Nov. 15 2002:	Lecture 27:
---------------	-------------

Gibbs Free Energy and Phase Diagrams
<u>Last Time</u>
Interpretation of Gibbs Phase Rule
Understanding Single Component Phase Diagrams
Clausius-Clapeyron Equation
Addition of a Soluble Species
Consider the addition of a soluble species into the liquid phase (and suppose it is not very soluble at all in the solid phase) then
Question: Will the Gibbs free energy of the liquid phase increase or decrease as it dissolves a soluble species?

This is illustrated in the following figure:

 $182 \hspace{1.5cm} \textit{MIT 3.00 Fall 2002} \hspace{0.2cm} \textcircled{c} \hspace{0.1cm} \textit{W.C Carter} \hspace{0.1cm} \underline{\textit{Lecture 27}}$

Figure 27-1: Illustration of the freezing point depression when the molar Gibbs free energy of the high temperature phase is reduced.

Thus we see that a soluble species in the liquid leads to "freezing point depression." This is the reason that roads get salted when they get icy—and the reason that old-timers used to add salt to ice-water when making ice cream.