
120 MIT 3.016 Fall 2005 c© W.C Carter Lecture 19

Nov. 07 2005: Lecture 19:

Ordinary Differential Equations: Introduction

Reading:
Kreyszig Sections: §1.1 (pp:2–8) , §1.2 (pp:10–12) , §1.3 (pp:14–18)

Differential Equations: Introduction

Ordinary differential equations are relations between a function of a single variable, its
derivatives, and the variable:
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A first-order Ordinary Differential Equation (ODE) has only first derivatives of a function.
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A second-order ODE has second and possibly first derivatives.
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For example, the one-dimensional time-independent Shrödinger equation,
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is a second-order ordinary differential equation that specifies a relation between the wave
function, ψ(x), its derivatives, and a spatially dependent function U(x).

Differential equations result from physical models of anything that varies—whether in
space, in time, in value, in cost, in color, etc. For example, differential equations exist for mod-
eling quantities such as: volume, pressure, temperature, density, composition, charge density,
magnetization, fracture strength, dislocation density, chemical potential, ionic concentration,
refractive index, entropy, stress, etc. That is, almost all models for physical quantities are
formulated with a differential equation.

The following example illustrates how some first-order equations arise:
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Mathematica r© Example: (notebook) Lecture-19
Iteration: First-Order Sequences

Consider a function that changes according to its current size–that is, at a subsequent
iteration, the function grows or shrinks according to how large it is currently.

Fi+1 = Fi + αFi

which is equivalent to
Fi = Fi−1 + αFi−1

Iteration Trajectories

Mathematica r© Example: (notebook) Lecture-19
First-Order Finite Differences

The example above is not terribly useful because the change at each increment is
an integer and the function only has values for integers. To generalize, a forward
difference can be added that allows the variable of the function to “go forward” at
an arbitrarily small increment, δ.
If the rate of change of y, is a function f(y) of the current value, then,

yi+1 = yi + δf(yi)

or
y(x = (i+ 1)δ)) = y(x = iδ) + δf(y(x = iδ))

where x plays the role of an ‘indexed grid’ with small separations δ.
Finite Differences
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Mathematica r© Example: (notebook) Lecture-19
First-Order Operators

The forward-difference equation considered above relates the next iteration, yi+1 to
the current value yi. Only yi appear on the right-hand-side of the equation—the
right-hand-side can be thought of an “Operation” on y that pushes it to the next
iteration, i.e.,

yi+1 = F(yi)

In this way, the nth iteration is determined from the initial value with

yn = Fn(y0)

Increment Operators

Geometrical Interpretation of Solutions

The relationship between a function and its derivatives for a first-order ODE,

F (
dy(x)

dx
, y(x), x) = 0 (19-4)

can be interpreted as a level set formulation for a two-dimensional surface embedded in a
three-dimensional space with coordinates (y′, y, x). The surface specifies a relationship that
must be satisfied between the three coordinates.

If y′(x) can be solved for exactly,

dy(x)

dx
= f(x, y) (19-5)

then y′(x) can be thought of as a height above the x-y plane.
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Mathematica r© Example: (notebook) Lecture-19
The Geometry of First-Order ODES: Examples

Consider Newton’s law of cooling that states that the rate that a body cools by
radiation is proportional to the difference in temperature between the body and its
surroundings:

dT (t)

dt
= −k(T − To)

Make the equation simpler by converting to a non-dimensional form, let Θ = T/To

and τ = t/k, then
dΘ(τ)

dτ
= (1−Θ)

Flows

Separable Equations

If a first-order ordinary differential equation F (y′, y, x) = 0 can be rearranged so that only
one variable, for instance y, appears on the left-hand-side multiplying its derivative and the
other, x, appears only on the right-hand-side, then the equation is said to be ‘separated.”

g(y)
dy

dx
= f(x)

g(y)dy = f(x)dx
(19-6)

Each side of such an equation can be integrated with respect to the variable that appears on
that side:

∫ y

y(xo)

g(η)dη =

∫ x

xo

f(ξ)dξ (19-7)

if the initial value, y(xo) is known. If not, the equation can be solved with an integration
constant C0,

∫
g(y)dy =

∫
f(x)dx+ C0 (19-8)

where C0 is determined from initial conditions.
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Mathematica r© Example: (notebook) Lecture-19
Using Mathematica r© ’s Built-in Ordinary Differential Equation Solver

Mathematica r© has built-in exact and numerical differential equations solvers.
DSolve takes a representation of a differential equation with initial and boundary
conditions and returns a solution if it can find one. If insufficient initial or boundary
conditions are specified, then “integration constants” are added to the solution.
DSolve[]

While the accuracy of the first-order differencing scheme can be determined by comparison
to an exact solution, the question remains of how to establish accuracy and convergence with
the step-size δ for an arbitrary ODE. This is a question of primary importance and studied by
Numerical Analysis.


