Homework 31 — Solution to Individual
Exercises

‘ Clear["Global ="]

Individual Exercise 13-1: (Kreyszig MCG 6.4, p. 77)
Using the matrices provided

{{1,3,2}, {3,5,0},{2,0,4}}

{{0! 2! 1}5 {_2! 0, _3}5 {_1! 3, 0}}
{{1}, {0}, {-2}}

{{3}, {1}, {2}

{{1,3, 2}, {3, 5, 0}, {2, 0, 4}}

{{05 2s 1}5 {_25 Os _3}5 {_15 35 0}}

{{1}, {0}, {-2}}

{{3}, (1}, {2}}

HWO03_Solution.nb

Going to it:

‘ B.c

{{-2}, {4}, {-1}}

‘ % // MatrixForm

‘ Transpose[c].A.c

{93}

‘ A.B.c

{{8}, {14}, {-8}}

‘ % // MatrixForm

HWO03_Solution.nb

w

‘ Flatten[A.c].Flatten[Transpose[B.d]]

‘ Transpose[d].B.d

{{0}}

‘ B.d

{{4}, {-12}, {0}}

As to why the result is zero, look at the eigensystem of B

‘ Eigensystem[B]

Note that the third eigenvector is equal to d and its corresponding
eigenvalue is 0. Multiplication of a matrix by its eigenvector returns
a parallel vector scaled in length by the corresponding eigenvalue.

HWO03_Solution.nb

Individual Exercise 13-2: (Kreyszig MCG 7.10, p. 87)

‘ Clear[A, B]

{{3, 4}5 {4, _3}}

A =
P= {{_45 2}5 {35 _1}}

{{35 4}5 {45 _3}}

{{_4! 2}5 {35 _1}}

‘ B = Inverse|P].A.P

{{_255 12}5 {_505 25}}

Note that by definition, B is similar to A (B was obtained from A by a
similarity transformation).

EigA = Eigensystem[A]
EigB = Eigensystem[B]

{{_5! 5}5 {{_15 2}5 {25 1}}}

General::spelll :
Possible spelling error: new symbol name "EigB'" is similar to existing symbol "EigA". More...

{{_5! 5}5 {{35 5}5 {25 5}}}

HWO03_Solution.nb 5

Obviously, the eigenvalues are the same.

Inverse[P].EigA[[2, 1]]
Inverse[P].EigA[[2, 2]]

{2, 5}

We see also that multiplication of Inverse[P] by an eigenvector of A
yields an eigenvector of B (see Kreyszig AEM Theorem 1, p. 392).

Individual Exercise 13-3: (Kreyszig MCG 7.12, p. 87)
‘ Clear[A]

Define the matrix A by
| A =54 0.2

{{5, 4}, {1, 2}}

‘ EiVecA = Eigenvectors|[A]

{{45 1}s {_1s 1}}

HWO03_Solution.nb

Make a square matrix of eigenvectors, each eigenvector a column
of the matrix.

‘ X = Transpose[EiVecA]

{{45 _1}5 {15 1}}

‘ DMatrix = Inverse[X].A.X

{{6, 0}, {0, 1}}

‘ Eigenvalues[A]

Homework 3G — Solution to Group
Exercises

‘ Clear["Global ="]

HWO03_Solution.nb 7

Homework 3G — Solution to Group
Exercises

Clear["Global ="]

Group Exercise G3-1: Edge Dislocation

Enter the stress matrix in cartesian coordinates; use Replace to con-
vert to Polar form.

HWO03_Solution.nb

Gb -y@Bx%2+y?
Oxx =)
271'(1 —V) (x2 +y2)2
Gb x(x2-y?
Oxy = ;
27(1-v) (x2 +y?)?
Gb x(x2-y?
Oyx = ;
27 (1-v) (x2 +y2)°
Gb y(x*-y%
Oyy = 5’
27 (1-v) (x2+y?)

