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Nov. 23 2005: Lecture 22:

Differential Operators, Harmonic Oscillators

Reading:
Kreyszig Sections: §2.4 (pp:81–83) , §2.5 (pp:83–89) , §2.8 (pp:101–03)

Differential Operators
The idea of a function as “something” that takes a value (real, complex, vector, etc.) as
“input” and returns “something else” as “output” should be very familiar and useful.

This idea can be generalized to operators that take a function as an argument and return
another function.

The derivative operator operates on a function and returns another function that describes
how the function changes:

D[f(x)] =
df

dx

D[D[f(x)]] = D2[f(x)] =
d2f

dx2

Dn[f(x)] =
dnf

dxn

D[αf(x)] =αD[f(x)]

D[f(x) + g(x)] =D[f(x)] + D[g(x)]

(22-1)

The last two equations above indicate that the “differential operator” is a linear operator.
The integration operator is the right-inverse of D

D[I[f(x)]] = D[

∫
f(x)dx] (22-2)

but is only the left-inverse up to an arbitrary constant.
Consider the differential operator that returns a constant multiplied by itself

Df(x) = λf(x) (22-3)

which is another way to write the the homogenous linear first-order ODE and has the same
form as an eigenvalue equation. In fact, f(x) = exp(λx), can be considered an eigenfunction
of Eq. 22-3.

For the homogeneous second-order equation,
(D2 + βD − γ

)
[f(x)] = 0 (22-4)

It was determined that there were two eigensolutions that can be used to span the entire
solution space:

f(x) = C+eλ+x + C−eλ−x (22-5)

Operators can be used algebraically, consider the inhomogeneous second-order ODE
(
aD2 + bD + c

)
[y(x)] = x3 (22-6)
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By treating the operator as an algebraic quantity, a solution can be found11

y(x) =

(
1

aD2 + bD + c

)
[x3]

=

(
1

c
− b

c2
D +

b2 − ac

c3
D2 − b(b2 − 2ac)

c3
D3 +O(D4)

)
x3

=
x3

c
− 3bx2

c2
+

6(b2 − ac)x

c3
− 6b(b2 − 2ac)

c3

(22-7)

which solves Eq. 22-6.
The Fourier transform is also a linear operator:

F [f(x)] =g(k) =
1√
2π

∫ ∞

−∞
f(x)eıkxdx

F−1[g(k)] =f(x) =
1√
2π

∫ ∞

−∞
g(k)e−ıkxdk

(22-8)

Combining operators is another useful way to solve differential equations. Consider the
Fourier transform, F , operating on the differential operator, D:

F [D[f ]] =
1√
2π

∫ ∞

−∞

df(x)

dx
eikxdx (22-9)

Integrating by parts,

=
1√
2π

f(x) |x=∞
x=−∞ −

ık√
2π

∫ ∞

−∞

df(x)

dx
eikxdx (22-10)

If the Fourier transform of f(x) exists, then typically12 limx→±∞ f(x) = 0. In this case,

F [D[f ]] = −ikF [f(x)] (22-11)

and by extrapolation:

F [D2[f ]] = −k2F [f(x)]

F [Dn[f ]] = (−1)nınknF [f(x)]
(22-12)

kcq cq Operational Solutions to ODEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Consider the heterogeneous second-order linear ODE which represent a forced, damped,

harmonic oscillator that will be discussed later in this lecture.

M
d2y(t)

dt2
+ V

dy(t)

dt
+ Ksy(t) = cos(ωot) (22-13)

11This method can be justified by plugging back into the original equation and verifying that the result is a
solution.

12 It is not necessary that limx→±∞ f(x) = 0 for the Fourier transform to exist but it is satisfied in most
every case. The condition that the Fourier transform exists is that

∫ ∞

−∞
|f(x)|dx

exists and is bounded.
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Apply a Fourier transform (mapping from the time (t) domain to a frequency (ω) domain) to
both sides of 22-13:

F [M
d2y(t)

dt2
+ V

dy(t)

dt
+ Ksy(t)] = F [cos(ωot)]

−Mω2F [y]− ıωV F [y] + KsF [y] =

√
π

2
[δ(ω − ωo) + δ(ω + ωo)]

(22-14)

because the Dirac Delta functions result from taking the Fourier transform of cos(ωot).
Equation 22-14 can be solved for the Fourier transform:

F [y] =

√
−π

2

[δ(ω − ωo) + δ(ω + ωo)]

Mω2 + ıωV −Ks

(22-15)

In other words, the particular solution Eq. 22-13 can be obtained by finding the function
y(t) that has a Fourier transform equal the the right-hand-side of Eq. 22-15–or, equivalently,
operating with the inverse Fourier transform on the right-hand-side of Eq. 22-15.

