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Abstract

Geometrical constructions, such as the tangent construction on the molar free

energy for determining whether a particular composition of a solution, is stable, are

related to similar tangent constructions on the orientation-dependent interfacial en-

ergy for determining stable interface orientations and on the orientation dependence

of the crystal growth rate which tests whether a particular orientation appears on a

growing crystal. Subtle differences in the geometric constructions for the three fields

arise from the choice of a metric (unit of measure). Using results from studies of ex-

tensive and convex functions we demonstrate that there is a common mathematical
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structure for these three disparate topics, and use this to find new uses for well-

known graphical methods for all three topics. Thus the use of chemical potentials

for solution thermodynamics is very similar to known vector formulations for sur-

face thermodynamics, and the method of characteristics which tracks the interfaces

of growing crystals; the Gibbs-Duhem equation is analogous to the Cahn-Hoffman

equation. The Wulff construction for equilibrium crystal shapes can be modified to

construct a “phase shape” from solution free energies that is a potentially useful

method of numerical calculations of phase diagrams from known thermodynamical

data.

1 Introduction

Hubert Aaronson’s wide ranging contributions to materials science over the last four

decades has focussed repeatedly on three major topics and their applications to phase

transformations:[1, 2, 3, 4, 5, 6, 7]

1) solution thermodynamics and multicomponent phase equilibria;[8, 9, 10, 11]

2) equilibrium shapes of surfaces with anisotropic surface energy;[12, 13, 14, 15, 16, 17,

18, 19, 20, 21] and,

3) the morphology of growing precipitates.[22, 23, 24, 25]

In this paper, we hope to honor Hub and his contributions by illustrating how each of

these topics derives from a common mathematical basis and that the graphical construc-

tions derived for each separately can shed new insight into the others.

Tangent constructions are powerful graphical methods, widely used for heuristic, com-

putational and theoretical purposes in our field.[26, 27, 2] We will look at differences in

how tangent constructions are used in each of three topics, and explore how these varied

methods may be used in the others.
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For multicomponent phase equilibria (at constant temperature and pressure) the tan-

gent construction is performed on a plot of the molar Gibbs free energy, G(~c), which has

to be convex from below at equilibrium. (Here ~c = (c1, c2, ...) is a short-hand [vector]

notation for the molar composition of a multicomponent phase or system.) For first order

phase changes, G(~c) may be multivalued with a different G(~c) for each phase, usually

with a different symmetry. Concavities in this plot represent metastable and unstable

phases and compositions for which the free energy is too high. Such concavities lead to

ranges in composition (sometimes called miscibility gaps) where single phases are not in

equilibrium. These concavities are removed with the common tangent construction, that

identifies for a particular average composition whether a single phase is in equilibrium,

and if not what mix of phases will have the lowest free energy. This graphical process,

termed convexification, leads to a convex hull of G(~c). Each point on that convex hull

represents the lowest free energy of the system of a given average composition, includ-

ing permitting the equilibrium to be multiphase. Common tangents are often used to

construct phase diagrams from a nonconvex G(~c).

A quite similar set of graphical procedures is applied to the orientation dependent

surface free energy per unit area γ(~n), except that the construction is performed on a

radial plot of the reciprocal of γ(~n) [28] . Here ~n = (n1, n2, n3) is the normal to the surface.

Note that the components of ~n are the analogs of the concentrations of the chemical

species.[29] Concavities are removed by convexification, and the points on the convex hull

of 1/γ(~n) represent (the reciprocal of) the lowest free energy a surface with a certain

average orientation can achieve. Interface orientations for which 1/γ(~n) lies inside the

convex hull have too high an energy and are unstable. The tangent construction identifies

which surfaces become corrugated at equilibrium, and specifies which orientations of lower

energy coexist to replace a high energy surface, even though there is greater surface area.1

If there is more than one possible phase state of the surface (facetted, surface melted,

1The tangent plane to the reciprocal of γ(~n) is equivalent to a more awkward tangent sphere construc-

tion to γ(~n) itself due to Herring[30] that was the first stability test for surfaces.
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wetted, etc.) γ(~n) may be multivalued, just as G(~c). The convexification of 1/γ(~n) has

many analogies to that for G(~c): It identifies the occurrence of orientation gaps and

surface phase transitions.

These two examples are based on finding minima in free energy. For the kinetic ex-

ample we consider the cases of growth rates v(~n) that are constant in time and may be

orientation dependent.[31] This occurs not only with interface controlled growth[32] and

massive transformations,[33] but also with such diffusional growth processes as cellular

precipitation,[34] eutectic and eutectoid growth,[1] discontinuous coarsening,[35, 36] liq-

uid film migration [37] and diffusion induced grain boundary migration.[38] When there is

growth anisotropy, certain orientations tend to disappear from the shape. To determine

whether a particular orientation will be part of a limiting outward growing shape, the

same graphical convexification is performed on a plot of 1/v(~n).[36] Those fast growing

orientations that will eventually disappear from a growing crystal show up as concavities

in this plot. The common tangent construction will determine whether some orientations

will disappear into an edge or a corner depending on whether the tangent plane touches

1/v(~n) at two or more distinct points. No energy minimization is involved, but it is a

Huygens principle of least time.[36, 39]

In these constructions there are many analogies. Composition gaps have their analogs

in orientation gaps; two phase equilibria become edges, three or more phases in equilibrium

become corners. There are quite analogous conditions on the curvature of G(~c) and 1/γ(~n)

for stability with respect to undulations in ~c and ~n; both are called spinodals.[40]

There is another well known graphical construction that confirms the analogy between

the orientation dependence of γ(~n) and its kinetic counterpart v(~n). The Wulff construc-

tion performed on γ(~n) gives the shape with the least surface energy for the volume it

contains.[41] The same construction on v(~n) gives the limiting shape of a growing crystal;

it also the shape that will grow most slowly, the one that adds the least volume.[32] The

Wulff shape is more basic than the convexified γ(~n). It contains all the information that
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is in a convexified 1/γ(~n), but the converse is not always true,2 and it is more convenient

than γ(~n) for many applications.[43]. The following question suggests itself: Is there an

equivalent Wulff-like construction for G(~c)? As we will show below, the answer is yes

and the construction gives a new method for obtaining a well-known plot in solution

thermodynamics.

