributes, 189
SetDirectory, 59

Short, 95

Show, 62, 64, 65, 88, 118, 207, 227, 245, 291
Sign, 51

Simplify, 37, 53, 90, 184, 236
Solve, 55, 79, 82, 95, 227, 236, 244, 248, 261

SphericalDistance, 150

SphericalPlot3D, 175

SpheroidalDistance, 150

StyleForm, 245

Sum, 48

SurfaceColor, 225

SurfaceGraphics, 64

Table, 32, 43, 118, 173, 200, 207, 257, 279

TextStyle, 37

Text, 65, 245

Thickness, 62, 95

Timing, 51

ToDegrees, 150

Together, 53

Transform, 63

Transpose, 72, 207

True, 35

ViewPoint, 64, 88

While, 43

[, 36

$DisplayFunction, 118

$RecursionLimit, 51

@, 36

{}, 38

freq, 189

Mathematica package

Calculus‘FourierTransform*, 199

Calculus‘VectorAnalysis‘, 150, 151, 158, 175,
181

Geometry‘Rotations, 105

Graphics’, 62

Graphics‘Arrow*, 291

3.016 Home

PRI

Full Screen

Close

o

Quit

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

Graphics‘ContourPlot3D¢, 173 transpose combined with matrix multiplica- I I u I-

Graphics‘ParametricPlot3D, 175 tion, 71
Graphics‘ParametricPlot‘, 131 transpose operation on, 71
Graphics‘PlotField3D¢, 153 matrix
Graphics‘PlotField‘, 127, 148 as list of lists, 38
Graphics, 31 nullity, 76
LinearAlgebra‘Orthogonalization, 105 rank, 76
Miscellaneous‘ChemicalElements‘, 63 matrix eigensystems
Miscellaneous‘CityData‘, 150 calculating, 97
Miscellaneous‘Geodesy*, 150 examples of symbolic computation, 98
Miscellaneous, 60 matrix eigenvalue spectrum, 104 3.016 Home
MultipleListPlot, 220 matrix eigenvalues
PlotField, 225 characteristic equation, 96
Polyhedra, 88 matrix eigenvalues and eigenvectors
WorldPlot, 60 interpretation, 96 ﬂ ﬂ ﬁ ﬂ
mathematica packages matrix eigenvectors
example, 60 geometric interpretation of, 99
mathematical constant, 90 matrix equations and existence of solution, 75
matrices, 69 matrix invariant, 113
as a linear transformation operation, 70 matrix inversion, 73 Full Screen
all eigenvalues with unit magnitude, 103 matrix multiplication (.)
all imaginary eigenvalues, 102 in Mathematica, 72
all real eigenvalues, 102 matrix operations
column and row spaces, 69 example of extracting odd-numbered columns, Close
multiplication, 71 38
similarity transformations, 106 matrix syntax
special, 102 in Mathematica, 72
Hermitian, 102 matrix transformationns
Orthonormal, 103 rotation, reflection, inversion, 105 Quit
Skew-Hermitian, 102 MatrixForm, 31, 32, 72
Unitary, 103 MatrixRank, 76, 82

summation convention, 70 Maxwell relations ©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