SigMatcart - {{Uxx’ 0-xy}’ {O-yx’ O-yy}};
MatrixForm|[%]

bGy @ x2+y?) b G x (x?-y?)
271 (x2+y2)2 (1-v) 27 (x2+y2)% (1-v)

b G x (x2—y?) bGy(x2-y?)
2 7 (x2+y2)? (1-v) 2 7 (x2+y2)? (1-v)

O =0y [- (X > rSin[6d], y - r Cos[6]};
Org = Oxy [- {X = rSin[d], y - r Cos[d]};
Ogr = Oyx [- (X = rSin[d], y - r Cos[6]};
Ogg = Tyy [. {X = rSin[d], y - r Cos[6]};

General::spelll :

HWO03_Solution.nb

SigMatPolar = {0, o9}, {Tgrs Te0}};
MatrixForm|[%]

__ bGrCos[6] (r* Cos[6]*+3r* Sin[6]*) b GrSin[6] (—r* Cos[6]>+r° Sin
2 7 (1-) (12 Cos[0]2+12 Sin[0]?)" 27 (1-v) (r? Cos[6]*+r2 Sin[6]

b G r Sin[6] (-r? Cos[#]?+r? Sin[0]?) b G r Cos[d] (-r? Cos[#]?>+r? Si
2 1 (1=v) (r2 Cos[0]2+r2 Sin[6]?)" 2 7 (1-v) (r2 Cos[6]%+r2 Sin[6

2
HydroPress[x_,y_]:= 3 (Txx + Oyy)

10 HWO03_Solution.nb

ContourPlot[HydroPress[x,y] /. {G-—>1,b->1,v->1/3},
{x, -4, 4}, {y, —4, 4}, Contours - 50]

-2t

-4 -2 0 2 4

- ContourGraphics -

Principal axes are given by eigenvectors of the stress matrix

HWO03_Solution.nb 11

‘ evs = Eigenvectors[SigMatCart]

The orientation of principal axes can be illustrated by plotting the
first eigenvector(normalized) as a function of position using PlotVec-
torField in the Graphics package:

NormEV1[x_,y]:=
FullSimplify[evs[[1]]/Sqrt[evs[[1, 11]* + evsI[1, 2]1%],
Assumptions - {x € Reals, y € Reals}|

‘ << Graphics PlotField’

‘ PlotVectorField[NormEV1[Xx, y], {x, -4, 4}, {y, —4, 4}]

) . .1
Power ::infy_: _Infinite expression 3 encountered. More...

) . .1
Power ::infy_: Infinite expression 3 encountered. More...

) . .1
Power ::infy_: Infinite expression 3 encountered. More...

General::stop : Further output of Power::infy will be suppressed during this calculation. More...

co:indet : Indeterminate expression 0 Complexinfinity encountered. More...

co:indet : Indeterminate expression 0 Complexinfinity encountered. More...

12

HWO03_Solution.nb

HWO03_Solution.nb

14 HWO03_Solution.nb

HWO03_Solution.nb 15

16 HWO03_Solution.nb

From page 61 of the class notes (Lecture 10), it is seen that the
maximum shear stress is equal to the radius of Mohr's circle and
thus is 1/2 the difference between the eigenvalues of the stress
matrix.

‘ PrincipalStresses[x_, y_] = Eigenvalues[SigMatCart]

-bGx+bGy bGx+bGy
27 (X2 +y2) (-1 +v) 27 (X2 +y2) (-1 +v)

}

1
MaxShear[x_,y_] = E (PrincipalStresses|x, yl[[1]] -

PrincipalStresses|x, y][[2]])

1 (-bGx+bGy bGx+bGy]
p

27 (X2 +y2)(-1+v) 2a(X2+y3)(-1+v)

HWO03_Solution.nb 17

ContourPlot[MaxShear[x, y] /. {G->1,b->1,v->1/3},
{x, -4, 4}, {y, —4, 4}, Contours - 50]

-2+

-4 -2 0 2 4

- ContourGraphics -

Note that the maximum shear stress is concentrated in the disloca-
tion's glide plane. (See The Structure of Materials to learn more
about dislocations and glide planes.)

