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Nov. 23 2005: Lecture 22:

Differential Operators, Harmonic Oscillators

Reading:
Kreyszig Sections: §2.4 (pp:81-83) , §2.5 (pp:83-89) , §2.8 (pp:101-03)

Differential Operators
The idea of a function as “something” that takes a value (real, complex, vector, etc.) as
“input” and returns “something else” as “output” should be very familiar and useful.

This idea can be generalized to operators that take a function as an argument and return
another function.

The derivative operator operates on a function and returns another function that describes
how the function changes:

Dif)] = L
D[D[f(x)]] = D*[f(x)] = %
" (22-1)
D) = 4

Dlaf(x)] =aDl[f(x)]
D[f(x) + g(2)] =D[f(2)] + Dlg(x)]

The last two equations above indicate that the “differential operator” is a linear operator.
The integration operator is the right-inverse of D

DIZ|f(@)) = DI [ f(a)d] 222

but is only the left-inverse up to an arbitrary constant.
Consider the differential operator that returns a constant multiplied by itself

Df(x) = Mf(x) (22-3)

which is another way to write the the homogenous linear first-order ODE and has the same
form as an eigenvalue equation. In fact, f(z) = exp(Ax), can be considered an eigenfunction
of Eq. 22-3.

For the homogeneous second-order equation,

(D* + 6D — ) [f()] = 0 (22-4)

It was determined that there were two eigensolutions that can be used to span the entire

solution space:
f(z) = CreM® + C_et" (22-5)

Operators can be used algebraically, consider the inhomogeneous second-order ODE

(aD* 4+ D + ¢) [y(z)] = =° (22-6)
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By treating the operator as an algebraic quantity, a solution can be found!!

y(x) = (m) [2°]

2 _ 2 _
— (1 _ %D + b 3acD2 _ b(b—32ac)p3 + (9(1)4)) 3 (22-7)
c c C C
3 3bx?  6(b* —ac)r  6b(b* — 2ac)
= _ T —
c c? 3 3

which solves Eq. 22-6.
The Fourier transform is also a linear operator:

Flf(x)] =g(k) = % / " b e)etdn
oo (22-8)

F o) =fa) = = [ gtire e

Combining operators is another useful way to solve differential equations. Consider the
Fourier transform, F, operating on the differential operator, D:

1 df(x)
F[D[f]] = Nz / d;)e’f dx (22-9)
Integrating by parts,
1 oo k[T df(x)
= — = "rd 22-10
\/ﬂf(x) |x7—oo \/ﬂ . dl’ € T ( )

If the Fourier transform of f(z) exists, then typically'® lim, ..., f(x) = 0. In this case,
FIDIf)) = —ikF[f ()] (22-11)
and by extrapolation:

FID?(f]] = —k*Ff(2)]
FID ) = (=0)"" k" F(f ()]

Operational Solutions to ODEs ... ... ... . . .
Consider the heterogeneous second-order linear ODE which represent a forced, damped,
harmonic oscillator that will be discussed later in this lecture.

Pylt) | dylt)
dt? dt
HThis method can be justified by plugging back into the original equation and verifying that the result is a

solution.

12 Tt is not necessary that lim, 4., f(z) = 0 for the Fourier transform to exist but it is satisfied in most
every case. The condition that the Fourier transform exists is that

| l@las

M + Ky(t) = cos(w,t) (22-13)

exists and is bounded.
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Apply a Fourier transform (mapping from the time (¢) domain to a frequency (w) domain) to
both sides of 22-13:

d’yt) . dy(t)
FIM——==+V + Ky(t)] = Flcos(w,t)]
dt dt Y ) o210
~ MW Fly] = wV Fly] + K.Fly] = /5 [0(w = wo) + 6(w + wo)]

because the Dirac Delta functions result from taking the Fourier transform of cos(w,t).
Equation 22-14 can be solved for the Fourier transform:

[ 5w — wo) + (W + w,)]
Flyl = \/; Mw? + 1wV — K, (22-15)

In other words, the particular solution Eq. 22-13 can be obtained by finding the function
y(t) that has a Fourier transform equal the the right-hand-side of Eq. 22-15-or, equivalently,
operating with the inverse Fourier transform on the right-hand-side of Eq. 22-15.

MATHEMATICA® Example: (notebook) Lecture-22
Operator Calculus and the Solution to the Damped-Forces Harmonic Oscillator Model
MATHEMATICA®  does have built-in functions to take Fourier (and other kinds of)
integral transforms. However, as will be seen below, using operational calculus to
solve ODEs is not necessarily simple in  MATHEMATICA® . Nevertheless, it may be
instructive to force it—if only as an an example of using the good tool for the wrong
purpose.

