Homework 1 — Solution

Individual Exercise I-1:

First, recognize that you will need to use ListPlot to make the final
plot of your data. ListPlot produces a plot from (x,y) pairs that are
stored in a Table. The program you need to write has to produce
output that will be written to a Table with the proper format.

The function Random([Integer] is used here; it returns either O or 1
with probability 1/2.

Quoting Charles Cantrell: "All of the problem is contained in one
line of input. First | create a table of data members that contains
the trial number and the number of required steps to reach the end-
point. Then | plot the data using the ListPlot command. The While
loop runs until the position is either 100 or -100, and the Table com-
mand is run 100 times--giving us 100 data points."



HWO01_Solution.nb

data = Table[{i, location = 0; timestep = 0;
While[Abs[location] < 100, If[Random|[integer] == 0,
location = location + 1, location = location — 1];
timestep = timestep + 1]; timestep}, {i, 100}];
ListPlot[data, AxesLabel —» {"Trial number", "TimeSteps"}]
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Individual Exercise I-2:

Note: Some features of Omar Fabian's work were incorporated in
the solution to this exercise.
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Input the LJ potential, differentiate and set derivative == 0 to find
minima.

Note that there are six roots but only one of them is "physical" —
i.e., real and positive (the second root). Use this to set rmin. Note
how Replace is used to extract the value of the second root.
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Minr = r /. MinimaOfLJ[[2]]

Replace r with rmin in LJ to get EMin = LJ(rmin).

MinE = LJ/.r—> Minr

The Solve function can be used to eliminate specific variables from
a set of equations. Here we have the equation for rMin in terms of
(a,b) and the equation for EMin in terms of (a,b). Solve is used to
find expressions for a and b in terms of rMin and EMin.

‘ Clear[rMin, EMin]

‘ NewVars = Solve[{rMin == Minr, EMin == MinE}, {a, b}]

{{a » —EMin rMin'?, b - —2 EMin rMin®}}
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All that remains is to Replace a and b with these new variables.

LJModified = LJ /. NewVars[[1]]

2 EMinrMin® EMin rMin'2

r6 r12

The force is obtained by differentiation

Force := -9, LJModified
Force

12 EMin rMin® 12 EMin rMin'?

Define new "normalized" variables rNorm = r / rMin and LUNorm =

LJ / EMin and use them to define a normalized LJ function LdJNorm(r-
Norm). Recongnizing that | will eventually want to plot these func-
tions, | define them with delayed assignment :=
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LJNorm :=
Simplify[-(LJModified / EMin) /. rMin - r/rNorm,
Assumptions -» {a> 0 &&b > 0}]
LJNorm

1 p

rNorm'? rNorm®

ForceNorm :=
Simplify[—(Force rMin/EMin) /. rMin - r /rNorm,
Assumptions - {a> 0 &&b > 0}]
ForceNorm

12 (-1 + rNorm®)
3

rNorm'

To demonstrate that LUNorm and ForceNorm are dimensionless:

EMinUnits = Mass Length*2/TimeA2;
ForceUnits = Mass Length”~2/(Time 2 Length);
rUnits = Length;

rMinUnits = Length;

rBarUnits = rUnits/rMinUnits;
rBarUnits ==

True
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~

FBarUnits = ForceUnits rMinUnits / EMinUnits;
FBarUnits ==

True

So, the variables ¥ and F are dimensionless.

Now for the plot. Note in the use of the DisplayFunction option to
control whether or not the graphics are rendered to the screen.

NewPlot = Plot[{LJNorm, ForceNormj},
{rNorm, 0, 2}, PlotRange - {-4, 4},
PlotStyle » {{Thickness[.01], Hue[0.3]},
{Thickness|[.01], Hue[1]}},
AxesLabel —> {"r/rMin", "Normalized LJ and F"},
DisplayFunction — Identity]
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Show[NewPlot, Graphics[Text["Force", {1.5, —2}]],
Graphics[Text["Potential", {.6, 2}]],
DisplayFunction —» $DisplayFunction]
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‘ PotEnergy = A +Bx + kx/"2/2

‘ SpringForceEq = (D[PotEnergy, x] /. x —> xMin) ==

72 EMin xMin
B- —}}

rMin?2

‘ MinEnergyEq = (PotEnergy /. x » xMin) == —PotMin

36 EMin xMin? :
A +BxMin—- ————— == —PotMin

rMin?2

SolutionPot =
Solve[{SpringForceEq, MinEnergyEq}, {A, B}]

36 EMin xMin?
{{A - -PotMin - —,

rMin?2

72 EMin xMin

]

rMin?
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ModifiedPotEnergy = PotEnergy /. SolutionPot[[1]]

36 EMin x2
-PotMin - ——M +

rMin?

72 EMin x xMin 36 EMin xMin?

rMin?2 rMin?2

Use function Series to get the Taylor series representation, include
Normal to eliminate the O[r - rMin]A3 term.

HarmonicApprox = Normal[Series[LJModified, {r, rMin, 2}]]

36 EMin (r — rMin)?

rMin?2

Min —

Note that this expression is a parabolic fit to the bottom of the poten-
tial well for the LJ function.
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The coefficient of the second-order term of HarmonicApprox is
equal to k/2, where k is the spring constant. We can use the relation

between vibrational frequency and spring constant to get the
desired expression.

k = 2 SeriesCoefficient[Series[LJModified, {r, rMin, 2}], 2]
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