Mathematica R© Example: (notebook) Lecture-22
Operator Calculus and the Solution to the Damped-Forces Harmonic Oscillator Model

Mathematica R© does have built-in functions to take Fourier (and other kinds of)
integral transforms. However, as will be seen below, using operational calculus to
solve ODEs is not necessarily simple in Mathematica R© . Nevertheless, it may be
instructive to force it—if only as an an example of using the good tool for the wrong
purpose.

Rules for Linear Operators

kcq cq Operators to Functionals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Equally powerful is the concept of a functional which takes a function as an argument and

returns a value. For example S[y(x)], defined below, operates on a function y(x) and returns
its surface of revolution’s area for 0 < x < L:

S[y(x)] = 2π

∫ L

0

y

√
1 +

(
dy

dx

)2

dx (22-16)

This is the functional to be minimized for the question, “Of all surfaces of revolution that span
from y(x = 0) to y(x = L), which is the y(x) that has the smallest surface area?”
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This idea of finding “which function maximizes or minimizes something” can be very pow-
erful and practical.

Suppose you are asked to run an “up-hill” race from some starting point (x = 0, y = 0) to
some ending point (x = 1, y = 1) and there is a ridge h(x, y) = x2. What is the most efficient
running route y(x)?13
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Figure 22-1: The terrain separating the starting point (x = 0, y = 0) and ending point
(x = 1, y = 1). Assuming a model for how much running speed slows with the steepness
of the path—which route would be quicker, one (y1(x)) that starts going up-hill at first
or another (y2(x)) that initially traverses a lot of ground quickly?

A reasonable model for running speed as a function of climbing-angle α is

v(s) = cos(α(s)) (22-17)

where s is the arclength along the path. The maximum speed occurs on flat ground α = 0
and running speed monotonically falls to zero as α → π/2. To calculate the time required to
traverse any path y(x) with endpoints y(0) = 0 and y(1) = 1,

13 An amusing variation on this problem would be to find the path that the path that a winning downhill
skier should traverse.
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ds

dt
= v(s) = cos(α(s)) =

ds√
ds2 + dh2

=
1√

1 + dh
ds

2
=

1√
1 + dh2

dx2+dy2

dt =
ds

v(s)
=

√
dx2 + dy2

cos(α(s))
=

√
dx2 + dy2 + dh2 =

√
1 +

dy

dx

2

+
dh

dx

2

dx

(22-18)

So, with the hill h(x) = x2, the time as a functional of the path is:

T [y(x)] =

∫ 1

0

√
1 +

dy

dx

2

+ 4x2 dx (22-19)

Mathematica R© Example: (notebook) Lecture-22
Functionals: Introduction to Variational Calculus by Variation of Parameters

1. Instead of trying to find the function y(x) (if such a function exists) that min-
imizes the function in Eq. 22-19, consider the polynomial y(x) = a + bx + cx2

as an “approximating function” and then find the parameters a, b, and c, that
minimize the functional.

2. Ensure that the cubic equation satisfies the boundary conditions and thereby
fix two of the three free parameters

3. By integrating y(x) in Eq. 22-19, the functional equation is transformed to a
function of the remaining free variable. (It is much easier in Mathematica R©

to integrate without limits in Eq. 22-19 and then evaluate the limits in a separate
step.)

4. Find the parameter that minimizes the integral.

5. Visualize the quickest path.

There is a powerful and beautiful mathematical method for finding the extremal functions
of functionals which is called Calculus of Variations.
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By using the calculus of variations, the optimal path y(x) for Eq. 22-19 can be determined:

y(x) =
2x
√

1 + 4x2 + sinh−1(2x)

2
√

5 + sinh−1(2)
(22-20)

The approximation determined in the Mathematica R© example above is pretty good.

Harmonic Oscillators
Methods for finding general solution to the linear inhomogeneous second-order ODE

a
d2y(t)

dt2
+ b

dy(t)

dt
+ cy(t) = F (t) (22-21)

have been developed and worked out in Mathematica R© examples.

Eq. 22-21 arises frequently in physical models, among the most common are:

Electrical circuits: L
d2I(t)

dt2
+ ρlo

dI(t)

dt
+

1

C
I(t) = V (t)

Mechanical oscillators: M
d2y(t)

dt2
+ ηlo

dy(t)

dt
+ Ksy(t) = Fapp(t)

(22-22)

where:
Mechanical Electrical

Second
Order

Mass M : Physical measure of the ratio of
momentum field to velocity

Inductance L: Physical measure of the ra-
tio of stored magnetic field to current

First
Order

Drag Coefficient c = ηlo
(η is viscosity lo is a unit displacement):
Physical measure of the ratio environmental
resisting forces to velocity—or proportion-
ality constant for energy dissipation with
square of velocity

Resistance R = ρlo
(ρ is resistance per unit material length
lo is a unit length): Physical measure of the
ratio of voltage drop to current—or propor-
tionality constant for power dissipated with
square of the current.