18 HWO03_Solution.nb

Group Exercise G3-2: Entropy of Small System

Credits go to the Woolf group: Jill A. Rowehl, Jin Suk Kim,
Katherine Hartman, Talia Gershon ; and to Prof. Carter, who
assisted them.

Each atom can have its electron in either the n=1 orthe n=2
states. The energy of an electron in one of these states depends on
n as

1
Energy[n_] :=¢ (1 - —)
n2

m 1and?2.

The distinct quantum states for the three-atom system can be
represented

States = Tuples|{1, 2}, 3]

{1,1,1},{1,1,2}, 1,2,1}, {1, 2, 2},

{2,1,1},{2,1, 2}, {2, 2, 1}, {2, 2, 2}}

Make a list of energies of each of these eight states with this double
summation

HWO03_Solution.nb 19

EnergyDist = {};
EnergyList =
Do[AppendTo[EnergyDist, Sum[1 - (1 /(States]]i, j]]1*2)),
{j, Length[States|[[i]l1}1], {i, Length[States]}]
EnergyDist

General::spelll : Possible spelling error: new symbol
name "EnergylList” is similar to existing symbol "EnergyDist". More...

Here is a function that will calculate the degeneracy of energy
states in a distribution:

EntropyVec|Elist_] :=
Module[{uniques = Union[Elist], counts = {}},
For[i =1, i < Length[uniques], i ++,
AppendTo[counts, {Count[Elist, uniques|[il]l}1];
Return[counts]]

‘ Degeneracy = Flatten[EntropyVec[EnergyDist]]

Here is the entropy of each state

20 HWO03_Solution.nb

‘ SOverBoltzList = Log[Degeneracy]

{0, Log|3], Log[3], 0}

Make a function that will combine two lists and use it to make
ordered pairs of {energy,entropy} which can then be plotted with
ListPlot:

ComblList[list1_, list2] :=
Module[{big = {}}, Do[AppendTol[big, {list1[[i]], list2[[i]]}],
{i, Length[list1]}]; Return[big]]

‘ Svsk = CombList[UniqueEnergies, SOverBoltzList]

(0, 0y, {%, Log[31), {%, Log[31), {%, o))

HWO03_Solution.nb 21

ListPlot[SvsE, PlotJoined - True,
AxesLabel - {"Energy", "S/k"}]

‘ States = Tuplesi{1, 2, 3}, 3];

22

HWO03_Solution.nb

EnergyDist = {};
EnergyList =
Do[AppendTo[EnergyDist, Sum[1 — (1 /(States|[[i, j1]1 *2)),
{j, Length[States|[[i]]]}1], {i, Length[States]}]

‘ UniqueEnergies = Union[EnergyDist];
‘ Degeneracy = Flatten[EntropyVec|[EnergyDist]];
‘ SOverBoltzList = Log[Degeneracy];

‘ Svsk = CombList[UniqueEnergies, SOverBoltzList];

HWO03_Solution.nb 23

ListPlot[SvsE, PlotJoined - True,
AxesLabel - {"Energy", "S/k"}]

‘ States = Tuplesi{1, 2, 3}, 5];

24

HWO03_Solution.nb

EnergyDist = {};
EnergyList =
Do[AppendTo[EnergyDist, Sum[1 — (1 /(States|[[i, j1]1 *2)),
{j, Length[States|[[i]]]}1], {i, Length[States]}]

‘ UniqueEnergies = Union[EnergyDist];
‘ Degeneracy = Flatten[EntropyVec|[EnergyDist]];
‘ SOverBoltzList = Log[Degeneracy];

‘ Svsk = CombList[UniqueEnergies, SOverBoltzList];

HWO03_Solution.nb 25

ListPlot[SvsE, PlotJoined - True,
AxesLabel - {"Energy", "S/k"}]

