MIT 3.21 Spring 2001 © S.M Allen <u>Lecture 29</u> 181

Last time: Spinodal decomposition—I.

Background

•	Pair interaction model with conserved and nonconserved variables
•	Diffusion within the spinodal
•	Free energy of an inhomogeneous system

Today: Spinodal decomposition—II.

Gradient energy

Elastic energy

Improved diffusion equation

- Modification to Fick's laws
- Solution to diffusion equation
- Spinodal microstructures
- Later stages of spinodal decomposition

3.21 Spring 2001: Lecture 29

Spinodal decomposition—II.

Gradient energy

The "uphill" diffusion that results within the spinodal leads to the evolution of a high display material in which there are significant <i>gradients</i> of composition. These gradients have an as	
excess energy that diminishes the available driving force for diffusion. Thus, there m gradient energy modification to the diffusion potential and consequent modifications to Fi for diffusion.	ust be a

MIT 3.21 Spring 2001 © S.M Allen <u>Lecture 29</u> 182

Elastic energy
If there is a change of molar volume with composition, solid-state diffusion will be accompanied
by changes of elastic energy. The elastic energy contribution for compositional inhomogeneitie
enters the expressions for the \mathcal{F}_T , as well as the diffusion potential and Fick's laws.
<u> </u>
When the material is elastically anisotropic, the elastic energy will depend on the orientation o
the developing composition wave. The wavevector will tend to align along elastically soft direction
in the material.
<u> </u>
When elastic energy is significant, the region of compositional instability in the phase diagran
is reduced, and the smaller unstable region is known as the <i>coherent spinodal</i> .
,

Improved diffusion equation

183