Zeroth
Order

Spring Constant Ks: Physical measure
of the ratio environmental force developed
to displacement—or proportionality constant
for energy stored with square of displacement

Inverse Capacitance 1/C: Physical mea-
sure of the ratio of voltage storage rate to
current—or proportionality constant for en-
ergy storage rate dissipated with square of
the current.

Forcing
Term

Applied Voltage V (t): Voltage applied to
circuit as a function of time.

Applied Force F (t): Force applied to os-
cillator as a function of time.

For the homogeneous equations (i.e. no applied forces or voltages) the solutions for phys-
ically allowable values of the coefficients can either be oscillatory, oscillatory with damped
amplitudes, or, completely damped with no oscillations. (See Figure 21-1). The homogeneous
equations are sometimes called autonomous equations—or autonomous systems.

kcq cq Simple Undamped Harmonic Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The simplest version of a homogeneous Eq. 22-21 with no damping coefficient (b = 0,
R = 0, or η = 0) appears in a remarkably wide variety of physical models. This simplest
physical model is a simple harmonic oscillator—composed of a mass accelerating with a linear
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spring restoring force:

Inertial Force = Restoring Force

MAcceleration = Spring Force

M
d2y(t)

dt2
= −Ksy(t)

M
d2y(t)

dt2
+ Ksy(t) = 0

(22-23)

Here y is the displacement from the equilibrium position–i.e., the position where the force,
F = −dU/dx = 0. Eq. 22-23 has solutions that oscillate in time with frequency ω:

y(t) = A cos ωt + B sin ωt

y(t) = C sin(ωt + φ)
(22-24)

where ω =
√

Ks/M is the natural frequency of oscillation, A and B are integration constants
written as amplitudes; or, C and φ are integration constants written as an amplitude and a
phase shift.

The simple harmonic oscillator has an invariant, for the case of mass-spring system the
invariant is the total energy:

Kinetic Energy + Potential Energy =

M

2
v2 +

Ks

2
y2 =

M

2

dy

dt

2

+
Ks

2
y2 =

A2ω2M

2
cos2(ωt + φ) + A2Ks

2
sin2(ωt + φ) =

A2(ω2M

2
cos2(ωt + φ) +

Mω2

2
sin2(ωt + φ) =

A2Mω2 = constant

(22-25)

There are a remarkable number of physical systems that can be reduced to a simple harmonic
oscillator (i.e., the model can be reduced to Eq. 22-23). Each such system has an analog to a
mass, to a spring constant, and thus to a natural frequency. Furthermore, every such system
will have an invariant that is an analog to the total energy—an in many cases the invariant
will, in fact, be the total energy.

The advantage of reducing a physical model to a harmonic oscillator is that all of the
physics follows from the simple harmonic oscillator.
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Here are a few examples of systems that can be reduced to simple harmonic oscillators:

Pendulum By equating the rate of change of angular momentum equal to the torque, the
equation for pendulum motion can be derived:

MR2d2θ

dt2
+ MgR sin θ = 0 (22-26)

for small-amplitude pendulum oscillations, sin(θ) ≈ θ, the equation is the same as a
simple harmonic oscillator.

It is instructive to consider the invariant for the non-linear equation. Because

d2θ

dt2
=

dθ

dt

(
ddθ

dt

dθ

)
(22-27)

Eq. 22-26 can be written as:

MR2dθ

dt

(
ddθ

dt

dθ

)
+ MgR sin(θ) = 0 (22-28)

d

dθ

[
MR2

2

(
dθ

dt

)2

−MgR cos(θ)

]
= 0 (22-29)

which can be integrated with respect to θ:

MR2

2

(
dθ

dt

)2

−MgR cos(θ) = constant (22-30)

This equation will be used as a level-set equation to visualize pendulum motion.

Buoyant Object Consider a buoyant object that is slightly displaced from its equilibrium
floating position. The force (downwards) due to gravity of the buoy is ρbouygVbouy

The force (upwards) according to Archimedes is ρwatergVsub where Vsub is the volume
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of the buoy that is submerged. The equilibrium position must satisfy Vsub−eq/Vbouy =
ρbouy/ρwater.

If the buoy is slightly perturbed at equilibrium by an amount δx the force is:

F =ρwaterg(Vsub−eq + δxAo)− ρbuoygVbuoy

F =ρwatergδxAo

(22-31)

where Ao is the cross-sectional area at the equilibrium position. Newton’s equation of
motion for the buoy is:

Mbuoy
d2y

dt2
− ρwatergAoy = 0 (22-32)

so the characteristic frequency of the buoy is ω =
√

ρwatergAo/Mbouy.

Single Electron Wave-function The one-dimensional Schrödinger equation is:

d2ψ

dx2
+

2m

h̄2 (E − U(x)) ψ = 0 (22-33)

where U(x) is the potential energy at a position x. If U(x) is constant as in a free
electron in a box, then the one-dimensional wave equation reduces to a simple harmonic
oscillator.

In summation, just about any system that oscillates about an equilibrium state can be reduced
to a harmonic oscillator.