relation to integrability conditions, 233 N, 35

Maxwell’s equations, 186 naming convention for functions, 36
Maxwell’s relations, 157 Needs, 60, 62
MeltingPoint, 63 Nest, 44, 207, 240, 268
MemberQ, 257 NestList, 222, 223, 279
memory NestWhileList, 222, 227
storing intermediate function values to increase Neumann boundary conditions, 247
speed, 51 Newton’s law of cooling, 224
method of separation of variables, 296 NIntegrate, 57, 163, 167, 184
minimizing an integral of a particular form, 261 nodes
Miscellaneous, 60 stable and unstable, 288 M
Miscellaneous‘ChemicalElements‘, 63 noise and effect on Fourier transforms
Miscellaneous ‘CityData‘, 150 visualizing, 214
Miscellaneous ‘Geodesy*‘, 150 noload, 252
MIT’s Department of Materials Science and Engi- non-dimensional parameters, 224 ﬂ ﬂ ﬁ ﬂ
neering, 11 non-embeddable, 130
MITModel, 284 non-homogeneous second order ODEs
mnomics general solutions, 269
stress and strain, 111 non-vanishing curl, 158
Mod, 189, 191 norm Full Sereen
modal analysis, 269 vector, 68
Module, 46, 222, 240 Normal, 54, 141, 271
modules in programming to limit variable scope, Normalize, 105
46 normalized to unit vectors, 105 Close
Mohr’s circle of stress, 114 Note, 189
example and derivation, 113 Notebook, 31
momentum and wavenumber, 202 notes
mosquitoes, 145 frequencies of, 189
multidimensional integration, 160 waveforms for, 189 e
MultipleListPlot, 220 NSolve, 57
MyPlotStyle, 295 nudge

stochastic, 268 ©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

null space, 76, 82
nullity, 82
matrix, 76
NullSpace, 76
NumberQ, 38
numerical analysis, 228
numerical interpolation, 238
numerical objects
difference from symbolic objects, 35
numerical precision
demonstration of effects, 85
examples with complex numbers, 93
numerical solutions and integrals
examples, 57
numerical solutions to non-linear differential equa-
tions, 238

0, 54
Octahedron, 88
odd and even functions, 192
OddBasis Vector, 198
OddTerms, 198
Ode to Joy, 189
ODES

systems of equations, 275
ODEs

reducing higher-order to systems of first-order

ODEs, 280

0ff [General: :spelll, 36
operations on complex numbers, 90
operators

algebraic operations on, 254

as methods to solve ODEs, 255
differential, 253
optimal path, 259
optional function-arguments, 291
Options, 37
ordinary differential equation
homogeneous second order, 239
ordinary differential equations
examples, 218
first order
approximation by finite differences, 222
integration constants, 226
seperable equations, 226
ordinary first-order differential equation
for two-dimensional grain growth, 231
orientation dependence of properties, 107
orthogonal function basis, 197
orthogonal transformations, 104
orthogonality of sines and cosines, 194
demonstration, 195
orthogonality relation for the trignometric func-
tions, 194
output supressed with t, 43
overdamped harmonic oscillator, 269

3.016 Home

PRI

Full Screen

Close

packages
using
example, 60
ParamatricPlot, 62
parametric surfaces
visualization example, 173
ParametricPlot, 113, 118, 291

Quit

o

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

ParametricPlot3D, 124, 131, 173
Paris
distance to Boston, 150
Parseval’s theorem, 205
Part, 38
partial and total derivatives, 125
partial derivatives, 138
partial differential equations, 296
path independence, 157
path independence on a restriced subspace, 159
path integrals
examples, 158
path-dependence
conditions for, 157
example for non-conservative field, 158
path-independence
examples of vector integrands, 159
PathDeplnt, 158
pattern matching, 48
pattern qualifiers, 48
patterns
in symbolic programming languages, 41
using to program in Mathematica, 41
patterns in Mathematica, 48
peeking at very long expressions, 95
pendulum
as system of first-order ODEs, 281
phase plane visualization, 285
periodic functions, 188
periodic poetry, 188
perioidic extension of function with finite domain,
191

Permutations, 38, 85
phase
comparison of usage in materials science and
statistical or classical mechanics, 286
phase plane, 285
visualization for pendulum, 285
visualization of behavior, 289
phase velocity, 296
physical models, 229

Pi, 90

pitchfork structure, 95 3.016 Home
pixels, 117

Play, 189

Plot

options of, 37
Plot, 30, 32, 37, 62, 118, 189, 191, 238
Plot3D, 127, 148, 173, 185, 225
PlotField, 225
PlotJoined, 63
PLotLabel, 37
PlotPoints, 64
PlotRange, 62, 118, 279, 291
plots
annotating, 37
changing the appearance of curves, 62
example using chemical elements, 63
from data, 63
log, 62
parametric 2D, 62
superposition of curves, 62
three dimensional
contours, 64