In this paper we will briefly describe the mathematical basis that links all three topics.

A thorough discussion of this topic will appear elsewhere.[44] Because theoretical thoughts

about these topics developed quite independently, exploration of these analogies creates

opportunities to exploit the various separate methods and discoveries for new uses. We

will try to answer how far these analogies can be pushed, and which methods developed

for one of these topics can be adapted to the others.

One example has already been suggested and put to use.[29] Information about stable

compositions is efficiently stored in the phase diagrams in which simple rules derived from

solution thermodynamics and the phase rule play an important role in their construction,

interpretation and in many applications. These diagrams identify stable compositions,

two-phase regions with tie-lines, three-phase tie-triangles, etc., joining coexisting compo-

sitions. The phase rule allows a cataloging of first-order phase changes. Phase diagram

extrapolations are a very useful tool for predicting stability, metastable equilibrium com-

positions, and the order in which phases appear upon cooling. Information about stable

orientations can be stored in an analogous diagram, called an n-diagram where interface

orientation play the same role as composition in a phase diagrams. The orientations that

meet at each point on a curved edge are joined by tie lines; tie polygons specify the ori-

entations that meet at corners. First-order surface phase changes, such as wetting and

facetting, conform to a modified phase rule.[29]

However, perhaps these analogies are not so direct as they seem as some puzzles should

2For low symmetry crystals the Wulff shape is unique, even though γ(~n) can not be uniquely

determined.[17, 42]
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have arisen in the minds of the reader. Namely:

1. Why are the tangent constructions performed on G(~c) while they are performed on

1/γ(~n) or 1/v(~n)?

2. The condition for local stability for a two component systems is G(~c)′′ > 0, while the

equivalent condition, γ(~n)+γ(~n)′′ > 0, on two-dimensional crystals is more complex.

For more than two components the Hessian, the matrix of second derivatives of G(~c),

must be positive definite for phase stability, while the condition on γ(~n) for three

dimensional surfaces can not be so simply expressed. Are there formulations in

which equivalent conditions have the same simple form?

3. Energy is minimized for G(~c) and γ(~n); what is minimized for v(~n)?

These conundrums will disappear when these topics are put into a single mathematical

framework.

2 Convexification, Common Tangents, and Phase Di-

agrams

We begin by extending the functions G(~c), γ(~n), and v(~n) from quantities which are refer

to chemical energy per unit mole, surface energy per unit area, and distance traveled per

unit time to quantities which refer to the ‘free energy’ of a system containing a specified

number of moles or a surface with an specified area, or the ‘distance’ that an interface has

moved in a specified time. In thermodynamics these are called extensive variables.[45] In

the mathematics literature such functions are called homogeneous degree one (HD1) [39]

and are defined by the property:

H(λ~x) = λH(~x) (1)
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We limit ourselves to positive homogeneity where λ is a real and positive scalar.

When we homogeneously extend the three functions (G(~c), γ(~n), v(~n)), by letting 1/λ

be the number of moles ‖ ~N‖, the area ‖ ~A‖, or the time ‖~p‖, we obtain:

G( ~N) = ‖ ~N‖G(~c) = ‖ ~N‖G( ~N/‖ ~N‖) (2)

γ( ~A) = ‖ ~A‖γ(~n) = ‖ ~A‖γ( ~A/‖ ~A‖)

v(~p) = ‖~p‖v(~n) = ‖~p‖v(~p/‖~p‖)

where ‖ ~N‖ is the number of moles, c = ~N/‖ ~N‖, and ~A is a vector that represents a

surface. Its direction is along the outward normal ~n and its length is the area ‖ ~A‖;
~A = ‖ ~A‖~n, or ~n = ~A/‖ ~A‖. Its components (A1, A2, A3) are the projected areas along the

three coordinate axes. v(~p) represents the distance the interface with orientation ~n will

travel in time ‖~p‖ in a direction parallel to ~n = ~p/‖~p‖.

Note that G( ~N) is the familiar extensive function from solution thermodynamics. We

do not change the symbol for the functions, e.g. G( ~N) and G(~c) are the same function,

but the later is restricted to a restricted set (‖ ~N‖ = 1) of the space of systems of all sizes

and compositions, parameterized by ~N . Note also that ‖ ~N‖ = (N1 +N2 + . . . Nm), where

Ni is the amount of component i, while ‖ ~A‖ =
√

(A2
1 + A2

2 + A2
3). The difference in form

between these two expressions will be seen to have important consequences.

The three extended functions G( ~N), γ( ~A), and v(~p) are actually what one would infer

from a particular experiment. For instance: in a calorimetry experiment, the enthalpy of

a closed system is measured, but the value is reported as what would have been measured

if one mole (or one Kg) were present; the surface free energy is unlikely to be measured

for a square meter, but is reported that way; the positions of a moving surface are rarely

measured at one second intervals.