Rules for Linear Operators

Operators to Functionals ........ .. . . . . . . .
Equally powerful is the concept of a functional which takes a function as an argument and
returns a value. For example S[y(z)], defined below, operates on a function y(x) and returns
its surface of revolution’s area for 0 < z < L:

5w@ﬂ==%{ALw/1+<g%)Z$ (22-16)

This is the functional to be minimized for the question, “Of all surfaces of revolution that span
from y(z = 0) to y(z = L), which is the y(x) that has the smallest surface area?”
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This idea of finding “which function maximizes or minimizes something” can be very pow-
erful and practical.

Suppose you are asked to run an “up-hill” race from some starting point (z = 0,y = 0) to
some ending point (z = 1,y = 1) and there is a ridge h(x,y) = 2. What is the most efficient
running route y(x)?'3

Figure 22-1: The terrain separating the starting point (x = 0,y = 0) and ending point
(x =1,y = 1). Assuming a model for how much running speed slows with the steepness
of the path—which route would be quicker, one (y;(x)) that starts going up-hill at first
or another (y»(x)) that initially traverses a lot of ground quickly?

A reasonable model for running speed as a function of climbing-angle « is
v(s) = cos(a(s)) (22-17)

where s is the arclength along the path. The maximum speed occurs on flat ground o = 0
and running speed monotonically falls to zero as « — 7/2. To calculate the time required to
traverse any path y(z) with endpoints y(0) = 0 and y(1) = 1,

13 An amusing variation on this problem would be to find the path that the path that a winning downhill
skier should traverse.
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ds B B ds B 1 B 1
— =w(s) = cos(a(s)) = i — = —

dt
d /dz? + dy? dy? dh?
g =& _ Ve dy \/dx2+dy2+dh2_\/1 Y

~wu(s)  cos(a(s)

So, with the hill A(z) = 22, the time as a functional of the path is:

(22-18)

Thy(2)] = /O 1 \/ 1+ %Q 422 da (22-19)

MATHEMATICA® Example: (notebook) Lecture-22
Kunctionals: Introduction to Variational Calculus by Variation of Parameters

1. Instead of trying to find the function y(z) (if such a function exists) that min-
imizes the function in Eq. 22-19, consider the polynomial y(z) = a + bz + cz?
as an “approximating function” and then find the parameters a, b, and ¢, that
minimize the functional.

2. Ensure that the cubic equation satisfies the boundary conditions and thereby
fix two of the three free parameters

3. By integrating y(z) in Eq. 22-19, the functional equation is transformed to a
function of the remaining free variable. (It is much easier in MATHEMATICA®
to integrate without limits in Eq. 22-19 and then evaluate the limits in a separate
step.)

4. Find the parameter that minimizes the integral.

5. Visualize the quickest path.

There is a powerful and beautiful mathematical method for finding the extremal functions
of functionals which is called Calculus of Variations.
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By using the calculus of variations, the optimal path y(x) for Eq. 22-19 can be determined:

221+ 422 + sinh ™' (22)

y()

2v/5 4 sinh™*(2)

(22-20)

The approximation determined in the MATHEMATICA® example above is pretty good.

Harmonic Oscillators

Methods for finding general solution to the linear inhomogeneous second-order ODE

d?y(t dy(t
a CZ(Z ) b ?‘;i) +ey(t) = F(t) (22-21)
have been developed and worked out in  MATHEMATICA® examples.
Eq. 22-21 arises frequently in physical models, among the most common are:
2
Electrical circuits: Ld 1) + plom + l[(t) =V(t)
dt? dt C (22-22)
Mechanical oscillators: d*y(t) dy(t) _
echanical oscillators: M e + nl, 7 + K y(t) = Fopp(t)
where:
Mechanical Electrical

Second | Mass M: Physical measure of the ratio of | Inductance L: Physical measure of the ra-

Order | momentum field to velocity tio of stored magnetic field to current

First Drag Coefficient ¢ = 7l, Resistance R = pl,

Order | (n is viscosity [, is a unit displacement): (p is resistance per unit material length
Physical measure of the ratio environmental | [, is a unit length): Physical measure of the
resisting forces to velocity—or proportion- | ratio of voltage drop to current—or propor-
ality constant for energy dissipation with | tionality constant for power dissipated with
square of velocity square of the current.

Zeroth | Spring Constant K : Physical measure | Inverse Capacitance 1/C: Physical mea-

Order | of the ratio environmental force developed | sure of the ratio of voltage storage rate to
to displacement—or proportionality constant | current—or proportionality constant for en-
for energy stored with square of displacement | ergy storage rate dissipated with square of

the current.