PRI

Full Screen

Close

Quit

o

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

density, 64 quadratic forms, 114

two dimensions quadric surface
examples, 62 representation of rank-2 tensor properties, 115
options, 62
PlotStyle, 37, 62, 295 Random, 291
PlotVectorField, 127, 148, 225 random music, 189
PlotVectorField3D, 153 random rational numbers
PointLoad, 252 matrix of, 85
polar form of a complex number, 90 random real matrix
Polygon, 88 example, 85

Polyhedra, 88 random walk, 66 3.016 Home

polynomials randomuwalk, 66
manipulating, 53 rank, 82
position vector, 67 i matrlix,3 ZG
e ational, 35
gg’ian’ic?a?perator’ K rational forms, 53 ﬂﬂﬁﬂ
1/r, 148 Re, 90, 95, 238
potential, 148 recursion in programming, 42
potentials and force fields, 145 recursive graphics function, 141
PowerExpand, 236 Reduce, 245 Full Screen
predator prey models, 276 ReducedFunction, 200
PrettyFlower, 134 ReduceHalfHalf, 199
Prime, 46 reducing Hue range in a ColorFunction, 64
Print, 43, 46, 290 ReplaceAll, 48, 257

Close
replacement ; 39

replacement in Mathematica, 48

ReplaceRepeated, 257

representing functions with sums of other func-
tions, 192 Quit

program loops, 43
programming
procedural, 43
prolate spheroidal coordinates
form of gradient and divergence, 151
Pure Function, 148 res, 227
pure function, 207, 223, 271 LN ce
Pure Functions, 44 ©W. Craig Carter

o

http://pruffle.mit.edu/3.016-2006/

near-resonance behavior for harmonic oscilla-
tor, 271
ResonantSolution, 271
restricting matches on patterns, 51
RGBColor, 62
RLC circuits, 262
roots of equations
numerical
example, 57
roots of polynomial equations
example of dealing with complex numbers, 95
rotation of coordinate systems, 107
RowDuplicateNsq, 207
rows of a matrix, 72
RuleDelayed, 257
rules
as a result of Solve, 55
example of usage to transform polyhedra, 88
resulting from Solve, 55
rules —, 39

saddles
stable and unstable, 288
Save, 59
saving work, 58
scalar and vector products, 119
scalar function of positions
example
concentation, 135
density, 135
energy density, 135
scalar potential

curl of gradient of, 154
ScaleFunction, 127
scaling
non-dimensional parameters, 224
Schrodinger static one-dimensional equation
example of second order differential equation,
218
scope, 46
reduced variable scope by using modules, 46
scoping
of variables, 46
second-order finite difference operator, 240
second-order linear ODE
heterogeneous and homogeneous forms, 241
second-order ODEs
linear with constant coefficients
solution derivation, 244
separation constant, 297
separation of variables, 296, 299
Series, 54, 141, 271
SeriesData, 54, 271
SetAttributes, 189
SetDirectory, 59
Short, 95
Show, 62, 64, 65, 88, 118, 207, 227, 245, 291
showcurve, 130
showcurveline, 130
showline, 130
Shrodinger equation
central potential, 299
hydrogen atom, 299
shrinkage of spherical grain, 231

