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Nov. 04 2005: Lecture 18:

The Fourier Transform and its Interpretations

Reading:
Kreyszig Sections: §10.5 (pp:547-49) , §10.8 (pp:557-63) , §10.9 (pp:564—68) , §10.10 (pp:569-75)

Fourier Transforms

Expansion of a function in terms of Fourier Series proved to be an effective way to represent
functions that were periodic in an interval x € (—\/2, —A/2). Useful insights into “what makes
up a function” are obtained by considering the amplitudes of the harmonics (i.e., each of the
sub-periodic trigonometric or complex oscillatory functions) that compose the Fourier series.
That is, the component harmonics can be quantified by inspecting their amplitudes. For
instance, one could quantitatively compare the same note generated from a Stradivarius to an
ordinary violin by comparing the amplitudes of the Fourier components of the notes component
frequencies.

However there are many physical examples of phenomena that involve nearly, but not
completely, periodic phenomena—and of course, quantum mechanics provides many examples
of isolated events that are composed of wave-like functions.

It proves to be very useful to extend the Fourier analysis to functions that are not periodic.
Not only are the same interpretations of contributions of the elementary functions that compose
a more complicated object available, but there are many others to be obtained.

For example:

momentum /position The wavenumber k, = 27n/\ turns out to be proportional to the
momentum in quantum mechanics. The position of a function, f(x), can be expanded in
terms of a series of wave-like functions with amplitudes that depend on each component
momentum—this is the essence of the Heisenberg uncertainty principle.

diffraction Bragg’s law, which formulates the conditions of constructive and destructive in-
terference of photons diffracting off of a set of atoms, is much easier to derive using a
Fourier representation of the atom positions and photons.

To extend Fourier series to non-periodic functions, the domain of periodicity will extended
to infinity, that is the limit of A — oo will be considered. This extension will be worked out
in a heuristic manner in this lecture—the formulas will be correct, but the rigorous details are
left for the math textbooks.

Recall that the complex form of the Fourier series was written as:

N 2
f(z) :n_zoo Ay, e where k, = %
Y (18-1)
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where Ay, is the complex amplitude associated with the k, = 27n /A reciprocal wavelength or
wavenumber.
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This can be written in a more symmetric form by scaling the amplitudes with A—Ilet

Ay, = V/27Cy, /A, then

f(z) = Z 2+Ck"e’k"”” where k, = %Tn
n=-oo (18-2)

A2
f(x)e_m"‘”dx

7]
"2 o

Considering the first sum, note that the difference in wave-numbers can be written as:

C

2T

Ak = ko — by = 5

(18-3)
which will become infinitesimal in the limit as A — oo. Substituting Ak/(27) for 1/ in the
sum, the more “symmetric result” appears,

1 > 9
f(z) :\/_2_7r ; Cr, " Ak where k, = %
Y (18-4)
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Now, the limit A\ — oo can be obtained an the summation becomes an integral over a
continuous spectrum of wave-numbers; the amplitudes become a continuous function of wave-
numbers, Cy, — g(k):

Ch

1 > 1k
f(z) ZE/_OOQUC)@ dk

1 * —ikx
g(k) :E/—oo flx)e™ da

The function g(k = 27/\) represents the density of the amplitudes of the periodic functions
that make up f(x). The function g(k) is called the Fourier Transform of f(x). The function
f(x) is called the Inverse Fourier Transform of g(k), and f(x) and g(k) are a the Fourier
Transform Pair.

(18-5)

Higher Dimensional Fourier Transforms .................uiuiiiiiiiiiiiiiiaian.,
Of course, many interesting periodic phenomena occur in two dimensions (e.g., two spatial
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dimensions, or one spatial plus one temporal), three dimensions (e.g., three spatial dimensions
or two spatial plus one temporal), or more.

The Fourier transform that integrates j_;:? over all  can be extended straightforwardly

to a two dimensional integral of a function f(7) = f(x,y) by % over all x and y—or to a

three-dimensional integral of f (f’)% over an infinite three-dimensional volume.
us

A wavenumber appears for each new spatial direction and they represent the periodicities
in the x-, y-, and z-directions. It is natural to turn the wave-numbers into a wave-vector

27 27 2w

k= (ke by ko) = (5=, —, = 18-

( ) VY ) <Am )\y Ay) ( 8 6)

where ); is the wavelength of the wave-function in the i** direction.

The three dimensional Fourier transform pair takes the form:
1 R
f(@) = /// g(k:)e’k'xdk;xdkydkrz
Ve )

(18-7)

(k) :\/ﬁ / / / Z F(@)e Fdadydz

Properties of Fourier Transforms

Dirac Delta Functions .. ..............o.e.e ot
Because the inverse transform of a transform returns the original function, this allows a
definition of an interesting function called the Dirac delta function §(z — z,). Combining
the two equations in Eq. 18-5 into a single equation, and then interchanging the order of

integration:
10 =g [ [ s ay etar

ro = [~ ro g [ oo a (18-5)

[e.e] —00

Apparently, a function can be defined

1 o0
oz —z,) = / e* @0 gk (18-9)

2r ) o

that has the property
F@) = / 5z — 20) f(x)da (18-10)
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in other words, ¢ picks out the value at x = x, and returns it outside of the integration.

