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Nov. 09 2005: Lecture 20:

Linear Homogeneous and Heterogeneous ODEs

Reading:
Kreyszig Sections: §1.4 (pp:19-22) , §1.5 (pp:25-31) , §1.6 (pp:33-38)

Ordinary Differential Equations from Physical Models

In engineering and physics, modeling physical phenomena is the means by which techno-
logical and natural phenomena are understood and predicted. A model is an abstraction of a
physical system, often with simplifying assumptions, into a mathematical framework. Every
model should be verifiable by an experiment that, to the greatest extent possible, satisfies the
approximations that were used to obtain the model.

In the context of modeling, differential equations appear frequently. Learning how to model
new and interesting systems is a learned skill—it is best to learn by following a few examples.
Grain growth provides some interesting modeling examples that result in first-order ODES.

Grain GrowWth . ... ... .ttt

In materials science and engineering, a grain usually refers a single element in an ensemble
that comprises a polycrystal. In a single phase polycrystal, a grain is a contiguous region of
material with the same crystallographic orientation. It is separated from other grains by grain
boundaries where the crystallographic orientation changes abruptly.

A grain boundary contributes extra free energy to the entire system that is proportional
to the grain boundary area. Thus, if the boundary can move to reduce the free energy it will.

Consider simple, uniformly curved, isolated two- and three-dimensional grains.
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Figure 20-1:  lllustration of a two-dimensional isolated circular grain and a three-
dimensional isolated spherical grain. Because there is an extra energy in the system
AGsp = 2w Ry, and AGsp = 4w R*y,, there is a driving force to reduce the radius
of the grain. A simple model for grain growth is that the velocity (normal to itself) of
the grain boundary is vy, = Mg, ygk Where My, is the grain boundary mobility and « is
the mean curvature of the boundary. The normal velocity vy, is towards the center of
curvature.

A relevant question is “how fast will a grain change its size assuming that grain boundary
migration velocity is proportional to curvature?”

For the two-dimensional case, the rate of change of area can be formulated by considering
the following illustration.
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Figure 20-2: A segment of a grain boundary moving with normal velocity v,, will move
a distance v, At in a short time At. The motion will result in a change of area —AA

for the shrinking grain. Each segment, ds, of boundary contributes to the loss of area
by AA = —v,Atds.

AA = v,Atds
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Because for a circle, the curvature is the same at each location on the grain boundary, the
curvature is uniform and v, = Mgrg Ve = Mapyge/R. Thus

dA

1
i — Mgy =2 R = =27 Mgy yg (20-1)

R

Thus, the area of a circular grain changes at a constant rate, the rate of change of radius is:

dA  drR? AR
E = dt = 2’/TRE = _27ngbngb (20—2)

which is a first-order, separable ODE with solution:

RA(t) = R(t = 0) = —2Myppt (20-3)

For a spherical grain, the change in volume AV due to the motion of a surface patch dS
in a time At is AV = v,AtdS. The curvature of a sphere is

1 1
(=4 = 20-4
Rsphere (R R) ( 0 )

Therefore the velocity of the interface is v, = 2M gy, /R. The rate of change of volume due
to the contributions of each surface patch is

av

2
= —Mgbygbﬁzmz? = 8T My R == —4(67%)Y3 My V13 (20-5)

which can be separated and integrated:
V23(t) — V¥3(t = 0) = —constant;t (20-6)

or

R*(t) — R*(t = 0) = —constantst (20-7)

which is the same functional form as derived for two-dimensions.

The problem (and result) is more interesting if the grain doesn’t have uniform curvature.
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boundary and decreases the area in other regions.

Figure 20-3: For a two-dimensional grain with non-uniform curvature, the local normal
velocity (assumed to be proportional to local curvature) varies along the grain boundary.
Because the motion is in the direction of the center of curvature, the velocity can be
such that its motion increases the area of the interior grain for some regions of grain

However, it can still be shown that, even for an irregularly shaped two-dimensional grain,

A(t) — A(t = 0) = —(const)t.
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Integrating Factors, Exact Forms

Exact Differential FOrmS . ....... ... . e
In classical thermodynamics for simple fluids, expressions such as

U =TdS — PdV

ou oUu
= (%>Vd5+ (W)de (20-8)
=0q + ow

represent the differential form of the combined first and second laws of thermodynamics. If
dU = 0, meaning that the differential Eq. 20-8 is evaluated on a surface for which internal
energy is constant, U(S, V) = const, then the above equation becomes a differential form

oU U
= [ = - 20-
0 (as)vds+(av>sdv (20-9)

