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Nucleation
The transformation of a metastable material by the growth of initially small fluctuations
(e.g., composition fluctuations in the case of spinodal decomposition) was treated as a contin-

uous transformation.
Some metastable systems are stable with respect to infinitesimal fluctuations, but are un-
stable to a perturbation in the form of a finite fluctuation. In such systems, the transformation
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does not proceed until a finite fluctuation occurs. If the necessary fluctuation is so large that
its probability of it occurring in any observable time is effectively zero, then the system is
kinetically ‘frozen’ in its metastable state. Many, if not most, engineering materials are in
such non-equilibrium states.

Each of these finite fluctuations is called a nucleus; the metastable medium is called the
matriz. The minimum size nucleus required for continued spontaneous growth is called a
critical nucleus and all the fluctuations smaller than the critical nucleus are called sub-critical
nuclei. The process by which the sub-critical nuclei change their size by the (energetically
favorable) loss of its atoms to the matrix and the improbable attachment of new matrix atoms
onto the sub-critical nucleus is called nucleation.

Nucleation is commonly observed in carbonated beverages. When a beverage container is
capped, the amount of dissolved CO; that is in equilibrium at capped pressure is greater than
the amount of dissolved CO; in equilibrium at atmospheric pressure. The bubbles of CO5 that
form in an opened beverage and float to the top are the result of nucleation process.

Common experience also demonstrates that there are two different categories of nucleation.
The nucleation of critical nuclei at defects such as surface imperfections is called heterogeneous
nucleation; nucleation that occurs randomly throughout the volume of the metastable matrix
is homogeneous nucleation.

Nucleation Regimes

Nucleation is what precedes growth by phase transformation. Consider the case of a solid
solution of phase [ at a composition that is metastable with respect to the creation of an
a-phase.?*

341t may be supposed that such a metastable composition comes about by cooling a stable composition into
a two phase field. Such supercooling can occur because phase transformations are retarded by the time required
to form a critical nucleus.
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A prototypical case can be illustrated with a phase diagram and free energy curve.
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Figure 24-1: lllustration of quenching a stable composition Xgystem of matrix phase
B and the formation of an a-nucleus at composition X leus- The illustrated tangent
construction gives Ag—the free energy change per volume a-phase produced; {2¢ is the
volume per mole for the a-phase.

A useful theory of nucleation should predict at least two quantities:

Incubation Time The expected delay 7, after quenching, before critical nuclei form in suffi-
cient quantities for experimental observation.

38
crit?

Nucleation Rate The rate, at which critical nuclei form per unit volume after incuba-

tion.

These quantities are related to the so-called nucleation regimes:
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Figure 24-2: Schematic illustration of the density of supercritical (growing) particles
as a function of time after quenching. Two important quantities are the steady state
nucleation rate (the slope of the curve in the steady-state regime) and the incubation
time 7 (the extrapolation of the steady-state slope to zero-density.

Homogeneous Nucleation: Simple Theory

It is possible to formulate a very simple theory for the size of a critical nucleus from macro-
scopic thermodynamic quantities: interfacial surface tension 7,4 (energy/area), and free energy
change per unit volume nucleus Ag (energy/volume). This simple theory works remarkably
well despite the fact that, at the small sizes that critical nuclei are formed (10-50), extrapo-
lation of 7,5 and Ag is questionable. Another advantage is that the model provides a useful
understanding of the physical quantities that control nucleation.

An a-phase nucleus forming in a S-matrix has only two contributions to its energy: the
decrease in energy due to the volumetric driving force, Ag, and an increase in energy due to
surface tension, v,5.%

For a spherical isotropic nucleus of radius R, the total free energy is:

4
AG™(R) = §7TR3AQ + 4T R*,ap (24-1)

35The volumetric term Ag can be determined from the construction in Fig. 24-1 and is necessarily negative
for nucleation (Ag < 0). Other contributions to free energy, such as stress or composition gradients may exist,
and are not included in this simple theory. The surface tension may also vary from absorption of solutes or the
existence of interface dislocations—these effects are also ignored here.
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Figure 24-3: lllustration of the most simple nucleation theory.