Any HD1 function is fully determined if its value is known along some curve which

intersects all rays emanating from the origin. We use this property in equation (2) to

extend G(~c), γ(~n) and v(~n) homogeneously to vectors of arbitrary magnitude and to

7



compute their values on the plane ‖ ~N‖ = 1, and on the spheres ‖ ~A‖ = 1, and ‖~p‖ = 1.

Another way an HD1 function can be reconstructed is from one of their level sets, i. e.

the set of points ~x(c1) for which H(λ~x) = λH(~x) = c1. Then H(~x) = c1‖~x‖/‖~x(c1)‖ where

~x and ~x(c1) are in the same direction.

The gradients of any HD1 function f( ~X) depend only on the direction of ~X, but not its

magnitude, ∇H( ~X) = ∇H(λ ~X). For G( ~N) this gradient is a vector; since ∂F/∂Ni = µi,

the ith component of this vector is the chemical potential of the ith species. Consistent

with this principle, chemical potentials depend only on the composition.

Any HD1 function can be written as the dot-product of its gradient and its argument

vector, and its argument vector is perpendicular to the differential of its gradient:

H( ~X) = ~X · ∇H( ~X) (3)

0 = ~X · d∇H( ~X)

For G( ~N) these are the familiar integral expression for the Gibbs free energy G( ~N) =

Σi(Niµi) and the Gibbs-Duhem equation[45] Σi(Nidµi) = 0. The gradient of γ( ~A), called

the vector ~ξ, has these properties, which have been used for anisotropic surfaces.[46, 47]

The gradient of v(~p) is the characteristic of the motion of the surface.[48, 49, 36]

We next review the mathematics of convex functions.[39] A scalar function f of ν

variables, or of a ν-dimensional vector, is said to be convex if it is bounded from below,

it is not everywhere infinite, and if

f(λ~P + (1− λ) ~Q) ≤ λf(~P ) + (1− λ)f( ~Q) for 0 ≤ λ ≤ 1 (4)

If f is also HD1 this inequality can be simplified. Setting ~X = λ~P and ~Y = (1 − λ) ~Q,

and making use of Eq. 1 gives:

f( ~X + ~Y ) ≤ f( ~X) + f(~Y ) (5)

The definitions in Eqs. 4 and 5 can be extended to partitions of vectors into a sum of

an arbitrary number of terms: i.e., f(
∑

i Xi) ≤
∑

i f(Xi) for a convex HD1 f .
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2.1 The Basis for Convexification

In this section we show that the functions defined in Eq. 2 must be convex in the kind

of minimizations that are representative of thermodynamic equilibrium. It is apparent

from equation (5) that convexity applies to the G( ~N) of any chemical system. If any two

chemical systems are combined, the masses of their individual components are added; this

is equivalent to a vector addition of the ~N as ~X and ~Y are added in equation (5). But the

equilibrium free energy of the combined system can not be greater than the sum of the

equilibrium free energies of the separated systems. If the two systems remain unmixed, the

resultant free energy would be the sum of the free energies of the parts; 3 any relaxation

towards equilibrium can only lead to a reduction in free energy. Thus with the use of

equation (5), the convexity of G( ~N) is a simple consequence of thermodynamics.

We next show with reasoning that is quite similar that convexity also applies to γ( ~A).

The convexified γ( ~A) is the lowest free energy that a surface with a planar perimeter

with orientation ~n and spanning an area ‖ ~A‖ can achieve, allowing facetting to all other

orientations. Note that adding two area vectors, ~Aa, ~Ab, gives a another area vector,

say ~Ac = ~Aa + ~Ab, which lies in the plane spanned by ~Aa and ~Ab. This allows a simple

construction for the addition of area vectors. Let the area vectors be represented by

rectangles of area, ‖ ~Aa‖, ‖ ~Ab‖, and ‖ ~Ac‖ = ‖ ~Aa + ~Ab‖. Since the normals to these three

rectangles lie in a plane, the three rectangles form a ‘tent’ (or, triangular prism) and we

will take the rectangle representing the summed area ‖ ~Ac‖ as the ‘tent floor.’ 4 The proof

that γ( ~A) is convex parallels the proof that G( ~N) is convex. Consider the area ‖ ~Ac‖. Its

energy cannot exceed the energy of the combined areas ~Aa and ‖ ~Ab‖; if this were not true

3The reason convexification need not apply to elastically coherent systems is apparent when one

considers that a two phase coherent system can have an free energy that is the sum of the free energies

of the separated phases plus the elastic energy to make them coherent.[50]
4Note that there are additional areas associated with the two triangles at the front and back of the

tent, but these areas can be made negligible by making the rectangle very long compared to its width

or, equivalently by corrugating the roof, keeping the orientations fixed, to form a series of similar small

tents, like a ‘factory roof’.
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‖ ~Ac‖ would spontaneously form a tent. This must hold for all possible configuration of

‘tent sides.’ But clearly γ( ~Ac) can be less than the tent energy. Thus γ( ~A) is convex at

equilibrium since γ( ~Ac) ≤ γ( ~Aa)+γ( ~Ab) for all ~Aa + ~Ab = ~Ac. Note that the magnitude of

area itself is a convex function; the combined area cannot exceed the sum of the separate

areas.

The consequences are also similar. If γ( ~A) is a convex function, then all orientations

are stable with respect to facetting. Since γ( ~Ac) ≤ γ( ~Aa) + γ( ~Ab), formation of a tent

or corrugation of a surface represented by ~Ac into any a configuration represented by

two other vectors that sum to ~Ac cannot decrease the energy of the original structure.

