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Dec. 05 2005: Lecture 26:

Solutions to Common ODEs

Reading:
Kreyszig Sections: §4.3 (pp:205–208) , §4.5 (pp:218–225) , §4.6 (pp:228-232)

Special Functions

Most calculators have a button that evaluates the eigensolution to the simple first-order
ODE dy/dt = λy. Also, most calculators have buttons that evaluate the eigensolutions to the
simple second-order ODE: d2y/dt2 = λy.

Of course, these are also just the exponential and trigonometric functions.
However, there are many more simple differential equations that follow from physical mod-

els and these also have known solutions that are not simple combinations of sines, cosines,
and exponentials. The solutions to these differential equations are called special functions.
Mathematica R© has an extensive list of special functions and these are collected in its help
browser.

For example, the positions of a vibrating drum head are modeled with in cylindrical coor-
dinates by Bessel’s equation:
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where in the second equation ρ = kr. The displacement of the drum is h(r); k is related to
an inverse wavelength (e.g., the wavelength would be the radius of the drum divided by the
number of maxima in the drum head shape) and m is the mode (e.g., the number of maxima
traversing the drum by 2π in a circular direction).

There two solutions to Bessel’s equation and the general solution is the sum the two:

h(r) = C1Jm(kr) + C2Ym(kr)

h(ρ) = C1Jm(ρ) + C2Ym(ρ)
(26-2)

where Jm(x) is called (naturally enough) an order-m Bessel function of the first kind and
Ym(x) is called (naturally enough) an order-m Bessel function of the second kind. These are
analogous to the sines and cosines, but for a different ODE.

Another equation that appears in models of the angular deformations of body in a central
force potentials (for example, the ion distribution about a fixed charge; or, the Schrödinger
equation for the electron in a hydrogen atom) in spherical coordinates is Legendre’s equation:
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where µ ≡ cos θ so that −1 ≤ µ ≤ 1. The value ` is related to the number of modes in the θ
direction and m is related to the number of modes in the φ direction.

Legendre’s equation has two solutions:

Ξ(µ) = C1Plm(µ) + C2Qlm(µ) (26-4)

The eigensolution Plm(µ) is called (again, naturally enough) order m Legendre functions of
the first kind and Qlm(µ) are called order lm Legendre functions of the second kind.

There are many other types of special functions.

Mathematica R© Example: (notebook) Lecture-26.tex
Visualizing special functions.

Bessel and Legendre functions

kcq cq Special Functions in the Eigenfunctions of the Hydrogen Atom . . . . . . . . . . . . . . . . . . . . . . .
The Shrödinger for the electron in a hydrogen atom is a partial differential equation—one

that involves derivatives with respect than more than one variable. In the case of the hydrogen
atom, the variables are the spherical coordinates r, θ and φ.

A common method of solving a partial differential equation is to reduce it to a system of
coupled ODEs by a method called separation of variables.

The solution for the wave-functions of an electron follows from separation of variables and
special functions arise in the solution to the ordinary differential equations—including the
Legendre functions P`m (which are part of the spherical harmonics Y`m(θ, φ)) and Laguerre Ln

functions. The subscripts are associated with the quantum numbers that give structure to the
periodic table of elements.

Mathematica R© Example: (notebook) Lecture-26
Visualizing the Hydrogen atom eigenfunctions

Function to Display any Orbital