Suppose nuclei are formed by random fluctuations and a distribution f(R) of nuclei sizes
R develops. Any one of the nuclei having a radius R such that % < 0 can decrease its
free energy continously by growing (i.e., increasing its radius); all other nuclei cannot grow
continuously, but may grow by improbable events such as random attachment of add-atoms.

Thus, the size of the critical nucleus must satisfy % = 0; it is the radius that maximizes

AG(R)

36Further reflection shows that the critical nucleus is not the one that maximizes AG(R). In the spherical
example, it was assumed that the particle is always in its most energetically favorable state. In other words,
other nuclei shapes would give larger critical nucleus volumes for the same driving forces. Because the shape
is energy-minimizing, the critical nucleus size corresponds to the lowest saddle point of AG that separates
subcritical nuclei from supercritical nuclei.
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Ignoring differences in heat capacities between the two phases and any temperature dependence
of surface tension, Ag = Ah(T,, — T)/T., so that the critical size decreases as AT~ and the
nucleation barrier decreases as AT 2.

The growth of subcritical nuclei increases the nucleus free energy with each increment of
nucleus size. The process will be treated as a sequence of activated states similar to the
activation process for a vacancy exchange as described in Chapter 6 of KPIM. Assuming that
the nucleation occurs at constant pressure and temperature, the nuclei sizes will be distributed
with a probability proportional to exp(—AG"(n""?)/kT’) where AG™"(n"") is the total free
energy of a nucleus containing n"" atoms. Equation 24-2 can be converted using n""°C) = %ﬂR?’

to
AG’nuc(n) :nnucA6+ (627{.)1/392/3nnu02/37aﬂ

e —327r’yaﬂ302
ncrit :——3 (24—3)
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A Model for the Steady-State Nucleation Rate

A subcritical nucleus has a driving force which tends to make it shrink and dissolve back into

the matrix. The development and incremental growth of subcritical nuclei is assumed to be a
thermally activated process. The steady-state nucleation regime subsists by the development
of a steady-state size distribution of subcritical clusters. At steady-state, the source of the
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material to produce subcritical clusters is sufficient to replenish the material that is lost as a
critical cluster becomes a stable precipitate and grows. The rate at which subcritical clusters
reach their critical size must be the steady-state nucleation rate, J:° = and can be experimentally
determined from the slope in Fig. 24-2.

The steady-state nucleation rate depends on the distribution of subcritical nuclei.

Steady-State Disthution of Subcritial Clusters

number of atoms ircluster/volume

Figure 24-4: Schematic illustration of the distribution of subcritical clusters at steady-
state. The number of particles of a particular size are assumed to exist according to a
thermal distribution depending on exp(—(AG™(n))/kT). At steady-state, the number
of particles feeding the distribution from the bottom is sufficient to replenish those that
are lost due to production of critical nuclei.

The rate of creation of critical nuclei can be extended to subcritical nuclei as follows. The
rate at which subcritical nucleus of size n (per unit volume) are created must must be related
to the concentration of nuclei of size n — 1 that grow by one unit minus the rate at which those
of size n + 1 lose one unit:

I3 = TpaSh_1Cnot — FacspSey1Crat (24-4)

where I' is the rate of a successful jump across the nucleus interface and S is the number of
atoms adjacent to the interface.




MIT 3.21 Spring 2002 © S.M Allen W.C Carter Lecture 24 126

We assume that there is a steady-state distribution for which the “flux” J,, must vanish,

S037

0= Fﬂ%asf—lcfbs—l —LaspSunnCatn (24-5)

where C° is the steady-state concentration of nuclei of size n. It is reasonable that the kinetic
factors I' do not depend on equilibrium, so Eq. 24-5 can be solved and one of the kinetic factors
in Eq. 24-4 can be removed, and an expression for a system away from steady-state can be
obtained:

Ch- Cn
Jmie =T oS0 0, ( vl - Jl> (24-6)
n—1 n+1
and this can be approximated by a derivative of a continuous function:
a(C,/C2
JM = —Fg_)aS,ng;si( (‘9{1 ») (24-7)

Therefore the rate of change of the concentration of nuclei of size n must be related to the
divergence of this flux:

oC, o) 9(C,/C2%)
- Brss Z\Tn P ) _

which is called the Zeldovich equation and is very similar to the diffusion equation except that
the spatial variable Z is replaced with a nucleus size n.