This equation expresses a relation between changes in S and changes in V' that are necessary
to remain on the surface U(S, V) = const.
Suppose the situation is turned around and you are given the first-order ODE

dy M(z,y)
ICAN 20-10
dx N(z,y) ( )
which can be written as the differential form
0 = M(x,y)dz + N(z, y)dy (20-11)

Is there a function U(x,y) = const or, equivalently, is it possible to find a curve represented
by U(x,y) = const?
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If such a curve exists then it depends only on one parameter, such as arc-length, and on

that curve dU(z,y) = 0.
The answer is, “Yes, such a function U(x,y) = const exists if an only if M (z,y) and N(z,y)

satisfy the Maxwell relations”
OM(z,y) _ ON(z,y)

dy ox
Then if Eq. 20-12 holds, the differential form Eq. 20-11 is called an ezact differential and a U
exists such that dU = 0 = M (x,y)dx + N(x,y)dy.

(20-12)

Integrating Factors and Thermodynamics .............. ... ...
For fixed number of moles of ideal gas, the internal energy is a function of the temperature
only, U(T) — U(T,) = Cy(T —1,). Consider the heat that is transfered to a gas that changes

it temperature and volume a very small amount:
dU =CydT = 6q + dw = dqg — PdV
0q = CydT + PdV

(20-13)

Can a Heat Function ¢(7, V') = constant be found?
To answer this, apply Maxwell’s relations.

Homogeneous and Heterogeneous Linear ODES

A linear differential equation is one that does not contain any powers (greater than one) of
the function or its derivatives. The most general form is:

Q(x)% + P(x)y = R(x) (20-14)
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Equation 20-15 can always be reduced to a simpler form by defining p = P/Q and r = R/Q:

Y s pla)y = (@) (20-15)

If r(x) = 0, Eq. 20-15 is said to be a homogeneous linear first-order ODE; otherwise Eq. 20-
15 is a heterogeneous linear first-order ODE.

The reason that the homogeneous equation is linear is because solutions can superimposed—
that is, if y1(x) and yo(z) are solutions to Eq. 20-15, then y;(x) + y2(z) is also a solution to
Eq. 20-15. This is the case if the first derivative and the function are themselves linear. The
heterogeneous equation is also called linear in this case, but it is important to remember
that sums and/or multiples of heterogeneous solutions are also solutions to the heterogeneous
equation.

The homogeneous equation has a solution of the form

y(z) = const e~/ P@4d (20-16)
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MATHEMATICA® Example: (notebook) Lecture-20
DSolve in Homogeneous and Heterogeneous ODEs

1. Show how DSolve solves the homogeneous equation
dy
_— — O
o T p@)y

2. Show how DSolve solves the heterogeneous equation

3. Note how the homogeneous solution is one of the terms in the sum for the
heterogenous solution.

A trick (or, an integrating factor which amounts to the same thing) can be employed to find

the solution to the heterogeneous equation. Multiply both sides of the heterogeneous equation
by efp(x):lo

T d x x
ela p(z)dzd—y + ela PEOEp 1)y = ela PEEE () (20-17)
x
Notice that the left-hand-side can be written as a derivative of a simple expression
ela PRIZ_Z t ela PR 5 1)y = —(ela PPy there fore (20-18)
dx dx
d gz (e @)
d—(e o P2 = Py () (20-19)
T

which can be integrated and then multiplied on both sides by e~ Ja P(2)d=;
y(:[;) — e~ [ p(2)dz {/ T’(Z) <€faz:0(77)d77> dz} (20_20)
b

Example: The Bernoulli Equation
The linear first-order ODEs always have a closed form solution in terms of integrals. In general
non-linear ODEs do not have a general expression for their solution. However, there are some
non-linear equations that can be reduced to a linear form; one such case is the Bernoulli
equation:

d
ot pla)y =r(2)y" (20-21)
Reduction relies on a clever change-of-variable, let u(x) = [y(z)]'~*, then Eq. 20-21 becomes
du
e +(1—a)p(z)u=(1—a)r(z) (20-22)
x

which is a linear heterogeneous first-order ODE and has a closed-form solution.

0The statistical definition of entropy is S(T,V) = klogQ(U(T,V)) or QU(T,V)) = exp(S/k). Entropy
plays the role of integrating factor.
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MATHEMATICA® Example: (notebook) Lecture-20
Converting a Nonlinear into a Linear ODE
Use MATHEMATICA® to show the steps that reduce Bernoulli’s equation to a linear
form.
Illustration of a Numerical Solution to a Non-linear First-Order ODE

Using NDSolve




