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Sept. 23 2005: Lecture 7:

Linear Algebra

Reading:
Kreyszig Sections: §6.5 (pp:338–41) , §6.6 (pp:341–47) , §6.7 (pp:350–57) , §6.8 (pp:358–64)

Uniqueness and Existence of Linear System Solutions

It would be useful to use the Mathematica Help Browser and look through
the section in the Mathematica Book: Advanced Mathematics/ Linear Alge-
bra/Solving Linear Equations

A11x1 + A12x2 + A13x3 + . . . + A1nxn = b1

A21x1 + A22x2 + A23x3 + . . . + A2nxn = b2

... =
...

Ak1x1 + Ak2x2 + Ak3x3 + . . . + Aknxn = bk

... =
...

Am1x1 + Am2x2 + Am3x3 + . . . + Amnxn = bm

(7-1)

Aijxi = bj (7-2)

A~x = ~b (7-3)
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Mathematica r© Example: (notebook) Lecture-07
Properties of Determininants

det A = det




1 2 1 1
−1 4 −2 0
1 2 4 5
1 0 1 1


 = 14 (7-4)

A~x =




a
b
c
d


 gives solution ~x =




a+b−2c+9d
7

a−d
2

13a−8b+2c−23d
14−15a+6b+2c+19d
14


 (7-5)

Taking the matrix A, and replacing the third row by a linear combination ( p ×
first row + q × second row + r × fourth row ) of the other rows:

det Ao = det




1 2 1 1
−1 4 −2 0

p− q + r 2p + 4q p− 2q + r p + r
1 0 1 1


 = 0 (7-6)

Ao~x =




a
b
c
d


 gives no unique solution for ~x (7-7)

No Solutions

Homogeneous Equation

Ao~x =




0
0
0
0


 gives solutions for ~x =




−2χ
0
χ
χ


 (7-8)

Infinitely many solutions

kcq cq Uniqueness of solutions to the nonhomogeneous system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A~x = ~b (7-9)
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kcq cq Uniqueness of solutions to the homogeneous system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A~xo = ~0 (7-10)

kcq cq Adding solutions from the nonhomogeneous and homogenous systems . . . . . . . . . . . . . . . .

You can add any solution to the homogeneous equation (if they exist there are infinitely
many of them) to any solution to the nonhomogeneous equation and the result is still a solution
to the nonhomogeneous equation.

A(~x + ~xo) = ~b (7-11)

Determinants
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Mathematica r© Example: (notebook) Lecture-07
Properties of determinants, cont’d

Determinants of random matrices

kcq cq The properties of determinants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Vector Spaces



MIT 3.016 Fall 2005 c© W.C Carter Lecture 7 41

Consider the position vector

~x =




x
y
z


 =




x1

x2

x3


 (7-12)

The vectors (1, 0, 0), (0, 1, 0), and (0, 0, 1) can be used to generate any general position by
suitable scalar multiplication and vector addition:

~x =




x
y
z


 = x




1
0
0


 + y




0
1
0


 + z




0
0
1


 (7-13)

Thus, three dimensional real space is “spanned” by the three vectors: (1, 0, 0), (0, 1, 0), and
(0, 0, 1). These three vectors are candidates as “basis vectors for <3.”

Consider the vectors (a,−a, 0), (a, a, 0), and (0, a, a) for real a 6= 0.

~x =




x
y
z


 =

x + y

2a




a
−a
0


 +

x− y

2a




a
a
0


 +

x− y + 2z

2a




0
a
a


 (7-14)

So (a,−a, 0), (a, a, 0), and (0, a, a) for real a 6= 0 also are basis vectors and can be used to
span <3.

The idea of basis vectors and vector spaces comes up frequently in the mathematics of
materials science. They can represent abstract concepts as well as shown by the following two
dimensional basis set:
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basis vector 1 basis vector 2

+ +

+ +

+ +

= =

= =

= =

1.0 1.0

0.5 0.7

0.2 1.0

1.0 0.1

1.0 0.5

1.0 0.0

Figure 7-1: A vector space for two-dimensional CsCl structures. Any combination of
center-site concentration and corner-site concentration can be represented by the sum
of two basis vectors (or basis lattice). The set of all grey-grey patterns is a vector space
of patterns.

Linear Transformations
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Mathematica r© Example: (notebook) Lecture-07
Visualization of linear transformations

1. Take a polyhedron (an octahedron, for example) and color each of the faces and
display it.

2. Apply the matrix: 


1 0 0
0 1 0
0 0 −1


 (7-15)

to each of the vertices. Note that the transformation reflects along the z-
directions across the x-y plane.

3. Apply the matrix: 


1 0 0
0 1 0
0 0 5


 (7-16)

to each of the vertices.
Using Show[]

4. Apply the matrix: 


cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1


 (7-17)

to each of the vertices. Its determinant is unity.