Conversely, if γ( ~A) is not convex at ~Ac, then there must be a corrugated structure which

is composed of alternating pieces ~Aa and ~Ab which has a lower surface energy. The same

construction can be applied to the formation of corners by considering a partition into

three or more orientations.

It is important to note that this convexity criterion comes from thermodynamics on

a very general and fundamental level.5 The inequality (5) applies to G( ~N) and γ( ~A),

and not to the molar free energy G(~c) or the surface free energy per unit area γ(~n). The

inequality (5) should not and does not apply to G(~c). Note that G(~c) when convexified

for equilibrium curves up instead of down. For a binary solution, comparing G(ca + cb)

with the sum of G(ca) and G(cb) does not make any sense, since mass is not conserved. 6

Although the solute species is conserved, the mass of the solvent is not.

The inequality (4) applies to G( ~N) and γ( ~A), and to any planar submanifold (a lower

dimensional planar cut, including any straight line section) of the extended functions of

5In the above argument we have ignored the energies contributed by edges and corners separating

pieces of planar surface, just as we have ignored the energies of surfaces between coexisting phases in

minimizing G( ~N) by convexification. But in the surface case, if such other energies exist they can not be

ignored in forming the limiting factory roof.
6The free energy of a system with one mole should not be compared to the sum of that of two others,

each with one mole.
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ν or 3 dimensional variables. When ~P and ~Q are taken as end points of vectors, the end

point of the vector λ~P +(1−λ) ~Q is always on the connecting straight line segment. Thus

G( ~N) is convex from below on any straight line section; this includes the hyperplane (for

which ‖ ~N‖ = 1) of molar free energies G(~c). Thus convexity applies to G(~c). The widely

used graphical convexification methods for G(~c) are thus validated.

Applying the inequality (5) for γ( ~A) is valid; but applying (4) makes little sense for

γ(~n). When ~P and ~Q are taken on the unit sphere, that is as end points of unit vectors,

the end point of the vector λ~P +(1−λ) ~Q is always on the connecting chord; the inequality,

while correct, applies to a vector that is not a unit vector, one that is in the interior of

the unit sphere, and thus not to γ(~n). 7 Thus whether the scaled functions G(~c), γ(~n),

and v(~n) when restricted to some submanifold are also convex depends on the somewhat

arbitrary choice of how a unit of the argument is measured; in other words, whether the

choice of the operation which is implied by the operator ‖‖ is linear.

Another use of the inequality (4) is to note that the surfaces defined by level sets of any

convex function have to be convex when the function is a positive constant and concave

when the function is negative. Because ‖ ~A‖ is the usual length of the area vector and plots

as distance from the origin r, we can convert the equation (γ( ~A) = ‖ ~A‖γ(~n) = const) for

the level surfaces for γ( ~A) into radial plots of the reciprocal of γ(~n). Setting the constant

to 1 the equation for the level surface becomes r = ‖ ~A‖ = 1/γ(~n). Since γ(~n) is positive,

the radial plot of the reciprocal of γ(~n) has to be convex at equilibrium.

Note that ‖ ~N‖ is not the usual length of a vector, and is not the radial distance to

the level set of G( ~N). As a result the convexity of an inverse plot of G(~c) has as little

significance as the convexity of a radial plot of γ(~n). We next look into the definitions of

the metrics of these quantities, to understand the basis for these differences and to look

for alternate definitions.

7One can create a meaningful inequality for γ(~n) by lifting this HD1 function from the chord to the

surface of the unit sphere, but a simpler method is developed here.
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3 Metrics

In the previous section we noted that convexity applies to functions, such as γ and G,

defined for all vectors, such as ~A and ~N , rather than restricting these vectors to unit vector,

such as ~n to give γ(~n), for which (
∑

A2
i )

(1/2) = 1, and for the molar free energy, G(~c),

for which ‖ ~N‖ =
∑ |Ni| = 1. The two expressions for the unit vectors are fundamentally

different; area and the number of moles are examples of different metrics.

Metrics that measure the distance of a point from the origin are simple examples of a

convex functions. The most familiar metric for vectors (including the area vector ~A) is

the Euclidean metric, also known as L2, ‖~x‖ = (
∑

x2
i )

(1/2). Convexity for this metric is

just the triangle inequality; the length of any side of a triangle is not more than the sum

of the lengths of the other two sides. ~A has this metric.

Other metrics are appropriate in other physical situations. Consider the driving dis-

tance between two intersections in a city, the appropriate distance is the L1 metric:

‖~x‖ =
∑ |xi|, sometimes called the Manhattan metric, since such distances apply to

travelers who can only travel on a rectangular grid, like the streets of Manhattan. A

vector, ~N in Rν with ν components which are the amounts (here taken to be number of

moles) of each of the constituents is an indication of the size of a chemical system. The

Manhattan ”length” of this vector is the total number of moles. This length is the factor

λ used to convert G( ~N) to G(~c).

A simple way of extending the concept of metrics is to give different weights to the

components in the sums that define a metric. A weighted L2 metric for area can account

for some anisotropy, but we know of no useful application. The weighted Manhattan

metric, occurs quite naturally if mass and weight percent, rather than number of moles

and mole percent, become the variables. The mass of a system is ‖ ~M‖ =
∑ |miNi|, where

mi is the molecular weight of the ith species.

One limit of the weighted metrics, that gives zero weight to all but one of the compo-
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nents, is used for both surfaces and chemical systems. This limit provides a link between

the mathematics of surfaces and chemical systems, and permits other convexification

methods to be used. For chemical systems, this weighting is used for molal concentra-

tions, the number of moles of solutes for a fixed amount of solvent (usually one mole

or one Kg). [45] Molal concentrations are defined as cm
i = Ni/N1 (or Ni/m1N1 with

m1N1 = 1kg, e.g. for aqueous solutions). The size of the system (length of the vector)

is then defined as the amount of solvent alone, regardless of the amounts of the other

components. Note that ~cm ∈ Rν−1
+ . The unit length is one mole or 1 kg. The molal free

energy is G(~cm) = G(1, cm
2 , cm

3 , . . .)

