

Homework 1 — Solution

3.016 Mathematical Methods for Materials Scientists and Engineers
S. M. Allen
September 30, 2005

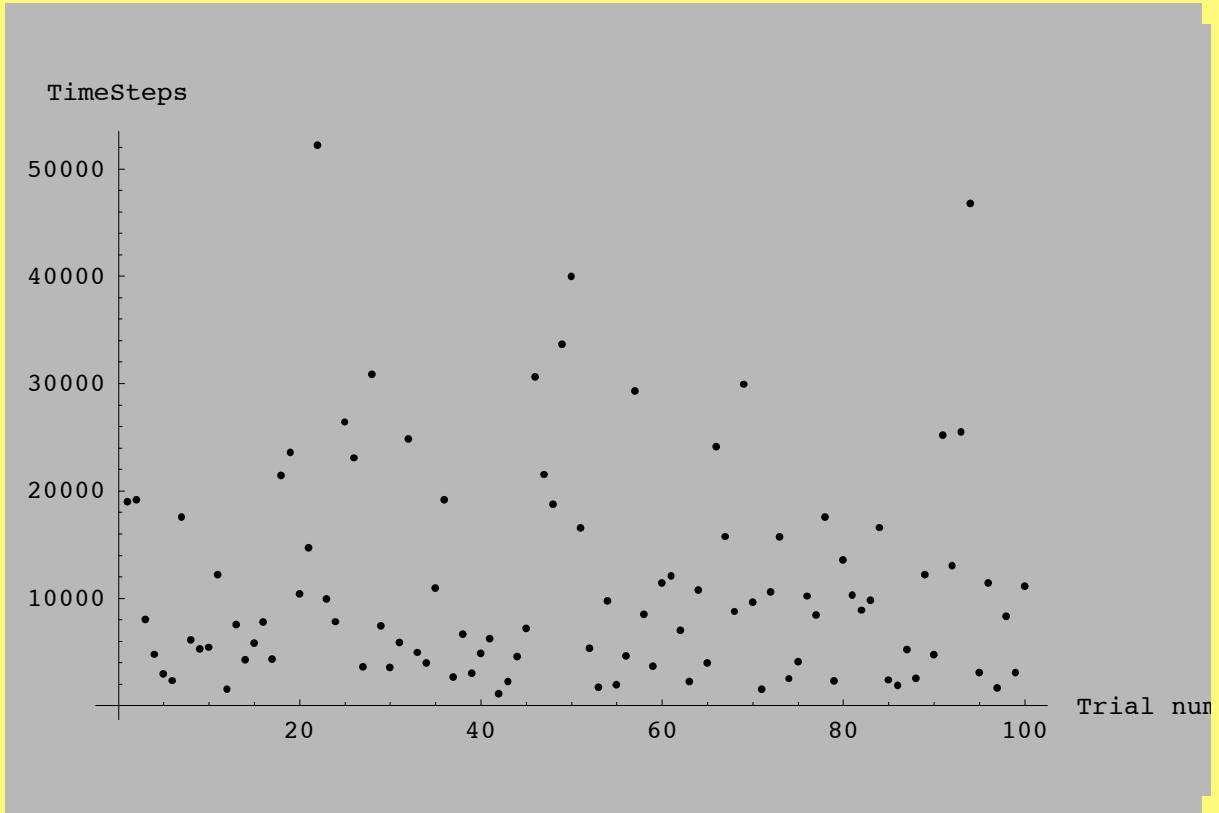
Individual Exercise I-1:

First, recognize that you will need to use `ListPlot` to make the final plot of your data. `ListPlot` produces a plot from (x,y) pairs that are stored in a `Table`. The program you need to write has to produce output that will be written to a `Table` with the proper format.

The function `Random[Integer]` is used here; it returns either 0 or 1 with probability 1/2.

