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Nov. 14 2005: Lecture 21:

Higher-Order Ordinary Differential Equations
Reading:
Kreyszig Sections: §2.1 (pp:54–70) , §2.2 (pp:72–75) , §2.3 (pp:76–80)

Higher-Order Equations: Background

For first-order ordinary differential equations (ODEs), F (y′(x), y(x), x), one value y(xo) was
needed to specify a particular solution. For second-order equations, two independent values
are needed. This is illustrated in the following forward-differencing example.

Mathematica r© Example: (notebook) Lecture-21
A Second-Order Forward Differencing Example

Recall the example in Lecture 19 of a first-order differencing scheme: at each iteration
the function grew proportionally to its current size. In the limit of very small forward
differences, the scheme converged to exponential growth.
Now consider a situation in which function’s current rate of growth increases propor-
tionally to two terms: its current rate of growth and its size.

Change in Value’s Rate of Change+α (the Value)+β (Value’s Rate of Change) = 0

To Calculate a forward differencing scheme for this case, let ∆ be the forward-
differencing increment.

(
Fi+2−Fi+1

∆
− Fi+2−Fi+1

∆

∆

)
+ αFi + β

(
Fi+1 − Fi

∆

)
= 0

and then solve for the “next increment” Fi+2 if Fi+1 and Fi are known.

Forward Difference Formulae
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kcq cq Linear Differential Equations; Superposition in the Homogeneous Case . . . . . . . . . . . . . . .
A linear differential equation is one for which the function and its derivatives are each linear—
that is they appear in distinct terms and only to the first power. In the case of a homogeneous
linear differential equation, the solutions are superposable. In other words, sums of solutions
and their multiples are also solutions.

Therefore, a linear heterogeneous ordinary differential equation can be written as a product
of general functions of the dependent variable and the derivatives for the n-order linear case:

0 = f0(x) + f1(x)
dy

dx
+ f2(x)

d2y

dx2
+ · · ·+ fn(x)

dny

dxn

= (f0(x), f1(x), f2(x), . . . , fn(x)) ·
(

1,
dy

dx
,
d2y

dx2
, . . . ,

dny

dxn

)

= ~f(x) · ~Dny

(21-1)

The homogeneous nth-order linear ordinary differential equation is defined by f0(x) = 0 in
Eq. 21-1:

0 = f1(x)
dy

dx
+ f2(x)

d2y

dx2
+ · · ·+ fn(x)

dny

dxn

= (0, f1(x), f2(x), · · · , fn(x)) ·
(

1,
dy

dx
,
d2y

dx2
, . . . ,

dny

dxn

)

= ~fhom(x) · ~Dny

(21-2)

Equation 21-1 can always be multiplied by 1/fn(x) to generate the general form:

0 = F0(x) + F1(x)
dy

dx
+ F2(x)

d2y

dx2
+ · · ·+ dny

dxn

= (F0(x), F1(x), F2(x), . . . , 1)) · (1, dy

dx
,
d2y

dx2
, . . . ,

dny

dxn
)

= ~F (x) · ~Dny

(21-3)

For the second-order linear ODE, the heterogeneous form can always be written as:

d2y

dx2
+ p(x)

dy

dx
+ q(x)y = r(x) (21-4)

and the homogeneous second-order linear ODE is:

d2y

dx2
+ p(x)

dy

dx
+ q(x)y = 0 (21-5)

kcq cq Basis Solutions for the homogeneous second-order linear ODE . . . . . . . . . . . . . . . . . . . . . . .
Because two values must be specified for each solution to a second order equation—the

solution can be broken into two basic parts, each deriving from a different constant. These two
independent solutions form a basis pair for any other solution to the homogeneous second-order
linear ODE that derives from any other pair of specified values.
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The idea is the following: suppose the solution to Eq. 21-5 is found the particular case of
specified parameters y(x = x0) = A0 and y(x = x1) = A1, the solution y(x; A0, A1) can be
written as the sum of solutions to two other problems.

y(x; A0, A1) = y(x,A0, 0) + y(x, 0, A1) = y1(x) + y2(x) (21-6)

where

y(x0, A0, 0) = A0 and y(x1, A0, 0) = 0

y(x0, 0, A1) = 0 and y(x1, 0, A1) = A1

(21-7)

from these two solutions, any others can be generated.