3"This is the assumption of “microscopic reversibility.” It is a bit suspicious to find it in a theory of non-
equilibrium processes...
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At steady-state, C,,/0t = 0 can be integrated with respect to n. The integration constant
must be —J?% and not a function of n:

nuc

8C,/Cs*

Jis, = =Ty, SPCs
p— n'n on

nuc

(24-9)

which can be integrated again from one particle (where it may be assumed that C; = C}*)
to an infinite number of particles where C,,/C%* — 0 as n — oo.

oo dn 0
P QL e R e P (24-10)
1 IgaSnCss 1

Several approximations must be made to replace the first integral in Eq. 24-10 with simple
forms. The integrand over n is large only when SE C??, which is small near n = ng.;—so
the limits of integration can be extended to +oo without addition of significant error. The
thermally activated concentration C?* &~ N, exp(—AG"“(n)/kT) where N, is the number of
possible homogeneous nucleation sites per volume and the nucleation barrier can be expanded

around the critical size:

(n — ngrit )2 O2PAG™4(n)

AG™(n) = AGLY 24-11
(n) crit + 9 anz N ( )
where, if the simple approximation in Eq. 24-3 is used
—807y,5°02 AG — T2
AG™e(n) = o8 22 (1 = Neris) (24-12)
3AG 647y, 22 2
With these approximations and the integration can be carried out and
nuc B —AG B 88

ot = Zlp5a Sy Noe ™ #0 = Zlp,0.5,,, Ol (24-13)

where 7 is the Zeldovich factor given by the result of approximating the integral in Eq. 24-10
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—1 92AG™
= . 24-14
Z \/27TkT on? ( )
For the simple model in Eq. 24-3:
AG 1

= 24-15
8m0yap? V 2T ( )

Typical experimental values of Z ~ 1/20.

Model for the Nucleation Incubation Time

Considerations of thermally activated subcritical nuclei resulted in a diffusion equation for
the rate of change of the density of nuclei of size n in Eq. 24-8 with an effective diffusivity
given by I‘ﬁ_,an.

The incubation time is approximately the amount of time before particles begin reaching
the critical size. The nucleation and growth process throughout all regimes implies that the
particle size distribution is changing over time:
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Figure 24-5: Schematic illustration of the evolution of the particle size distribution
(illustrated by the four planes with normal in the page) as a function of time.

This diffusion equation could be solved for an initial distribution of clusters with a fixed
concentration at small sizes (n = 1) and zero flux at n = oo to yield a characteristic time when

appreciable concentrations appear at n = ng.;.

However, the incubation time can be approximated with a random walk model as follows.
Near n = e, AG™€ is nearly flat and the rate of the number of particles crossing n = g4
can be approximated by the root-mean-square ‘displacement’ relation for a one-dimensional
random walk: <5n2> = QPﬁ_,aSET where dn/2 is the ‘distance’ on either side of the maximum
that AG™ can be considered to be flat. Approximating the 6n/2 by the value at which

AG™(ngy — 6n)2) = G — kT
Sn? 2567k T yas Q22
n T Jap (24-16)

T WpnaS’ T AGTs,.SP

T
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so that the characteristic incubation time goes like T'//(AT)*.

0 n

crit

Figure 24-6: Variation of free energy with size of fluctuation in the nucleation regime.
The curvature at the top of the barrier determines the time for clusters to "random
walk” over the barrier and thus influences the relaxation time 7 for transient nucleation

kinetics.