3.016 Home

PRI

Full Screen

Close

Quit

o

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

Sign, 51 SphericalCoordinatesofCity, 150

similarity transformation SphericalDistance, 150
example with stress tensor, 113 SphericalPlot3D, 175
similarity transformations, 106 SpheroidalDistance, 150
SimplePot, 151 spirals
Simplify, 37, 53, 90, 184, 236 stable and unstable, 288
using with assumptions that symbols are real, square roots of squared expressions
90 simplification, 53
simply-connected paths, 157 stability of a system, 144
singularities stability of fixed points, 280
example of removing for numerical evaluation, state function 3.016 Home
153 conditions for, 157
skewhermits, 104 StepOnce, 223
software stiffness tensor, 78
use in this class, 12 stochastic impetus « <|»|m
solution behavior map simulation, 268 JJJJ
second order ODEs with constant coefficients, Stoke’s theorem
246 relation to Green’s theorem in the plane, 166
solution to the singular homogeneous linear equa- Stokes’ theorem, 186
tion, 82 visualization, 176 Full Screen
Solve, 55, 79, 82, 95, 227, 236, 244, 248, 261 strain, 78
using Flatten on its result, 95 definition, 111
solving equations, 55 dilation, 111
sources and sinks graphic representation, 110 Close
accumulation and divergence theorem, 178 stress, 78
spanning set of vectors, 86 definition, 109
spatial field, 126 hydrostatic, 110
special functions, 293 principal axes, 112
special matrices, 102 relation to forces, 109 Quit
spherical coordinates, 150 stresses and strains, 109
form of gradient and divergence, 151 style sheets, 34

spherical harmonics, 300 StyleForm, 245 ©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

StyleSheets, 34
Sum, 48
summation convention, 70
Einstein, 77
superposition of solutions, 241
suppressing graphical display
DisplayFunction—Identity, 118
surface
Gaussian curvature, 169
mean curvature, 169
surface gradients, 138
surface integral, 174
surface of revolution, 258
surface patch
analysis, 168
SurfaceColor, 225
SurfaceGraphics, 64
SurfaceParametric, 173
surfaces
representation of first-order ODE embedded in
3D, 224
representations, 168
table of tangent planes, normals, and curva-
ture, 170
Surface Tension, 175
switches
use in programming, 46
switches in programming, 41
symbolic algebraic and computational software, 12
symbolic differentiation
naive examples for polynomials, 48
symbolic objects

difference from numerical objects, 35
system reduction

onto manifolds, 292
systems of first-order ODEs

as representation of a higher-order ODE, 280
systems of quadratic equations

example, 55

Table, 32, 43, 118, 173, 200, 207, 257, 279
Tacoma bridge disaster, 274
tangent plane, 174
tangent to a curve, 123
Taylor series, 139
vector form, 139
tensor property relations in materials, 106
tensors
representation as lists, 38
Text, 65, 245
textbook, 17
TextStyle, 37
TheODE, 244
thermodyanamics, 135
thermodyanmic notation, 136
thermodynamics
differential forms in, 233
path independence and state functions, 157
use of jacobian, 161
Thickness, 62, 95
threadable function, 74, 124
threadable functions, 38
ThreeHolePotential, 148
time domain and frequency domain, 256

3.016 Home

PRI

Full Screen

Close

Quit

o

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

time-dependent fields, 126 uniqueness of solutions for nonhomogeneous sys-

Timing, 51 tem of equations, 81

ToDegrees, 150 uniqueness upto to an irrotational field, 159
Together, 53 unit binormal, 133

TomorrowsJaded, 278 unit tangent to curve, 132
TomorrowsNaive, 278 unit vectors, 69

TomorrowsPopulation, 278, 279 universal behavior, 224

topographic map, 64 unstable manifolds, 292

topographical map, 135

total and partial derivatives, 125 ValuesList_List, 268

total derivatives. 138 variable initialization, 43 3.016 Home
)
trace, 288 variable scope in programming languages, 41
trailing order, 54 variational calculus, 261
Trajectory, 220 vector i
Transform, 63 composition, 68 «l <rim
transformation multiplication by a scalar, 68 JJJJ
to eigenbasis, 105 polar 'forn.1, 67
transformation of matrix to new coordinate sys- Vector derivatives, 147
tem, 108 vector functions
transformation to diagonal system, 116 example plots, 130 Full Screen
transforming V2 — . 271 vector functions with vanishing curl on restricted

subspace, 159
vector norm, 68

Transpose, 72, 207
transpose and matrix multiplication, 71

transpose of a matrix, 71 VectorFunction, 158 Tlec
vectors, 67

travelling wave
animation of, 118 differentiation, 123

trignometric functions ViewPoint, (4, 88

relations to trignometric functions, 94 Vines, 131

Teue. 35 visual picture of curl, 154 Quit
) . . .