Forcing | Applied Voltage V (t): Voltage applied to | Applied Force F(t): Force applied to os-

Term circuit as a function of time. cillator as a function of time.

For the homogeneous equations (i.e. no applied forces or voltages) the solutions for phys-

ically allowable values of the coefficients can either be oscillatory, oscillatory with damped
amplitudes, or, completely damped with no oscillations. (See Figure 21-1). The homogeneous
equations are sometimes called autonomous equations—or autonomous systems.

Simple Undamped Harmonic Oscillator

The simplest version of a homogeneous Eq. 22-21 with no damping coefficient (b = 0,
R = 0, or n = 0) appears in a remarkably wide variety of physical models. This simplest
physical model is a simple harmonic oscillator—composed of a mass accelerating with a linear
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spring restoring force:

Inertial Force = Restoring Force

M Acceleration = Spring Force

d*y(t) 922-23
2 M dt? = —Kayt) ( )
Mdi9+ngw:0

Here y is the displacement from the equilibrium position—i.e., the position where the force,
F = —dU/dx = 0. Eq. 22-23 has solutions that oscillate in time with frequency w:

y(t) = Acoswt + Bsinwt

y(t) = Csin(wt + ¢) (22-24)

where w = y/K,/M is the natural frequency of oscillation, A and B are integration constants
written as amplitudes; or, C' and ¢ are integration constants written as an amplitude and a
phase shift.

The simple harmonic oscillator has an nvariant, for the case of mass-spring system the
invariant is the total energy:

Kinetic Energy + Potential Energy =

M, K,
711 + 73/ —
Md?JQ K _

M K .
AQwQE cos®(wt + ¢) + A27 sin®(wt + ¢) =
2
. sin® (wt+ ¢) =

M
A? (w27 cos®(wt + ¢) +

A’Mw? = constant

There are a remarkable number of physical systems that can be reduced to a simple harmonic
oscillator (i.e., the model can be reduced to Eq. 22-23). Each such system has an analog to a
mass, to a spring constant, and thus to a natural frequency. Furthermore, every such system
will have an invariant that is an analog to the total energy—an in many cases the invariant
will, in fact, be the total energy.

The advantage of reducing a physical model to a harmonic oscillator is that all of the
physics follows from the simple harmonic oscillator.
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Here are a few examples of systems that can be reduced to simple harmonic oscillators:
Pendulum By equating the rate of change of angular momentum equal to the torque, the
equation for pendulum motion can be derived:
2

,d*0
MR*— pre) + MgRsinf =0 (22-26)

for small-amplitude pendulum oscillations, sin(f) ~ 6, the equation is the same as a
simple harmonic oscillator.

It is instructive to consider the invariant for the non-linear equation. Because

a0 df (d%
i 22-2
Az~ dt ( de ) ( ")
Eq. 22-26 can be written as:
,d0 dde
R*— o (d@) + MgRsin(d) =0 (22-28)
d |MR? (dO\?
Wl (%) - Mchos(@)] =0 (22-29)

which can be integrated with respect to :

MR?
2

o\’
(%) — MgRcos(f) = constant (22-30)

This equation will be used as a level-set equation to visualize pendulum motion.

Buoyant Object Consider a buoyant object that is slightly displaced from its equilibrium
floating position. The force (downwards) due to gravity of the buoy is prouydViouy
The force (upwards) according to Archimedes iS pyatergVsupy Where Vi, is the volume
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of the buoy that is submerged. The equilibrium position must satisfy Viu—cq/Viouy =
pbouy/pwater-

If the buoy is slightly perturbed at equilibrium by an amount dx the force is:

F :pwaterg(‘/:sub—eq + 5:EA0) - pbuoyg‘/buoy

22-31
F :pwatergéon ( )

where A, is the cross-sectional area at the equilibrium position. Newton’s equation of

motion for the buoy is:
d2
Mbuoyd_tg - pwaterngy =0 (22_32)

so the characteristic frequency of the buoy is w = \/ Pwater Ao/ Moouy-
Single Electron Wave-function The one-dimensional Schrodinger equation is:

d*>y  2m

—+ = (E-U(x =0 22-33

(B -U@) Y (22:3)
where U(z) is the potential energy at a position xz. If U(z) is constant as in a free
electron in a box, then the one-dimensional wave equation reduces to a simple harmonic
oscillator.

In summation, just about any system that oscillates about an equilibrium state can be reduced
to a harmonic oscillator.



