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Last time
Order Parameters

Continuous and Discontinuous Transformations

Free Energy Changes for Conserved and Non-conserved Order Parameters

Free Energy Density and Diffuse Interfaces

3.21 Spring 2002: Lecture 23

Continuous Phase Transformations—Kinetics

The functional gradient is the starting point for the kinetic equations for conserved and
non-conserved parameter fields. From an integral over the homogeneous free energy density
and a gradient energy term:

Fle)) = [ (1) + 5 Vo Va)dv (23-1)

This is the free energy for a domain 2 for an arbitrary field y(Z) representing an order param-
eter.
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Supposing the the order parameter field is changing (or, flowing) with velocity field v(Z),
the free energy as a function of time is F'(y +vt) and the instantaneous rate of total free energy
change:

or
ot

- / ('(y) — KVy)vdV’ (23.2)

t=0

from this equation, it follows that the fastest®3 decrease in total free energy if the flow field
v(Z) is chosen so that it is ‘parallel’ to (minus) the functional gradient —§ F'/dy which is defined
by:

§F
W = Fy) — KV%y (23-3)

Kinetics of Non-conserved Order Parameters:
The Allen-Cahn Equation

For a non-conserved order parameter n(Z), Eq. 22-15 is the local rate of increase of free
energy for a small change 67(Z); therefore —(f'(n) — K, V*n) is the driving force to change 1.
No long-range diffusion is required (in other words, the order parameter can change with no
flux of order into an element dV'). Therefore, assuming kinetics that are linear in the driving
force:

on

ot
which is known as the Allen-Cahn equation for describing order-disorder kinetics. It is also
called Model A or the non-conserved Ginsberg-Landau equation.

M, K,V — f'(n)] (23-4)

Allen-Cahn: Critical Microstructural Wavelengths
Consider a system where f(7) has two minima at n = £1:

f(n) = f((L+n)(1—=n) (23-5)

where f, is the height at the unstable saddle point at = 0. Suppose the system is initially
uniform at unstable point 7 = 0 (for instance, the system may have been quenched from a

33 “Fastest” requires the definition of a norm. Considerations of norms and their connection to kinetics can
be found in, Carter W.C, Taylor J.E., and Cahn J.W., “Variational methods for microstructural-evolution
theories” Journal of Materials, pp 30-36 (1997).
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higher temperature, disordered state and 7 = +1 represent two equivalent ordering variants).
If the system is perturbed a small amount by a planar perturbation in the z-direction, n(Z) =

5(t)sin(wz). Putting this and Eq. 23-5 into Eq. 23-4, and keeping the lowest order terms in
5(t):

dé(t
d(t ) = M,(4fs — K,w?)8(t) (23-6)
so that
8(t) = 8(0) exp[M,(4f, — K,w?)t] (23-7)
The perturbations grow if
K
A>Apit =T K (23-8)

S

which is approximately equal to the interface width.

Note that the amplification factor is a weakly increasing function of wavelength (asymptoti-
cally approaching 4M,, f, at long wavelengths). This would predict that the longest wavelengths
would dominate the morphology of an order-disorder phase transition. However, the probabil-
ity of finding a long wavelength perturbation is a decreasing function of wavelength and this
also has an effect on morphology.

The Kinetics of Conserved Parameters:
The Cahn-Hilliard Equation
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Because ¢(z) is a (locally) conserved parameter, the flux of ¢ from one volume element to its
neighbor will affect the kinetics. ¢(Z) is guaranteed to be conserved if 9c/dt is the divergence
of a flux.

Equation 22-15 is the local increase of free energy density due to a local addition d¢(Z).
The flux is assumed to be linear in the gradient of Eq. 22-15:

J, = —M,V[f'(c(Z)) — K.V (23-9)
This is equivalent to the linear assumption in Fick’s law. The proportionality factor M, is
related to the interdiffusion coefficient. However, M, is necessarily positive.

Therefore, the local rate of increase of the composition is given by (minus) the divergence
of the flux:

% =V - MV[f'(c(2)) — K.V?c(%)] (23-10)
if M, is constant, then
‘3—5 = M [V?f'(c(Z)) — K. Vc(7)] (23-11)

which is known as the Cahn-Hilliard equation describing the kinetics of spinodal decomposition.
It is also called Model B or the conserved Ginsberg-Landau equation.

The first term on the right-hand side of Eq. 23-11 looks like the classical diffusion equation in
regions where f(c) can be reasonably approximated by a quadratic function, (for instance near
the minima of f). The fourth-order term has the effect of stabilizing the shortest wavelengths
when f” < 0, as discussed below.

Cahn-Hilliard: Critical and Kinetic Wavelengths
Consider the following function as an approximation to the regular solution model:

164,
f(c)_ (

Cg — Ca

Ji [(c —ca)(c—ca)]” (23-12)
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which has minima at concentrations c, and cz and a maximum of height f, at ¢ = ¢4y =
(ca +¢p)/2. Suppose we have an initially uniform solution at ¢ = ¢,,, and that we perturb the
concentration with a small plane wave: ¢(Z) = ¢,y + €(t) sinwz. Putting this into Eq. 23-11
and keeping the lowest-order terms in €(¢),

de M w?
= _16f, — K,w?(csg — c,)? 23-13
dt (Cﬂ Ca)2[ f w (cﬂ C ) ]6 ( )

Therefore any wavelength A will grow if

K.

A > Ac’r‘it = (Cﬂ — Ca) f_ (23—14)

o] 3

Taking the derivative of the amplification factor in Eq. 23-13 with respect to w and setting
it equal to zero, we find the fastest growing wavelength:

K.

2
)\maz = \/5)\crit = ﬂ(cﬂ - Ca) f_

: (23-15)

It is expected that domain size in the early stage of spinodal decomposition will be approxi-
mately A,q0-

Note that this approach for conserved order parameter is analogous to the case of kinetic
and thermodynamic stability of a cylinder with axial perturbations:
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Conserved Order de Nonconserved Order Parameter

Figure 23-1: The amplification factor for spinodal decomposition and order-disorder
reactions.

Simulations

Below are simulations of Eqgs. 23-4 and 23-11 with initial conditions taken as a small per-
turbation about the unstable (or saddle) point.

Can you determine, by observation, which simulation corresponds to which type of kinetics?

Figure 23-2: A simulation—can you determine which type of kinetics? If you are viewing
in HTML, click on the figure to see the simulation.

Figure 23-3: A simulation—can you determine which type of kinetics? If you are viewing
in HTML, click on the figure to see the simulation.