two-dimensional diffusion equation, 126 visualization example

random walk, 66
underdamped harmonic oscillator, 269 Wulff construction, 65 @W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

visualization of linear transformations, 88
volume of captured bubble in a fixed container, 176

wave equation

1D, 296
wavenumber, 202
wavenumbers

in Fourier series, 193
wavevector, 204
While, 43
working directory, 59 3.016 Home
WorldPlot, 60
Wulff construction, 65

example mathematica function to draw, 65
Wulff shape, 65
Waulff theorem, 175 ﬂﬂJJ

wulffline, 65

Xtallmage, 207, 209

Full Screen

yParticularSolution, 271

zeroes of a function
numerical solution, 44

zeroes of the eigenfunction, 298 Gtz

Quit

o

©W. Craig Carter

http://pruffle.mit.edu/3.016-2006/

	Lecture 1: Introduction and Course Description
	Lecture 1: Preface
	Lecture 1: 3.016 Mathematical Software
	Lecture 1: 3.016 Examination Philosophy
	Lecture 1: 3.016 Homework
	Lecture 1: 3.016 Laboratory
	Lecture 1: Grades
	Lecture 1: Homework Calendar and Weighting
	Lecture 1: Late Policy
	Lecture 1: Textbook
	Lecture 1: Lecture Notes
	Lecture 1: Lecture and Laboratory Calendar
	Week of 4--8 September
	Week of 11-15 September
	Week of 18-22 September
	Week of 25-29 September
	Week of 2--6 Oct.
	Week of 9--13 October
	Week of 16--20 October
	Week of 23--27 October
	Week of 30 Sept--3 Nov
	Week of 6--10 November
	Week of 13--17 November
	Week of 20--24 November
	Week of 27 Nov--1 Dec
	Week of 4--8 December
	Week of 11--15 December

	Lecture 1: Beginners to Mathematica
	Example 1-1: Common Mathematica Mistakes
	Example 1-2: Common Mathematica Mistakes
	Example 1-3: Common Mathematica Mistakes

	Lecture 2: Introduction to Mathematica
	Lecture 2: Expressions and Evaluation
	Example 2-1: Getting Started
	Example 2-2: Basic Input and Assignment
	Example 2-3: Built-in Functions and Operations on Expressions
	Example 2-4: Calculus and Plotting
	Example 2-5: Lists, Lists of Lists, and Operations on Lists
	Example 2-6: Rules () and Replacement (/.)
	Getting Help on Mathematica

	Lecture 3: Introduction to Mathematica II
	Lecture 3: Functions and Rules
	Example 3-1: Procedural Programming
	Example 3-2: Plotting Lists of Data and Examples of Deeper Mathematica® Functionality
	Example 3-3: Making Variables Local and Using Switches to Control Procedures
	Example 3-4: Operating with Patterns
	Example 3-5: Creating Functions using Patterns and Delayed Assignment
	Example 3-6: Functional Programming with Rules and Pattern Restrictions

	Lecture 4: Introduction to Mathematica III
	Lecture 4: Simplifying and Picking Apart Expression, Calculus, Numerical Evaluation
	Example 4-1: Operations on Polynomials
	Example 4-2: A Second Look at Calculus: Limits, Derivatives, Integrals
	Example 4-3: Solving Equations
	Example 4-4: Numerical Algorithms and Solutions
	Example 4-5: Interacting with the Filesystem
	Example 4-6: Using Packages

	Lecture 5: Introduction to Mathematica IV
	Lecture 5: Graphics
	Example 5-1: Two-dimensional Plots I
	Example 5-2: Two-dimensional Plots II
	Example 5-3: Three Dimensional Graphics
	Example 5-4: Graphics Primitives and Graphical Constructions
	Example 5-5: Animation