Molal concentrations are on a special planar cut of the space of all ~N and thus the

convexification applied to G(~cm) gives the same common tangents and equilibria that

would be obtained from G(~c). Molal free energies also provide the same spinodal stability

limits from the same curvature criteria.

For vicinal surfaces, area is often defined as the area projected along some symmetry

axis, giving no weight to other components of the area vector.[51, 52] If we define the

components of a new orientation vector as ~nm
i = Ai/A1 without regard to the sign or size

of this ratio, we have extended the concepts of vicinal surfaces to all orientations, and the

analogy with molal concentrations is kept. Note that ~nm ∈ R2 lives in the space of ~A on a

planar cut perpendicular to one of the axes in the same way as molal concentrations do in

the space of ~N . We will denote the surface free energy per unit projected area projected

along the x1 direction as γ(~nm) = γ(1, A2/A1, A3/A1). Convexity applies to γ(~nm).

Using an L2 metric (
∑

N2
i )(1/2) to describe the size of a chemical system makes little

physical sense, but, as we shall see, it opens up some useful surface techniques for chemical

thermodynamics. By defining a Euclimolar metric ‖ ~N
Eu
‖ = (

∑
N2

i )(1/2), we can define a

Euclimolar free energy GEu = G( ~N)/‖ ~N
Eu
‖ = G(~c)/(

∑
c2
i )

1/2, which is G( ~N) evaluated

on the unit sphere ‖ ~N
Eu
‖ = 1.
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4 Shapes from Gradient Construction

We examine graphical constructions which follow from the geometric relationships in Eq.

3 and give rise to shapes which also demonstrate the correspondence between our three

topics. These methods require that the extended function be continuous and piece-wise

differentiable (C1), and therefore do not have as general an applicability as the methods

associated with the Wulff constructions.

4.1 ~µ-Shapes from Solution Thermodynamics

We illustrate the following example from two-component regular solutions but the con-

cepts certainly apply to more components and more sophisticated solution models. Al-

though two components allows us to define a single composition c, the comparisons are

abetted by our introduction of a vector notation.

For a regular solution model G(~c) = c1c2 + T (c1lnc1 + c2lnc2), where T is a reduced

temperature which scales out the energy of mixing and Boltzmann’s constant. Letting

c = c1 = 1−c2, the molar free energy becomes Gm(c) = c(1−c)+T (clnc+(1−c)ln(1−c))

In Figure 1, these molar free energies are plotted in the left column of the figure at reduced

temperatures above, just below and well below the critical temperature. The common

tangent construction at each temperature was used to draw the phase diagram in the

middle. The dashed curve in the phase diagram correspond to the spinodals, where

G′′
m(c) = 0.

Chemical potentials for both components can be obtained for this model by any one of

a number of equivalent ways, e.g. by taking the derivatives of G( ~N) = (N1+N2)G(~c) with

respect to N1 and N2. Another is taking the intercepts at c = 0 and c = 1 of tangents

at c to Gm(c). The resulting chemical potentials are plotted against each other in the
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e1
^

e2
^

c→

µ→

dµ
→

c→
(1,0) (0,1)

T

c→

G

µ = ∇G
→

0 = N·dµ
→ →

G = N·µ
→ →

Figure 1: In the left column molar free energies for the regular solution model at temperatures

1.1Tcrit, 0.8Tcrit, 0.5Tcrit are plotted. The chemical potentials at corresponding temperatures

are plotted on the right; these curves trace out the ”~µ-shapes.” The phase diagram is plotted

for reference in the center. The crossings in the ~µ-shapes represent of two-phase equilibria.

The compositions ~c are given by the normals to curve ~µ and the two compositions in equilibrium

at the crossing are also the common tangent points which could be drawn on G(~c). The ears

represent metastable and unstable compositions; the sharp points on the ears are the spinodal

points which are represented by dashed lines on the phase diagram, or points of inflection on

G(~c).
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figures of the right column of Figure 1. Since the coordinates of any point of this curve

give the values of the two chemical potentials, these point are the ends of ~µ is the gradient

of G( ~N). We wish to focus on this ~µ-shape.

At high T this shape is smoothly curved. Because of the geometric relation in Equation

3 i.e., the Gibbs-Duhem equation in the case of solution thermodynamics, ~c · d~µ = 0, the

normal to the ~µ curve is the composition vector ~c. Thus we can know the composition

for each part of the curve. Once that is known we can recover G(~c) from this curve from

G(~c) = ~c · ~µ, but there are other ways.

Below the critical temperature the ~µ-plot becomes self-intersecting and develops ‘swallow-

tails’ or ‘ears.’ The crossings are places where two phases (smooth curves) have the same

chemical potential. Because of the Gibbs-Duhem equation relating slope to composition,

the distinct compositions of each of the phases are given by the normals to the curve

at the crossing point. The sharpness the corner at the crossing relates to the difference

in composition between the two phases in equilibrium, i.e., the width of the miscibility

gap in the phase diagram. This analogy between corners in ~µ-shapes and phase diagrams

extends to multicomponent phase equilibrium.

The locally convex portions of the ears represent metastable compositions; the concave

parts unstable compositions. The metastable and unstable part are separated by a spin-

ode. Eliminating the ears produces a convex figure that is the convexified ~µ-shape. It

contains all the information that was in the convexified G(~c) plus a graphic display of all

the phase equilibria. This diagram illustrates the geometric nature of Equation 3.