Quoting Charles Cantrell: "All of the problem is contained in one line of input. First I create a table of data members that contains the trial number and the number of required steps to reach the endpoint. Then I plot the data using the `ListPlot` command. The `While` loop runs until the position is either 100 or -100, and the `Table` command is run 100 times--giving us 100 data points."

```
data = Table[{i, location = 0; timestep = 0;
  While[Abs[location] < 100, If[Random[Integer] == 0,
    location = location + 1, location = location - 1];
    timestep = timestep + 1]; timestep}, {i, 100}];
ListPlot[data, AxesLabel → {"Trial number", "TimeSteps"}]
```



- Graphics -

Individual Exercise I-2:

Note: Some features of Omar Fabian's work were incorporated in the solution to this exercise.

■ 1.

Input the LJ potential, differentiate and set derivative == 0 to find minima.

$$LJ = \frac{a}{r^{12}} - \frac{b}{r^6}$$

$$\frac{a}{r^{12}} - \frac{b}{r^6}$$

MinimaOfLJ = Solve[D[LJ, r] == 0, r]

$$\left\{ \left\{ r \rightarrow -\frac{2^{1/6} a^{1/6}}{b^{1/6}} \right\}, \left\{ r \rightarrow \frac{2^{1/6} a^{1/6}}{b^{1/6}} \right\}, \right. \\ \left. \left\{ r \rightarrow -\frac{(-1)^{1/3} 2^{1/6} a^{1/6}}{b^{1/6}} \right\}, \left\{ r \rightarrow \frac{(-1)^{1/3} 2^{1/6} a^{1/6}}{b^{1/6}} \right\}, \right. \\ \left. \left\{ r \rightarrow -\frac{(-1)^{2/3} 2^{1/6} a^{1/6}}{b^{1/6}} \right\}, \left\{ r \rightarrow \frac{(-1)^{2/3} 2^{1/6} a^{1/6}}{b^{1/6}} \right\} \right\}$$

Note that there are six roots but only one of them is "physical" — i.e., real and positive (the second root). Use this to set rmin. Note how Replace is used to extract the value of the second root.

Minr = r /. MinimaOfLJ[[2]]

$$\frac{2^{1/6} a^{1/6}}{b^{1/6}}$$

- 2.

Replace r with rmin in LJ to get EMin = LJ(rmin).

MinE = LJ /. r -> Minr

$$-\frac{b^2}{4 a}$$

- 3.

The Solve function can be used to eliminate specific variables from a set of equations. Here we have the equation for rMin in terms of (a,b) and the equation for EMin in terms of (a,b). Solve is used to find expressions for a and b in terms of rMin and EMin.

Clear[rMin, EMin]

NewVars = Solve[{rMin == Minr, EMin == MinE}, {a, b}]

$$\{\{a \rightarrow -EMin rMin^{12}, b \rightarrow -2 EMin rMin^6\}\}$$

All that remains is to Replace a and b with these new variables.

LJModified = LJ /. NewVars[[1]]

$$\frac{2 \text{EMin} \text{rMin}^6}{\text{r}^6} - \frac{\text{EMin} \text{rMin}^{12}}{\text{r}^{12}}$$

■ 4.

The force is obtained by differentiation

Force := $-\partial_r$ LJModified
Force

$$\frac{12 \text{EMin} \text{rMin}^6}{\text{r}^7} - \frac{12 \text{EMin} \text{rMin}^{12}}{\text{r}^{13}}$$

■ 5.

Define new "normalized" variables $rNorm = r / rMin$ and $LJNorm = LJ / EMin$ and use them to define a normalized LJ function $LJNorm(rNorm)$. Recognizing that I will eventually want to plot these functions, I define them with delayed assignment :=

```
LJNorm :=  
Simplify[-(LJModified/EMin) /. rMin → r/rNorm,  
Assumptions → {a > 0 && b > 0}]  
LJNorm
```

$$\frac{1}{rNorm^{12}} - \frac{2}{rNorm^6}$$

```
ForceNorm :=  
Simplify[-(Force rMin/EMin) /. rMin → r/rNorm,  
Assumptions → {a > 0 && b > 0}]  
ForceNorm
```