	Lecture 6: Linear Algebra I
	Lecture 6: Vectors
	Vectors as a list of associated information
	Scalar multiplication
	Vector norms
	Unit vectors

	Lecture 6: Matrices and Matrix Operations
	Matrices as a linear transformation of a vector
	Matrix transpose operations
	Matrix Multiplication
	Example 6-1: Matrices
	Matrix Inversion
	Example 6-2: Inverting Matrices
	Linear Independence: When solutions exist
	Example 6-3: Eliminating redundant equations or variables

	Lecture 7: Linear Algebra
	Lecture 7: Uniqueness and Existence of Linear System Solutions
	Example 7-1: Solving Linear Sets of Equations
	Example 7-2: Inverting Matrices or Just Solving for the Unknown Vector
	Uniqueness of solutions to the nonhomogeneous system
	Uniqueness of solutions to the homogeneous system
	Adding solutions from the nonhomogeneous and homogenous systems

	Lecture 7: Determinants
	Example 7-3: Determinants, Rank, and Nullity
	Properties and Roles of the Matrix Determinant
	Example 7-4: Properties of Determinants
	The properties of determinants

	Lecture 7: Vector Spaces
	Lecture 7: Linear Transformations
	Example 7-5: Visualization of linear transformations

	Lecture 8: Complex Numbers and Euler's Formula
	Lecture 8: Complex Numbers and Operations in the Complex Plane
	Example 8-1: Operations on complex numbers
	Complex Plane and Complex Conjugates

	Lecture 8: Polar Form of Complex Numbers
	Multiplication, Division, and Roots in Polar Form
	Example 8-2: Numerical Properties of Operations on Complex Numbers

	Lecture 8: Exponentiation and Relations to Trignometric Functions
	Lecture 8: Complex Numbers in Roots to Polynomial Equations
	Example 8-3: Complex Roots of Polynomial Equations

	Lecture 9: Eigensystems of Matrix Equations
	Lecture 9: Eigenvalues and Eigenvectors of a Matrix
	Example 9-1: Matrix eigensystems and their geometrical interpretation

	Lecture 9: Symmetric, Skew-Symmetric, Orthogonal Matrices
	Orthogonal Transformations
	Example 9-2: Coordinate Transformations to The Eigenbasis

	Lecture 10: Real Eigenvalue Systems; Transformations to Eigenbasis
	Lecture 10: Similarity Transformations
	Stresses and Strains
	EigenStrains and EigenStresses
	Example 10-1: Principal Axes: Mohr's Circle of Stress

	Lecture 10: Quadratic Forms
	Lecture 10: Eigenvector Basis

	Lecture 11: Geometry and Calculus of Vectors
	Lecture 11: Graphical Animation: Using Time as a Dimension in Visualization
	Example 11-1: Introductory Animation Examples

	Lecture 11: Vector Products
	Review: The Inner (dot) product of two vectors and relation to projection
	Review: Vector (or cross-) products
	Example 11-2: Cross Product Example

	Lecture 11: Derivatives Vectors
	Example 11-3: Visualizing Time-Dependent Vectors and their Derivatives
	Review: Partial and total derivatives

	Lecture 11: Time-Dependent Scalar and Vector Fields
	Example 11-4: Visualizing a Solution to the Diffusion Equation
	All vectors are not spatial

	Lecture 12: Multivariable Calculus
	Lecture 12: The Calculus of Curves
	Example 12-1: Curves in Three Dimensions
	Example 12-2: Embedding Curves in Surfaces
	Using Arc-Length as a Curve's Parameter
	Example 12-3: Calculating arclength

	Lecture 12: Scalar Functions with Vector Argument
	How Confusion Can Develop in Thermodynamics

	Lecture 12: Total and Partial Derivatives, Chain Rule
	Example 12-4: Total Derivatives and Partial Derivatives: A Mathematica Review
	Taylor Series
	Example 12-5: Approximating Surfaces at Points

	Lecture 12: Gradients and Directional Derivatives
	Finding the Gradient
	Potentials and Force Fields