Parseval’s TREOTEM . ..ottt ettt e ettt
The delta function can be used to derive an important conservation theorem.
If f(z) represents the density of some function (i.e., a wave-function like ¢)(x)), the square-
magnitude of f integrated over all of space should be the total amount of material in space.

/ f(x)f(z)dr = /_ Z { (\/%g(k)e““d@ (\/LQ_Wg(H)eMdﬁ) } da (18-11)

where the complex-conjugate is indicated by the over-bar. This exponentials can be collected
together and the definition of the d-function can be applied and the following simple result can
is obtained

/ flz)f(z)dz = /_00 g(k)g(k)dk = (18-12)

o0

which is Parseval’s theorem. It says, that the magnitude of the wave-function, whether it is
summed over real space or over momentum space must be the same.

Convolution TREOTEM . ........c.iue ittt et
The convolution of two functions is given by

F(z) = pi(x) % pa(x m/ p1(n)p2(z — n)dn (18-13)

If p; and p, can be interpreted as densities in probability, then this convolution quantity can be
interpreted as “the total joint probability due to two probability distributions whose arguments
add up to z.”?

The proof is straightforward that the convolution of two functions, p;(z) and ps(z), is a
Fourier integral over the product of their Fourier transforms, ¢, (k) and ¢ (k):

(o) pnla) = = / (el n)dn:% /_wak)wz(k)emczk (18-14)

This implies that Fourier transform of a convolution is a direct product of the Fourier trans-
forms w1 (k)2 (k).

Another way to think of this is that “the net effect on the spatial function due two interfering
waves is contained by product the fourier transforms.” Practically, if the effect of an aperture

9To think this through with a simple example, consider the probability that two dice sum up 10. It is the
sum of p1(n)p2(10 — n) over all possible values of n.
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(i.e., a sample of only a finite part of real space) on a wave-function is desired, then it can be
obtained by multiplying the Fourier transform of the aperture and the Fourier transform of
the entire wave-function.

MATHEMATICA® Example: (notebook) Lecture-18

Creating Lattices for Subsequent Fourier Transform
A diffraction pattern from a group of scattering centers such atoms is related to the
Fourier transform of the “atom” positions:

1. Create “pixel images” of lattices by placing ones (white) and zeroes (black) in
a rectangular grid.

2. This can be done by creating “white” matrix sets and “black” matrix sets and
then copying them periodically into the rectangular region.

3. Recursive copying operations will create a “perfect lattice.”

MATHEMATICA® Example: (notebook) Lecture-18.nb

Discrete Fourier Transforms
A Fourier transform is over an infinite domain. Numerical data is seldom infinite,
therefore a strategy must be applied to get a Fourier transform of data.
Discrete Fourier transforms (DFT) operate by creating a lattice of copies of the orig-
inal data and then returning the Fourier transform of the result. Symmetry elements
within the data appear in the Discrete Fourier transform and are superimposed with
the Transform of the symmetry operations due to the virtual infinite lattice of data
patterns.
Because there are a finite number of pixels in the data, there are also the same finite
number of sub-periodic wave-numbers that can be determined. In other words, the
Discrete Fourier Transform of a N x M image will be a data set of N x M wave-

numbers:
1 2 N
Di te F'T' Data = 2 .
erete ata 7T(N pixels’ Npixels’ N pixels)
1 2 M

x 27 (

)

Mpixels’ Mpixels’ ~~ Mpixels

representing the amplitudes of the indicated periodicities.

Visualizing Fourier Transorms
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MATHEMATICA® Example: (notebook) Lecture-18.nb

Fourier Transforms on Lattices with Thermal Noise
Lattices in real systems not only contain defects, but also some uncertainty in the
positions of the atoms because of thermal effects such as phonons.

Fourier Transforms with defects

MATHEMATICA® Example: (notebook) Lecture-18.nb

Imaging from Selected Regions of Reciprocal Space
To select and interpret different regions of Fourier space, a function will be produced
that selects a particular region of the Fourier Space (i.e., as selected set of possible
periodicities) and then visualize the Back-Transform of only that region.

Aperatures in k-space
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MATHEMATICA® Example: (notebook) Lecture-18.nb

Taking Discrete Fourier Transforms of Images
A image in graphics format, such as a .gif, contains intensity as a function of position.
If the function is gray-scale data, then each pixel typically takes on 2% discrete gray
values between 0 and 255. This data can be input into MATHEMATICA® and then
Fourier transformed.

Importing images and Fourier Transforming them