The two arbitrary integration constants can be included in the definition of the general
solution:

y(x) = C1y1(x) + C1y2(x)

= (C1, C2) · (y1, y2)
(21-8)

Second Order ODEs with Constant Coefficients

The most simple case—but one that results from models of many physical phenomena—is
that functions in the homogeneous second-order linear ODE (Eq. 21-5) are constants:

a
d2y

dx2
+ b

dy

dx
+ cy = 0 (21-9)
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If two independent solutions can be obtained, then any solution can be formed from this
basis pair.

Surmising solutions seems a sensible strategy, certainly for shrewd solution seekers. Suppose
the solution is of the form y(x) = exp(λx) and put it into Eq. 21-9:

(aλ2 + bλ + c)eλx = 0 (21-10)

which has solutions when and only when the quadratic equation aλ2 +λx+ c = 0 has solutions
for λ.

Because two solutions are needed and because the quadratic equation yields two solutions:

λ+ =
−b +

√
b2 − 4ac

2a

λ− =
−b−√b2 − 4ac

2a

(21-11)

or by removing the redundant coefficient by diving through by a:

λ+ =
−β

2
+

√
(
β

2
)2 − γ

λ− =
−β

2
−

√
(
β

2
)2 − γ

(21-12)

where β ≡ b/a and γ ≡ c/a.
Therefore, any solution to Eq. 21-9 can be written as

y(x) = C+eλ+x + C−eλ−x (21-13)

Mathematica r© Example: (notebook) Lecture-21

Solutions to d2y
dx2 + β dy

dx
+ γy = 0

Because the fundamental solution depend on only two parameters β and γ, the be-
havior of all solutions can be visualized in the γ-β plane.

1. Insert y(x) = exp(λx) into the ODE y′′+βy′+γy = 0 and solve for a condition
on λ that solutions exist (assuming real coefficients γ and β).

2. Plot the condition that the roots are complex in the γ-β plane. This is the
region of parameter space that gives oscillatory solutions (because exp(r+ ıθ) =
exp(r)(cos(x) + ı sin(x)))

3. Plot the conditions that the λ are real—these are the monotonically growing
(λ > 0) or shrinking (λ < 0) solutions

4. Plot the conditions that the real part is negative, this is the damped oscillatory
region.

5. Plot the conditions that the real part is positive, this is the unbounded growth
region.

6. Use the Mathematica r© function Reduce to find the three regions: (λ+ >
0, λ− > 0)—monotonically growing solutions, (λ+ > 0, λ− < 0)—one growing
and one decaying solution, (λ+ < 0, λ− < 0)—monotonically decaying solutions.
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The behavior of all solutions can be collected into a simple picture:

γ

γ = β2

4

β

Roots are Complex Conjugates

Positive and Negative

Positive Real Part Negative Real Part

Positive Roots Negative Roots

Roots are Real

Figure 21-1: The behaviors of the linear homogeneous second-order ordinary differential
equation d2y

dx2 + β dy
dx

+ γy = 0 plotted according the behavior of the solutions for all β
and γ.

The case that separates the complex solutions from the real solutions, γ = (β/2)2 must
be treated separately, for the case γ = (β/2)2 it can be shown that y(x) = exp(βx/2) and
y(x) = x exp(βx/2) form an independent basis pair (see Kreyszig AEM, p. 74).

Boundary Value Problems

It has been shown that all solutions to d2y
dx2 + β dy

dx
+ γy = 0 can be determined from a linear

combination of the basis solution. Disregard for a moment whether the solution is complex or
real, and ignoring the special case γ = (β/2)2. The solution to any problem is given by

y(x) = C+eλ+x + C−eλ−x (21-14)

How is a solution found for a particular problem? Recall that two values must be specified to
get a solution—these two values are just enough so that the two constants C+ and C− can be
obtained.