	Lecture 13: Differential Operations on Vectors
	Lecture 13: Generalizing the Derivative
	Example 13-1: Gradients and Laplacians on Scalar Potentials

	Lecture 13: Divergence and Its Interpretation
	Coordinate Systems
	Example 13-2: Coordinate Transformations
	Example 13-3: Gradient and Divergence Operations in Other Coordinate Systems

	Lecture 13: Curl and Its Interpretation
	Example 13-4: Computing and Visualizing Curl Fields

	Lecture 14: Integrals along a Path
	Lecture 14: Integrals along a Curve
	Path-Independence and Path-Integration
	Example 14-1: Path Dependence of Integration of Vector Function: Non-Conservative Example
	Example 14-2: Examples of Path-Independence of Curl-Free Vector Fields and Curl-Free Subspaces

	Lecture 14: Multidimensional Integrals
	Lecture 14: Using Jacobians to Change Variables in Thermodynamic Calculations
	Example of a Multiple Integral: Electrostatic Potential above a Charged Region
	Example 14-3: Potential near a Charged and Shaped Surface Patch: Brute Force

	Lecture 15: Surface Integrals and Some Related Theorems
	Lecture 15: Green's Theorem for Area in Plane Relating to its Bounding Curve
	Example 15-1: Turning an integral over a domain into an integral over its boundary

	Lecture 15: Representations of Surfaces
	Example 15-2: Representations of Surfaces

	Lecture 15: Integration over Surfaces
	Example 15-3: Example of an Integral over a Parametric Surface

	Lecture 16: Integral Theorems
	Lecture 16: Higher-dimensional Integrals
	Lecture 16: The Divergence Theorem
	Example 16-1: London Dispersion Interaction between a point and Closed Volume
	Efficiency and Speed Issues: When to Evaluate the Right-Hand-Side of a Function in Mathematica® .
	Example 16-2: To Evaluate or Not to Evaluate when Defining Functions
	Example 16-3: London Dispersion Potential of a Finite Cylinder
	Example 16-4: Visualizing the London Potential of a Finite Cylinder

	Lecture 16: Stokes' Theorem
	Lecture 16: Maxwell's equations
	Lecture 16: Ampere's Law
	Lecture 16: Gauss' Law

	Lecture 17: Function Representation by Fourier Series
	Lecture 17: Periodic Functions
	Example 17-1: Playing with Audible Periodic Phenomena
	Example 17-2: Using ``Mod'' to Create Periodic Functions

	Lecture 17: Odd and Even Functions
	Lecture 17: Representing a particular function with a sum of other functions
	Lecture 17: Fourier Series
	Example 17-3: Orthogonality of Trignometric Functions

	Lecture 17: Other forms of the Fourier coefficients
	Example 17-4: Calculating Fourier Series Amplitudes
	Example 17-5: Using the Calculus`FourierTransform` package
	Example 17-6: Visualizing Convergence of the Fourier Series: Gibbs Phenomenon

	Lecture 17: Complex Form of the Fourier Series

	Lecture 18: The Fourier Transform and its Interpretations
	Lecture 18: Fourier Transforms
	Higher Dimensional Fourier Transforms

	Lecture 18: Properties of Fourier Transforms
	Dirac Delta Functions
	Parseval's Theorem
	Convolution Theorem
	Example 18-1: Creating Images of Lattices for Subsequent Fourier Transform
	Fast Fourier Transforms and Simulated Diffaction
	Example 18-2: Discrete Fourier Transforms
	Example 18-3: Visualizing Diffraction Patterns
	Example 18-4: Diffraction Patterns of Defective Lattices
	Example 18-5: Diffraction Patterns from Lattices with Thermal `Noise'
	Example 18-6: Using an Aperature to Select Particular Perioidicities in a Diffraction Pattern
	Example 18-7: Visualizing Simulated Selected Area Diffraction
	Example 18-8: Discrete Fourier Transforms of Real Images
	Example 18-9: Selected Area Diffraction on Image Data
	Example 18-10: Visualizing Selected Area Diffraction on Image Data