The diagrams on the left and right side of Figure 1 are dual to each other. Each can be

used to calculate the phase diagram in the center and any diagram on the right side (G(~c))

can be used to calculate its dual ~µ-shape which appears on the right side of Figure 1. Note

that even though the phase diagram cannot be used to determine any of the other figures

uniquely, the special CALPHAD procedures have had considerable successes.[53, 6]
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4.2 ~ξ-plots

To draw out the analogy to the above discussion of binary phase diagrams, we consider

an example of a two dimensional crystal. Discussion of three dimensional crystals can be

found elsewhere[54].

A parallel geometric construction is made for an orientation dependent surface tension

(γ(~n) = 1 + αn2
1n

2
2) in Figure 2. This particular example is a first order expansion of a

γ(~n) with square symmetry. It could also be written as γ(θ) = 1 + α(Cos2(θ)Sin2(θ).

The figure is remarkably similar to the construction for G( ~N) in Figure 1 except that the

figures are closed curves since the range of ~A is all of R2

Increasing values of α increase the anisotropy in γ(~n) and tends to create higher energy

orientations which disappear from the equilibrium shape. Thus, 1/α plays a similar role

to temperature, T, on the construction for the regular solution G(~c) and so 1/α is the

ordinate for the n-diagram illustrated in the center of Figure 2. The critical value of alpha

is 4/7. Also, note that we use n2
1 = Cos2(θ) as the ordinate which is convenient for this

case of square symmetry.

Plots of γ(~n) appear on the left side of Figure 2 for three different values of 1/α, one

above and two below the critical anisotropy. The gradient construction shown on the right

column of the figure show that ‘ears’ develop as the anisotropy increases just as in the

case for lower temperatures in the gradient construction for G( ~N). Any orientation on the

‘ears’ is unstable and will break up into orientations given by the crossing in the ~ξ-plot.

Those parts on the concave part of the ‘ears’ (outside the spinodes) are metastable.[40]

Consider the geometrical relations for the gradient construction in Figure 2. According

to Equation 2 (for surface energies, these are the Cahn-Hoffman equations [46, 47] 0 =

~A · d~ξ) the unit normal to the surface ~ξ must be the orientation vector. Therefore, for all

stable orientations, the surface of ~ξ must also be the surface of the Wulff shape. In this
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γA
→

ξ
→

A
→

dξ
→

n1n2(1,0) (0,1)

1/α

ξ = ∇γ
→

0 = A·dξ
→ →

γ = A·ξ
→ →

Figure 2: An analogous construction to that in Fig. 1 for an anisotropic γ(~n) for various

values of an anisotropy parameter α (see text). In the left column γ(~n) is plotted from top

to bottom for α = 1/2, 1, 2. Anisotropy increases with positive α, so 1/α is used in the

n-diagram to correspond to the temperature axis in Fig. 1. The shape resulting from the

gradient construction–with the ears removed–is the surface of the Wulff shape.
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sense, the interior region of the ~ξ-plot must be equivalent to that obtained by the Wulff

construction (See below).

4.3 Growth Shapes and Method of Characteristics

The method of characteristics has been used to integrate the first order partial differential

equations that are obtained for the motion of a surface (or a growth front) when the

velocity is a known function of the surface orientation v(~n). A thorough description may

be found in Taylor and coworkers[32, 36] and applications may be found in Carter and

Handwerker[55].

Let τ(~x) be the arrival time of the surface at the position ~x. The level set τ(~x) = tconst

is the equation for the position (or shape) of the surface at time t = tconst. The gradient

of τ is along the normal of the level set and its magnitude must be inversely proportional

to the velocity: ‖∇τ‖ = 1/v(~n). With ~p ≡ ∇τ , the PDE is just a statement that the

HD1 function v is a constant: v(~p) = 1. The characteristics are straight lines, given by

the equation:

~x = ~xO + t~χ(~n) , where ~χ(~n) = ~χ(~p) = ∇v(~p) (6)

and ~xO is the surface at t = 0.

Letting the initial surface ~xO be a point, the calculation of the shape at a fixed time (say

t = 1) by the method of characteristics gives the same result as the gradient formulations.

5 Chemical Wulff Shapes

There is a large literature regarding the Wulff shape that minimizes surface energy for a

given enclosed volume and the analogous kinetic Wulff shape that give the limiting shape

of a crystal growing outwardly under diffusion control that has recently been reviewed.[32]
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The methods of construction are the same even though one is a minimization problem and

the other is a long-time solution of a first-order nonlinear partial differential equation.

The method is one of iterative truncation of space by a set of half planes–each half

plane partitions the space into allowed and disallowed half spaces. For each value of ~n a

plane is drawn normal to ~n at a distance equal to the value of γ(~n) or v(~n) respectively

and the half space of all the more distant points discarded. When this is done for all ~n,

the remaining points form a convex body that is the Wulff shape. The expression for the

set of points which survive this construction is given by {~x|~x · ~n ≤ γ(~n) ∀~n ∈ S2} for

γ(~n); substituting v(~n) for γ(~n) gives the kinetic Wulff shape.

The surface of the Wulff shape and the convexified ξ-plot or plot of the characteristics

are the same shapes, even though they are obtained by quite different mathematical or

graphical operations. In the Wulff constructions there is no restriction to either continuous

or differentiable functions. Because no differentiation of date is used, the methods Wulff

constructions may be quite superior for noisy data. Even though G(~c) is expected to be

smooth for solutions it is worthwhile to propose a Wulff construction for solution and

compound free energy data.