$$-\frac{12(-1 + rNorm^6)}{rNorm^{13}}$$

To demonstrate that LJNorm and ForceNorm are dimensionless:

```
EMinUnits = Mass Length^2/Time^2;  
ForceUnits = Mass Length^2/(Time^2 Length);  
rUnits = Length;  
rMinUnits = Length;
```

```
rBarUnits = rUnits/rMinUnits;  
rBarUnits == 1
```

```
True
```

```
FBarUnits = ForceUnits rMinUnits / EMinUnits;
FBarUnits == 1
```


True

So, the variables \bar{r} and \bar{F} are dimensionless.

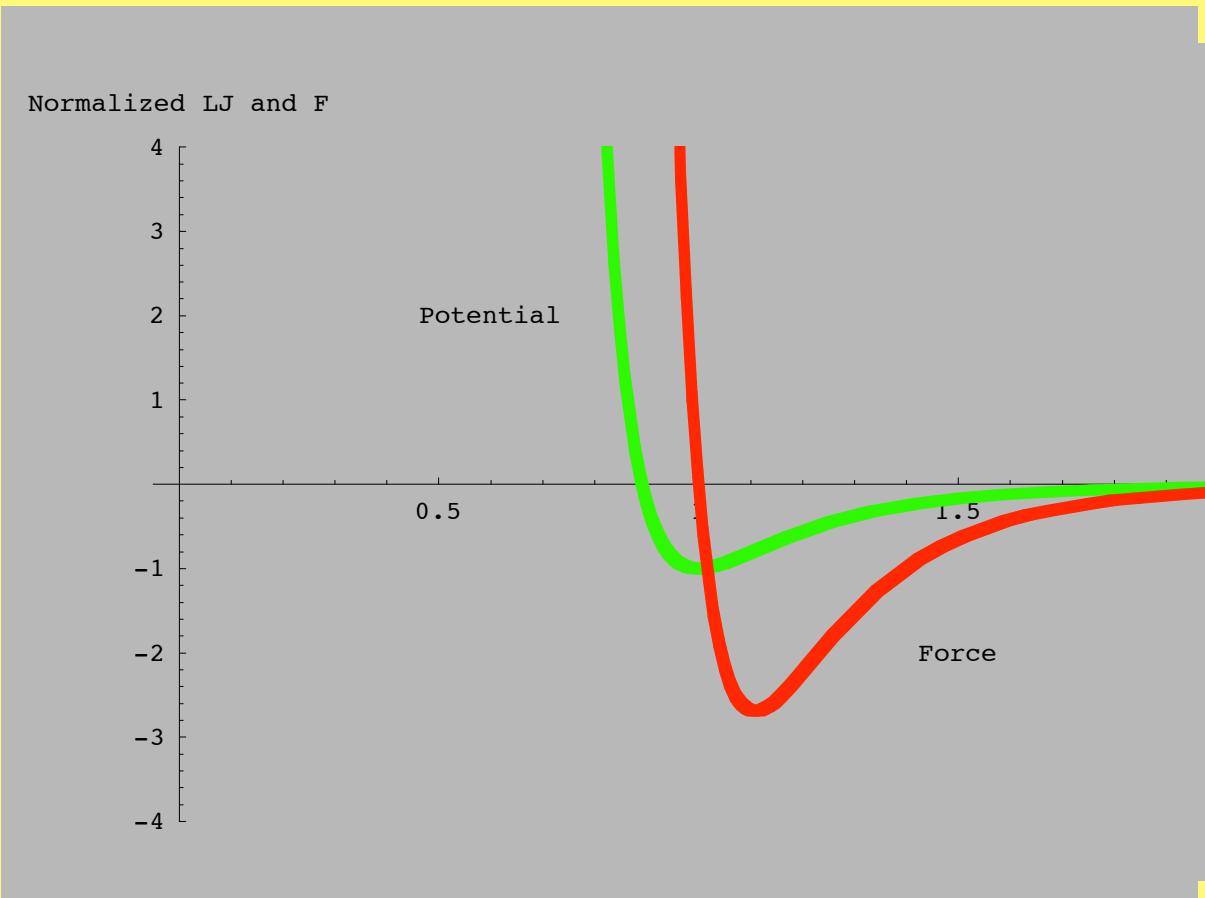
■ 6.

