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Oct. 03 2005: Lecture 8:

Complex Numbers and Euler’s Formula

Reading:
Kreyszig Sections: §12.1 (pp:652-56) , §12.2 (pp:657-62) , §12.6 (pp:679-82) , §12.7 (pp:682-85)

Complex Numbers and Operations in the Complex Plane

With + = v/—1, the complex numbers can be defined as the space of numbers spanned by

the vectors:
1 0
(O>and(z> (8-1)

so that any complex number can be written as

z:x(g))—l—y(?) (8-2)

z=x+1y (8-3)

or just simply as

where x and y are real numbers. Rez = z and Imz = y.
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MATHEMATICA® Example: (notebook) Lecture-08
Operations on complex numbers

Addition, subtraction, multiplication, division

Complex Plane and Complex Conjugates ................. e,

Because the complex basis can be written in terms of the vectors in Equation 8-1, it is

natural to plot complex numbers in two dimensions—typically these two dimensions are the
“complex plane” with (0,2) associated with the y-axis and (1,0) associated with the z-axis.

The reflection of a complex number across the real axis is a useful operation. The image
of a reflection across the real axis has some useful qualities and is given a special name—“the
complex conjugate.”
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Figure 8-1: Plotting the complex number z in the complex plane: The complex conjugate
(2) is a reflection across the real axis; the minus (—z) operation is an inversion through
the origin; therefore —(z) = (—z) is equivalent to either a reflection across the imaginary
axis or an inversion followed by a reflection across the real axis.

The real part of a complex number is the projection of the displacement in the real
direction and also the average of the complex number and its conjugate: Rez = (2+2)/2.
The imaginary part is the displacement projected onto the imaginary axis, or the complex
average of the complex number and its reflection across the imaginary axis: Imz =

(= — 2)/(2).




46 MIT 3.016 Fall 2005 © W.C Carter Lecture 8

Polar Form of Complex Numbers

There are physical situations in which a transformation from Cartesian (z,y) coordinates
to polar (or cylindrical) coordinates (r, ) simplifies the algebra that is used to describe the
physical problem.

An equivalent coordinate transformation for complex numbers, z = z+1y, has an analogous
simplifying effect for multiplicative operations on complex numbers. It has been demonstrated
how the complex conjugate, z, is related to a reflection—multiplication is related to a counter-
clockwise rotation in the complex plane. Counter-clockwise rotation corresponds to increasing

0.
The transformations are:

Tz =r7rcosf

(,y) — (7"79>{ y = rsinf

<r,e>ﬁ<x,y>{ r=yat sy

0 = arctan%

(8-4)

where arctan € (—7, 7.

Multiplication, Division, and Roots in Polar Form ...,
One advantage of the polar complex form is the simplicity of multiplication operations:
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DeMoivre’s formula:
2" = r"(cosnf + 1sinnd) (8-5)

0+ 2km . 0+ 2km
————— +85in ———
n

¥z = /(cos ) (8-6)

MATHEMATICA® Example: (notebook) Lecture-07
Polar Form of Complex Numbers

Writing a function to convert to polar form

Exponentiation and Relations to Trignometric Functions
Exponentiation of a complex number is defined by:

z

e” = "™ = e"(cos y + 1siny) (8-7)

Exponentiation of a purely imaginary number advances the angle by rotation:
e =cosy +1siny (8-8)
combining Eq. 8-8 with Eq. 8-7 gives the particularly useful form:
z=x+wy=re? (8-9)

and the useful relations (that can be obtained simply by considering the geometry of the
complex plane)

e2m — 1 oM — _] e ™ —_] 6%% = 3_%2 = — (8—10)
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Judicious subtraction of powers in Eq. 8-8 and generalization gives the following useful
relations for trigonometric functions:

ev® + e~ ¥ ) e — efiz
cosz = ———— sing = ——
2 21
e+ e * . eF —e?
cosh z = — sinh z = — (8-11)

cosz = coshiz  2sinz = sinhiz

cos1z = cosh z sinvz = ¢sinh 2

MATHEMATICA® Example: (notebook) Lecture-07

Numerical precision and rounding of complex numbers

Numerical and symbolic representations of complex numbes

Roots of polynomial equations

Handling complex roots of polynomial equations