	Lecture 19: Ordinary Differential Equations: Introduction
	Lecture 19: Differential Equations: Introduction
	Example 19-1: Iteration: First-Order Sequences
	Example 19-2: First-Order Finite Differences
	Example 19-3: Nested Operations

	Lecture 19: Geometrical Interpretation of Solutions
	Example 19-4: The Geometry of First-Order ODES

	Lecture 19: Separable Equations
	Example 19-5: Using Mathematica® 's Built-in Ordinary Differential Equation Solver

	Lecture 20: Linear Homogeneous and Heterogeneous ODEs
	Lecture 20: Ordinary Differential Equations from Physical Models
	Grain Growth

	Lecture 20: Integrating Factors, Exact Forms
	Exact Differential Forms
	Integrating Factors and Thermodynamics

	Lecture 20: Homogeneous and Heterogeneous Linear ODES
	Example 20-1: Using DSolve to solve Homogeneous and Heterogeneous ODEs

	Lecture 20: Example: The Bernoulli Equation
	Example 20-2: Numerical Solutions to Non-linear First-Order ODEs

	Lecture 21: Higher-Order Ordinary Differential Equations
	Lecture 21: Higher-Order Equations: Background
	Example 21-1: A Second-Order Forward Differencing Example
	Linear Differential Equations; Superposition in the Homogeneous Case
	Basis Solutions for the homogeneous second-order linear ODE

	Lecture 21: Second Order ODEs with Constant Coefficients
	Example 21-2: Solutions to the Homogeneous Linear Second Order ODE with Constant Coefficients
	Example 21-3: Characterizing the Solution Behavior for the Second-Order ODE with Constant Coefficients

	Lecture 21: Boundary Value Problems
	Example 21-4: Determining Solution Constants from Boundary Values

	Lecture 21: Fourth Order ODEs, Elastic Beams
	Example 21-5: Visualizing Beam Deflections

	Lecture 22: Differential Operators, Harmonic Oscillators
	Lecture 22: Differential Operators
	Operational Solutions to ODEs
	Example 22-1: Use of Fourier Transform for Solution to the Damped-Forced Harmonic Oscillator
	Operators to Functionals
	Example 22-2: Functionals: Introduction to Variational Calculus by Variation of Parameters

	Lecture 22: Harmonic Oscillators
	Simple Undamped Harmonic Oscillator

	Lecture 23: Resonance Phenomena, Beam Theory
	Lecture 23: Resonance Phenomena
	Example 23-1: Simulating Harmonic Oscillation with Biased and Unbiased Noise
	General Solutions to Non-homogeneous ODEs
	Modal Analysis
	Example 23-3: Visualizing Forced and Damped Harmonic Oscillation

	Lecture 24: Systems of Ordinary Differential Equations
	Lecture 24: Systems of Ordinary Differential Equations
	Example: The Spread of a MIT Joke
	Example 24-1: Iterative Example of Predator-Prey Simulation
	Example 24-2: Visualizing the Spread of Jokes at MIT

	Lecture 24: Reduction of Higher Order ODEs to a System of First Order ODEs
	Lecture 24: Linearization of Systems of ODEs
	Example 24-3: Analyzing the Stability for the MIT Joke

	Lecture 25: Phase Plane Analysis and Critical Points
	Lecture 25: Phase Plane and Critical Points
	Lecture 25: Stability of Critical Points
	Example 25-1: Functions to Analyze Fixed Points for Two-Dimensional Systems
	Unstable Manifolds

	Lecture 26: Separation of Variables and Solutions to Common ODEs
	Lecture 26: Special Functions: Solutions to Common ODEs
	Example 26-1: Visualizing special functions.

	Lecture 26: Partial Differential Equations: Separation of Variables
	Special Functions in the Eigenfunctions of the Hydrogen Atom
	Example 26-2: Visualizing the Hydrogen atom eigenfunctions