Now for the plot. Note in the use of the `DisplayFunction` option to control whether or not the graphics are rendered to the screen.

```
NewPlot = Plot[{LJNorm, ForceNorm},
  {rNorm, 0, 2}, PlotRange -> {-4, 4},
  PlotStyle -> {{Thickness[.01], Hue[0.3]},
    {Thickness[.01], Hue[1]}},
  AxesLabel -> {"r/rMin", "Normalized LJ and F"},
  DisplayFunction -> Identity]
```


- Graphics -

```
Show[NewPlot, Graphics[Text["Force", {1.5, -2}]],  
Graphics[Text["Potential", {.6, 2}]],  
DisplayFunction → $DisplayFunction]
```



- Graphics -

- 7.

I will use the same approach as above, using as my constants the equilibrium position, x_{Min} , and minimum potential energy,

$$\text{PotEnergy} = A + B x + k x^2/2$$

✳ $A + B x - \frac{36 E_{\text{Min}} x^2}{r_{\text{Min}}^2}$

$$\text{SpringForceEq} = (D[\text{PotEnergy}, x] /. x \rightarrow x_{\text{Min}}) == 0$$

✳ $B - \frac{72 E_{\text{Min}} x_{\text{Min}}}{r_{\text{Min}}^2} == 0$

$$\text{MinEnergyEq} = (\text{PotEnergy} /. x \rightarrow x_{\text{Min}}) == -\text{PotMin}$$

✳ $A + B x_{\text{Min}} - \frac{36 E_{\text{Min}} x_{\text{Min}}^2}{r_{\text{Min}}^2} == -\text{PotMin}$

$$\text{SolutionPot} = \text{Solve}[\{\text{SpringForceEq}, \text{MinEnergyEq}\}, \{A, B\}]$$

✳ $\{\{A \rightarrow -\text{PotMin} - \frac{36 E_{\text{Min}} x_{\text{Min}}^2}{r_{\text{Min}}^2}, B \rightarrow \frac{72 E_{\text{Min}} x_{\text{Min}}}{r_{\text{Min}}^2}\}\}$

```
ModifiedPotEnergy = PotEnergy /. SolutionPot[[1]]
```


$$-\text{PotMin} - \frac{36 \text{ EMin} x^2}{r\text{Min}^2} + \frac{72 \text{ EMin} x x\text{Min}}{r\text{Min}^2} - \frac{36 \text{ EMin} x\text{Min}^2}{r\text{Min}^2}$$

- 8.

Use function Series to get the Taylor series representation, include Normal to eliminate the $O[r - r\text{Min}]^3$ term.

```
HarmonicApprox = Normal[Series[LJModified, {r, r\text{Min}, 2}]]
```


$$\text{EMin} - \frac{36 \text{ EMin} (r - r\text{Min})^2}{r\text{Min}^2}$$

Note that this expression is a parabolic fit to the bottom of the potential well for the LJ function.

■ 9.

The coefficient of the second-order term of HarmonicApprox is equal to $k/2$, where k is the spring constant. We can use the relation between vibrational frequency and spring constant to get the desired expression.

$$k = 2 \text{SeriesCoefficient}[\text{Series}[\text{LJModified}, \{r, rMin, 2\}], 2]$$

$$-\frac{72 EMin}{rMin^2}$$

$$\text{VibFrequency} = \frac{1}{2\pi} \sqrt{\frac{k}{\text{Mass}}}$$

$$\frac{3\sqrt{2} \sqrt{-\frac{EMin}{\text{Mass} rMin^2}}}{\pi}$$