In order to do this we need to convert G(~c) into the Euclimolar free energy GEu(c) =

G( ~N)/‖NEu‖ = G(~c)/(
∑

c2
i )

1/2. For the binary regular solution example GEu(c) = (c(1−

c)+T (clnc+(1−c)ln(1−c)))/(1−2c−2c2)1/2. The left hand panel of figure 3 shows G(~c)

for T = 0.45 which is 0.9 of the critical temperature, and therefore shows a miscibility gap.

The second and third panels show GEu(c), plotted respectively against c and as a radial

plot, for this same temperature. The third panel shows in addition one step in the Wulff

construction for a single composition. A line for that composition is drawn perpendicular

to another line from the origin with slope tan−1(c/1− c) and length GEu(c); all points to

the upper right of this line (shown gray) are discarded. Performing the Wulff construction

on a finite set of c results in a fan of truncation lines shown in the last panel. The clear

area at the lower left is the chemical Wulff shape, whose envelope is the ~µ-plot. As with
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the ~µ-plot such a figure plots chemical potentials against each other, and compositions

are obtained from slopes. It identifies single phases as continuous curves a two-phase

equilibrium as the corner.

The inverse Wulff construction, finding the distance of a tangent line from the origin

corresponding to a particular composition recovers the Euclimolar free energy. Note that

this is equivalent to G( ~N) = ~µ · ~N .

The concavity in the first panel of Fig. 3 shows that G( ~N) at this T is not convex.

The corner in the Wulff construction in the last panel confirms this. Both are appropriate

criteria for nonconvexity of G( ~N). The convexity of the curves in the middle two panels

is of Fig. 3 are of no importance; even though G( ~N) is not convex, both curves are

convex. For γ(~n) Herring’s tangent sphere construction for finding stable orientation is

an alternate test for convexity. But this construction works only for positive functions.

As can be seen in the third panel, it does not work for a radial plot of a negative GEu(~c).

Note that the two-phase corner does not touch the Euclimolar free energy plot; the gap

is a measure of the reduction in free energy upon phase separation. The chemical Wulff

shape does not give metastable phases or their equilibria, except when the entire curve

of a stable phase is ignored in the construction. The undiscarded points in the interior

of the lower left-hand area are not physically realizable, except possibly as an unknown

stabler phase–an ice-9.[56]

Examples of the chemical Wulff construction for the three temperatures in Fig. 1 are

illustrated in Fig. 4. They show not only the miscibility gaps at the lower temperature,

but also the chemical potentials of the phases at various compositions derived from the

normals. Note that in Fig. 4 that the Euclimolar free energy takes on some positive

values as the temperature is decreased.
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0.8 Tcr

1.1 Tcr

Figure 3: Illustration of the chemical Wulff construction. In the left figure, the molar free

energy is plotted for a regular solution at T = 0.9Tcrit. In the middle two figures the Euclimolar

free energy GEu(c) (see text) for the same temperature is graphed as heavy curves in standard

format and radially as ~nGEu(c). Note that the second and third plots look convex. In the third

panel, one step in the chemical Wulff construction is illustrated. At a particular composition

on GEu a half plane is constructed which is normal to radius (thin black line) drawn from the

origin. This divides the composition space into two parts: the gray region is to be discarded.

In the final panel, the iterative elimination of discarded space yields the chemical Wulff shape.
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C
→

G(C)
→

C
→

GEu(C)
→

C1

C2

GEu

Figure 4: Illustration of the chemical Wulff construction for the three temperatures which

were used in 1. The borders of the Wulff shapes are the same as the ~µ-shapes without ears.

6 Discussion

Analogies Between Phase Equilibria and Shape Morphology

Composition Equilibrium Surface Energy Growth Shape

Convex G( ~N) at Const. P and T γ( ~A) at Const. ~µ and T v(~p)

Function

Common Tangent G(~c) 1/γ(~n) 1/v(~n)

Construction

Gradient ~µ(~c) ≡ ∇G( ~N) ~ξ(~n) ≡ ∇γ( ~A) ~χ(~n) ≡ ∇v(~p)

Formulation

Geometric ~N · d~µ = 0 ~A · d~ξ = 0 ~p · d~χ = 0

Relations

Wulff {~µ|~c · ~µ ≤ GEu(~c) ∀~c ∈ Σν−1
+ } 8 {~x|~x · ~n ≤ γ(~n) ∀~n ∈ S2} {~p|~p · ~n ≤ v(~n) ∀~n ∈ S2}

Construction

In this paper we have examined how the three topics to which Hubert Aaronson has

contributes so much, phase equilibria, shape equilibria, and limiting shapes obtained with

8Σν−1
+ is the simplex: ci ≥ 0 where c1 + c2 + . . . + cν = 1, in two-dimensions it is a line-segment; in

three dimensions an equilateral triangle, etc. The chemical Wulff construction could as well have been

written as {~µ| ~N · ~µ ≤ G( ~N) ∀ ~N ∈ Sν−1
+ }, where Sν−1

+ the portion of the unit sphere embedded in Rν
+
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interface controlled growth, share a common mathematical basis, which is that in each

case there are HD1 functions that are to be convexified. Because these topics have had

separate developments, there are many methods that have been found useful in some but

not all of the topics. These fall broadly into three areas as summarized in Table 1:

1. Those that operate on sub-manifolds of the HD1 function, such as G(~c), γ(~n), and

v(~n), and use such methods as finding its common tangents and curvatures to give

phase and shape diagrams, as well as limits of metastability. Here the choice of

metric plays a role in deciding which plot is to be convexified; and two choices for

γ(~n) are contrasted below. The shape or n-diagrams are simple analogs of phase

diagrams with the missing orientations at edges and corners represented as two and

multi-phase regions, and coexistent orientations represented by tie lines, triangles,

etc.

