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Dec. 07 2005: Lecture 27:

Eigenfunction Basis

Reading:
Kreyszig Sections: §4.7 (pp:233-38) , §4.8 (pp:240-248)

Sturm-Liouville Theory, Orthogonal Eigenfunctions

The trigonometric functions have the property that they are orthogonal, that is:
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This property allowed the Fourier series to be obtained by multiplying a function by one
of the basis functions and then integrating over the domain.

extra notes: Inner Products for Functions .......... ... ... . .. ... . i ..
The orthogonality relation for the trigonometric functions requires two things:

Range The range over which the functions are defined (i.e., values of x for which f(z) and
g(x) have a inner product defined) and integrated in their inner product definition.

Inner product The projection operation of one function onto another.

For the trignometric functions, the inner product was a fairly obvious choice:

f(2) - glx) = / " f(@)g(a)da (27-2)

This inner product follows from the [2-norm for functions:

(@) = \/ / f (@) f (2)de = \/ / frde (27:3)

which is one of the obvious ways to measure “the distance of a function from zero.” The
12-norm is employed in least-squares-fits.

However, there are different choices of inner products. For example, the Laguerre polyno-
mials (or Laguerre functions) L, (x) defined by
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for 0 < < oo have the orthogonality relation for a weighted inner product:

L,(z) - Ly(x) = /OOO e *Ly(x) Ly (z)dr = dpn, (27-5)
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There are many other kinds of functional norms.
Many ordinary differential equations—including the harmonic oscillator, Bessel, and Legendre—
can be written in a general form:
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which is called the Sturm-Liouville problem. Solutions to this equation are called eigensolutions
for an eigenvalue A. The function p(x) appears in the orthonormality relation:
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The same "trick” of multiplying a function by one of the eigensolutions and then summing
a series can be used to generate series solutions as a superposition of eigensolutions.

MATHEMATICA® Example: (notebook) Lecture-27
Legendre functions

FEzxpanding a function as a series of Legendre functions




