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Nov. 28 2005: Lecture 23:

Resonance Phenomena, Beam Theory

Reading:
Kreyszig Sections: §2.11 (pp:111–116) , §2.13 (pp:130–31)

Resonance Phenomena

The physics of an isolated damped linear harmonic oscillator follows from the behavior of
the homogeneous equation:14

M
d2y(t)

dt2
+ ηlo

dy(t)

dt
+ Ksy(t) = 0 (23-1)

The zero on the right-hand-side of Eq. 23-1 implies that there are no external forces ap-
plied to the system. The system oscillates with a characteristic frequency ω =

√
Ks/M with

amplitude that are damped by a characteristic time τ = (2M)/(ηlo) (i.e., the amplitude is
damped ∝ exp(−t/τ).)

Mathematica R© Example: (notebook) Lecture-23
Simulating Resonance by Iteration and Noise

Finite Differences with Noise and Forcing

14 A concise and descriptive description of fairly general harmonic oscillator behavior appears at
http://hypertextbook.com/chaos/41.shtml
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A general model for a damped and forced harmonic oscillator is

M
d2y(t)

dt2
+ ηlo

dy(t)

dt
+ Ksy(t) = Fapp(t) (23-2)

where Fapp represents a time-dependent applied force to the mass M .

kcq cq General Solutions to Non-homogeneous ODEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Equation 23-2 is a non-homogeneous ODE—the functions and its derivatives appear on one
side and an arbitrary function appears on the other. The general solution to Eq. 23-2 will be
the sum of two parts:

ygen(t) = ypart(t) + yhomog(t)

ygen(t) = yFapp(t) + yhomog(t)
(23-3)

yhomg(t) =





C+e−|λ+|t + C−e−|λ−|t (ηlo)
2 > 4MKs Over-damped

C1e
−|λ|t + C2te

−|λ|t (ηlo)
2 = 4MKs Critical Damping

C+e−|Reλ|teı|Imλ|t + C−e−|Reλ|te−ı|Imλ|t (ηlo)
2 < 4MKs Under-damped

(23-4)
where ypart ≡ yFapp is the solution for the particular Fapp on the right-hand-side and yhomog is
the solution for the right-hand-side being zero. Adding the homogeneous solution yhomog to the
particular solution ypart is equivalent to adding a “zero” to the applied force Fapp

Interesting cases arise when the applied force is periodic Fapp(t) = Fapp(t + T ) = Fapp(t +
2π/ωapp), especially when the applied frequency, ωapp is close to the the characteristic frequency

of the oscillator ωchar =
√

Ks/M .

kcq cq Modal Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
For the case of a periodic forcing function, the time-dependent force can be represented by a

Fourier Series. Because the second-order ODE (Eq. 23-2) is linear, the particular solutions for
each term in a Fourier series can be summed. Therefore, particular solutions can be analyzed
for one trigonometric term at a time:

M
d2y(t)

dt2
+ ηlo

dy(t)

dt
+ Ksy(t) = Fapp cos(ωappt) (23-5)

There are three general cases for the particular solution:
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Condition Solution for F (t) = Fapp cos(ωappt)
Undamped,
Frequency-
Mismatch

η = 0

ω2
char =

Ks

M
6= ω2

app

ypart(t) =
Fapp cos(ωappt)

M(ωchar + ωapp)(ωchar − ωapp)

Undamped,
Frequency-
Matched

η = 0

ω2
char =

Ks

M
= ω2

app

ypart(t) =
Fappt sin(ωappt)

2Mωapp

Damped
η > 0

ypart(t) =
Fapp cos(ωappt + φlag)√

M2(ω2
char − ω2

app)
2 + ω2

appη
2l2o

φlag = tan−1

(
ωappηlo

M(ω2
char − ω2

app)

)

The phenomenon of resonance can be observed as the driving frequency approaches the
characteristic frequency.

Mathematica R© Example: (notebook) Lecture-23
Visualizing Solutions for the damped-forced harmonic oscillator

1. Write a function that calculates the general solution to the non-homogeneous
second-order solutions with forcing function set to Fapp = cos(ωappt) for initial
conditions that have a fixed displacement, but no initial momentum: y(t =
0) = 1 and y′(t = 0) = 0. Let the function have input parameters for the mass,
viscosity, and characteristic frequency.

2. Note that for many numerical inputs for parameters, the solutions may have
spurious small imaginary parts—this can be dealt with with the function Chop.

3. Visualize solutions for 20 or 30 cycles for various input parameters

Resonance can have catastrophic or amusing (or both) consequences:
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Figure 23-1: Picture and illustration of the bells at Kendall square. Many people
shake the handles vigorously but with apparently no pleasant effect. The concept of
resonance can be used to to operate the bells efficiently Perturb the handle slightly and
observe the frequencies of the the pendulums—select one and wiggle the handle at the
pendulum’s characteristic frequency. The amplitude of that pendulum will increase and
eventually strike the neighboring tubular bells.
From Cambridge Arts Council Website:

http://www.ci.cambridge.ma.us/˜CAC/public art tour/map 11 kendall.html

Artist: Paul Matisse Title: The Kendall Band - Kepler, Pythagoras, Galileo Date: 1987

Materials: Aluminum, teak, steel

Handles located on the platforms allow passengers to play these mobile-like instruments, which are suspended in arches

between the tracks, ”Kepler” is an aluminum ring that will hum for five minutes after it is struck by the large teak

hammer above it. ”Pythagoras” consists of a 48-foot row of chimes made from heavy aluminum tubes interspersed with

14 teak hammers. ”Galileo” is a large sheet of metal that rattles thunderously when one shakes the handle.

Figure 23-2: The Tacoma bridge disaster is perhaps one of the most well-known failures
that resulted directly from resonance phenomena. It is believed that the the wind blowing
across the bridge caused the bridge to vibrate like a reed in a clarinet.
(Images from Promotional Video Clip from The Camera Shop 1007 Pacific Ave., Tacoma,
Washington Full video Available http://www.camerashoptacoma.com/)