26 HWO03_Solution.nb

Group Exercise G3-1: Hamiltonian

solution by WCC

2

Ham|phi_] :=

D[phi, {x, 2}]
2m

HWO03_Solution.nb 27

Normalize x with the characteristic distance L, and define the normalized
Hamiltonian operator as

HamNorm = and z = x/L

—H2
2mL2

HamNorm[phi_] := —DJphi, {z, 2}]

Define the approximating basis functions; the Hamiltonian matrix elements, and the
normalizing elements

phi[i_] := zAi(1 —2)Ai

H[i_, j_] := Evaluate[Integrate|
phi[i] HamNorm|phi[jll, {z, 0, 1}, Assumptions —>
i € Integers && | € Integers && i > 1 && j > 1]]

F[i_! l—] =
Evaluate[Integrate[phi[i] philj], {z, 0, 1}, Assumptions —>
i € Integers && | € Integers && i > 1 && j > 1]]

Part 1

HWO03_Solution.nb

Simplify[H[i, j], Assumptions —>
I € Integers && j € Integers && i > 1 && j > 1]

_(2—1—2i—2jj

(2”2 *#2] _1 +j) Gammal[-1 +i + j] Gammal

3
21 +i+j)] Gamma[; +i+ j| Gammal

2 +i+j] Hypergeometric2F1[-1 +i +j,
3,1+2i+2j,1]+ Gammal1 +2i+2j]
(4 (41 - 2"+2"21 j) Gammali +]
3 .
Gamma[; +i+ j| Gammal

2 +i+j] Hypergeometric2F1[
i+, 3, 2_(1 +i+)), 11+
-1+2)) \/n Gammaj1 +i+j]

Gammal2 (1 +i +j)]
Hypergeometric2F1[1 +i +j,

3,3+2i+2], 11)))/

Gamma[2 (1 +i +j)] Gamma[
3 i

— +i+

> J

Gamma|

1+2i+2j])

HWO3_Solution.nb 29

We see that it is not at all obvious that H[i,j] == H[j,i]
but it is plausible given the explicit values below

‘ H[2, 3]

‘ H[3, 2]

To see if this is symmetric, try and integrate by parts:

‘ dv = HamNorm|[phi|j]]

—(=1+j)ja -2z +

2PA-27"Mz ™M _(—1+)ja-27212

v = Integrate[dv, z,
Assumptions —> j € Integers && j > 1]

—j1-22)(~(-1+2)2) 'Y

30

HWO03_Solution.nb

‘ u = phil[i]

‘ du = D[philil,]

HNormNew = Simplify[(uv) /.z —> 1, Assumptions —>
I € Integers && j € Integers && i > 1 && j > 1] -
Simplify[(uv) /. z —> 0, Assumptions —>
I € Integers && j € Integers && i > 1 && j > 1] -
Integrate[v du, {z, 0, 1}, Assumptions —>
I € Integers && j € Integers && i > 1 && j > 1]

ij(Beta[l, -1 +i+j, 1+i+]j]—

2Betal1,i+j,1+i+j]+Beta[1,1+i+],
—1+i+jl—-2Beta[l,1+i+j,i+j])

HWO03_Solution.nb 31

Which is obviously symmetric with respect to interchange of i and j.
Test for consistency with above result

HNormNew /. {i —> 3, j —> 2}
HNormNew /. {j —> 2, i —> 3}

Part 2

Write a function to calculate E(c1,c2,... cn)

Eform[approxlevel_Integer] :=
Sum|[c[index1] c[index2] HNormNew /.
{i —> index1, j —> index2},
{index1, approxlevel}, {index2, approxlevel}]/
Sum|c[index1] c[index2] F[index1, index2],
{index1, approxlevel}, {index2, approxlevel}]

32 HWO03_Solution.nb

Eform|[2]

2 c[2]?
105
c[2]®
630

ol % c[1]c[2] +

c[17]? 1
el c[1]c[2] +

Find the minimum

B The hard way:

eqs[M_] := Table[D[Eform[M], c[k]] == 0, {k, M}]
vars[M_] := Table[c[k], {k, M}]