2. Those that operate on the gradient of the HD1 function, the ~µ and ~ξ plots and the

characteristics to obtain shapes that have ready physical interpretation for γ and

v. Because of the Gibbs-Duhem relation the normals to any point on the µ plot

gives its composition. The surfaces of the innermost parts of this plot represent

equilibrium single phases and their composition ranges. Intersections to give edges

and corners represent phases that are in equilibrium with one another. The missing

orientations at edges and corners in this plot represent the composition gaps in the

phase diagrams, and limiting orientations at these edges and corners.

For the ~µ and ~ξ plots the locally convex surfaces of the “ears” beyond these in-

tersection represent metastable phases or surfaces; all other parts of the ears are

separated from the metastable parts by spinodes and represent unstable phases or

surfaces.

There is no clear cut stability criterion for the characteristics; any characteristics can

be stable at some time during shape evolution with arbitrary initial data. However

the limiting shape of an outward growing crystal is the innermost plot, i.e. the plot
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without the ears.

3. Those that use a sub-manifold of the HD1 function in a graphical construction to

obtain a shape that for γ(~n) and v(~n) is the Wulff shape. For γ(~n) this is the shape

with the lowest surface energy for the volume it contains; for v(~n) this is the shape

that for a given volume would add the least volume by further growth; it is also

the limiting shape for outward growth. Such a construction can be done for G(~c),

but the construction has to be modified because of the Manhattan metric for ~N ;

this is awkward. If we convert G(~c) to a Euclimolar free energy, defined above, the

unmodified Wulff construction works to give a ~µ-shape with equilibria alone.

The common mathematical basis has indeed made it possible to examine the analogies

for all three topics and for all three basic methods. The differences in methods, such

as common tangents on radial plots of G(~c) versus 1/γ(~n), were often the result of the

differences in the metrics in conventional use. Manhattan metrics work with the func-

tion; Euclidian metrics with the reciprocal. If we use a weighted metric for γ, such as

energy/(unit area) projected along an axis, γm, the tangent constructions are done on this

rather than its reciprocal. This metric is already in use for vicinal surfaces. Molar and

molal free energies are convexified directly with equivalent results. The standard Wulff

construction works with the Euclidian metric, and neither molar or molal free energies

are easily used. But with the definition of a Euclimolar free energy we can directly create

a ~µ graphically, without taking derivatives of G(~c) or G( ~N).

The analogies create many approaches for solving problems in all three topics. The

advantages of having such flexibility in approach need to be explored. [44]

Phase diagram data are easy to obtain experimentally and can be obtained without

knowing the free energy. Such data can be extrapolated. The topology of phase changes

is guided by the phase rule; such phase changes appear on phase diagrams in standard

formats. The same holds true for n-diagrams; the orientation of smooth surfaces and the

orientation gaps at edges and corners which develop at local equilibrium, i.e., without
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waiting for full shape equilibration or without measuring γ(~n). From such data the n-

diagrams can be constructed and extrapolated, identifying surface “phase changes” that

conform to a phase rule that is modified for crystal symmetry. We have in an example [54]

exploited this interconversion between shapes and phase equilibria to analyze a complex

series of phase changes in a ternary regular solution.

All the information that is in G( ~N) is not only in G(~c), but also in the ~µ plots; the

free energies can be recovered from such a plot. The same interconversion holds for the

chemical Wulff plots and the convexified free energies. These plots all display the same

information, but in different formats. Furthermore some plots are more sensitive to errors

in the data because differentiation or finding the point of tangency is involved. Which

plot is best will be partially determined by the nature of the data; chemical potential data

ought to go directly into constructing a ~µ-plot. Free energy plots show free energy and

composition, but coexistent compositions must be determined by a tangent construction

that is very sensitive to errors in the data and becomes increasingly difficult with increasing

number of components. The Wulff shape is obtained without differentiating the free

energy data; the ~µ shape requires taking a gradient of G( ~N). These two plots should be

congruent for the stable equilibria. They display phase coexistence clearly as corners and

edges, compositions as normal directions, which implicitly requires differentiation, and

free energy of a particular composition as the distance (in the appropriate metric) of the

corresponding tangent plane from the origin.

The analogies are not perfect, as a few examples will show. The stability criteria are

different for the kinetics. Curved surfaces can be part of the Wulff shape, and thus of an

equilibrium shape. Only points in the ~µ-shape represent equilibria. Curved surfaces in

this shape are ranges in the ~µ and in the compositions. A system that spans such a range

is not in equilibrium and has real- space gradients of the chemical potential. While there

is a clear analogy with edges and corners, there appear to be no chemical analogy to a

triple junction of surfaces.
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7 Summary

In this paper, we have tied three fields together with a common mathematics based on

the fact that the underlying extensive function must be convex. From such a common

basis, gradient constructions are derived which have useful geometrical interpretations

and allow results from one field to be applied through analogy to the others.

Apparent differences in the way common tangents are applied to compositions and to

interfaces are resolved by consideration of the particular metric in use.

The analogies lead to the notion of the chemical Wulff shape which is constructed on

chemical free energy normalized by the same euclidian metric which is used to normal-

ize surface tension. This construction suggests a promising means to determine phase

boundaries without resorting to numerical differentiation.

Finally, the common mathematical structure presents a unified way of studying, teach-

ing, and understanding three important topics in materials science.
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