In many physical problems, these two conditions appear at the boundary of the domain.
A typical problem is posed like this:

Solve

m
d2y(x)

dx2
+ ν

dy(x)

dx
+ ky(x) = 0 on 0 < x < L (21-15)
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subject to the boundary conditions

y(x = 0) = 0 and y(x = L) = 1

or, solve

m
d2y(x)

dx2
+ ν

dy(x)

dx
+ ky(x) = 0 on 0 < x < ∞ (21-16)

subject to the boundary conditions

y(x = 0) = 1 and y′(x = L) = 0

When the value of the function is specified at a point, these are called Dirichlet conditions;
when the derivative is specified, the boundary condition is called a Neumann condition. It is
possible have boundary conditions that are mixtures of Dirichlet and Neumann.

Mathematica r© Example: (notebook) Lecture-21
Determining Solution Constants from Boundary Values

1. Using Solve, find the specific solution to y(0) = 0 and y(l) = 1.

2. Using Solve, find the specific solution to y(0) = 1 and y′(0) = 0.

When the domain is infinite or semi-infinite and the physical situation indicates that
the solution must be bounded, then one can automatically set the constants associated
with roots with real positive parts to zero, because these solutions grow without
bound.

Fourth Order ODEs, Elastic Beams
Another linear ODE that has important applications in materials science is that for the de-
flection of a beam. The beam deflection y(x) is a linear fourth-order ODE:

d2

dx2

(
EI

d2y(x)

dx2

)
= w(x) (21-17)

where w(x) is the load density (force per unit length of beam), E is Young’s modulus of
elasticity for the beam, and I is the moment of inertia of the cross section of the beam:

I =

∫

A×−sect

y2dA (21-18)

is the second-moment of the distribution of heights across the area.
If the moment of inertia and the Young’s modulus do not depend on the position in the

beam (the case for a uniform beam of homogeneous material), then the beam equation becomes:

EI
d4y(x)

dx4
= w(x) (21-19)

The homogeneous solution can be obtained by inspection—it is a general cubic equation
yhomog(x) = C0 + C1x + C2x

2 + C3x
3 which has the four constants that are expected from a

fourth-order ODE.
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The particular solution can be obtained by integrating w(x) four times—if the constants
of integration are included then the particular solution naturally contains the homogeneous
solution.

The load density can be discontinuous or it can contain Dirac-delta functions Foδ(x− xo)
representing a point load Fo applied at x = xo.

It remains to determine the constants from boundary conditions. The boundary conditions
can be determined because each derivative of y(x) has a specific meaning as illustrated in
Fig. 23-3.

slope: dy
dx

d4y
dx4 = w

EI

w(x)

S

load density
stiffness

d3y
dx3 = S

EI

shear force
stiffness d2y

dx2 = M
EI

bending moment
stiffness

S M M

Figure 21-2: The shape of a loaded beam is determined by the loads applied over its
length and its boundary conditions. The beam curvature is related to the local moment
(imagine two handles rotated in opposite directions on a free beam) divided by the
effective beam stiffness. Shear forces are related to the rate of change of moment along
the beam.
(Polar Bear Photo Art Wolfe The Zone Network
http://classic.mountainzone.com/climbing/greenland/graphics/polar-bear.html )

There are common loading conditions that determine boundary conditions:

Free No applied moments or applied shearing force:

M =
d2y

dx2

∣∣∣∣
boundary

= 0

S =
d3y

dx3

∣∣∣∣
boundary

= 0
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Point Loaded local applied moment, displacement specified.

M =
d2y

dx2

∣∣∣∣
boundary

= Mo

y(x)|boundary = yo

Clamped Displacement specified, slope specified

dy

dx

∣∣∣∣
boundary

= so

y(x)|boundary = yo

Mathematica r© Example: (notebook) Lecture-23
Visualizing beam deflections

general solutions to beam equation