General::spelll :

HWO03_Solution.nb 33

‘ egs|2]

2c[1] 2c[2]
{ 3 T 15
c[1]?
30

1 rik
+ =5 c[1] c[2] + =

cltl | cl2l) e 2 2c[2°
(15 K 70)(3 +15 C[1]C[2]+ 105)

(c[171?

c[2]?)2

1
+ =5 c[1]c[2] + e

2c[1] 4c|2]
15 K 105

30

c[1]?
30

1 c[2]?
+ =5 c[1] c[2] + e

el el2l) cei? 2 2c[2°
(70 K 315)(3 K 15 C[1]C[2]+ 105

(c[171?

[2]2 2
30 -)

630

+ 71—0 c[1]c[2] +

Clear[sols]
sols[M_] := Solve[eqs[M], vars[M]]

‘ sols[2]

Solve::svars : Equations may not give solutions for all "solve" variables. More...

{{er1] - 21—1 (7 c121 - V133 cl21)},

L
1 — |7 c[2 133 c[2
(er11> —— (7er21+ Y133 cf21)}}

34 HWO03_Solution.nb

‘ Simplify[Eform[2] /. sols[2]]

Solve::svars : Equations may not give solutions for all "solve" variables. More...

{28(-95+8\/1T3) 28(95+8\/1T3)}

—266 +23 V133 266 +23 V133

B The medium way:

‘ solsmed[M_] := Minimize[Eform[M], vars[M]]

‘ solsmed|2]

(4(14-133), {e[11 > -1, cl2] - % (7-V133)})

m Hmm, are these two results the same?

28(95+8‘/1_33)]

FullSimplify|
266 + 23 V133

56 -4 133

HWO03_Solution.nb 35

B Yes... And now the easy way
‘ solseasy[M_] := NMinimize[Eform[M], vars[M]]

‘ solseasy[2]

{9.86975, {c[1] —» 0.238938, c[2] —» 0.27075}}

28(95+8‘/1_33)]

266 +23 V133
N[7r2]

N[

9.86975

9.8696

Part 3

The equation between E(E), H(E), and can be rewritten as

36

HWO03_Solution.nb

‘ NMaximize[Eform|[2], vars[2]]

{102.13, {c[1] -» —0.0809517, c[2] —» 0.375061}}

HWO03_Solution.nb 37

B To make comparisons, let's divide the difference between the solutions by exact

the ground state (normalized) energy 7> and write a function that returns this ratio :

solsNormeasy[M_] :=
NMinimize[Eform[M], vars[M]][[1]] - =

2

‘ compareData = Table[{m, solsNormeasy[m]}, {m, 2, 20}]

{{2, 0.0000147139},

(3,3.43449x107°}, {4, 2.63315x 107"},

5,2.24978 x107'*}, {6, 4.90615x 107"},
7,1.4947x107""}, {8, 3.40365x 107"},
9,1.98467 x10~'%}, {10, 1.65951x 107"},
11,2.0302x 107 "%}, {12, -3.59965 x 107"°},
13,9.76711x 107}, {14, 4.66006 x 10~"°},
15, 3.89882x 107"}, {16, 3.90011x107"°},
17,9.35369x 1072}, {18, 7.2353 x 107 %},
19, 1.04739x107"°}, {20, 8.07708 x 10~"2}}

{
{
{
{
{
{
{
{

‘ << Graphics Graphics’

DisplayLater = DisplayFunction —> ldentity;
DisplayNow = DisplayFunction —> $DisplayFunction;

38

HWO03_Solution.nb

p1 = LogListPlot[compareData,
PlotStyle —> {PointSize[0.05], Hue[1]}, DisplayLater]

p2 = LogListPlot[compareData,
PlotJoined —> True, DisplayLater]

HWO03_Solution.nb

‘ Show[p1, p2, DisplayNow]

