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• Migration of a moving grain boundary diffusion source

• Regimes of grain boundary “short-circuit” diffusion for stationary and
  moving boundaries

• Some grain boundary diffusion mechanisms

• Dislocation core structure and dislocation “short circuits”

• Some phenomena where short-circuits are important

Diffusion in noncrystalline materials

•Gasses and liquids

•Interstitials in metallic glasses and polymers

•Diffusion in network glasses

•Diffusion in polymers by reptation
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Practical phenomena involving grain boundary diffusion

Sintering

Coble creep

Superplasticity
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Diffusion in gasses

•flux of molecules across a plane in a concentration gradient leads to

•D varies inversely with p

•D varies as p3/2

•Typical D in a gas at STP is  5 x 10-7 m2/s 
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1
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where v =  mean particle velocity

and l =  mean free path of particles
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Diffusion in liquids

•Distribution of free volume amongst N particles, subject to conservation

•Using relation for D over distribution of free volumes,

Ni

N
= γ
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where v  is the average free volume and v *  is the critical free volume,  v* ≈ 10 v  

D = D v( )p v( )dvv*
∞∫   one can show that
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and thus in liquids  D ~ T
3 2
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The glass transition; free volume

• Flowable liquid above glass transition, rigid glass below

• More free volume when glass is cooled rapidly



MIT 3.21 Spring 2001 © S.M. Allen Lecture 20 Wednesday, April 4 6

Diffusion in amorphous metals

•Self-diffusion has these characteristics
After a quench, D relaxes to a constant value
If T is changed in the amorphous state, D changes instantanously
No isotope effect
D obeys an Arrhenius law
Activation volume must be very small

Implication: self-diffusion must occur
by a cooperative mechanism, such as
a ring mechanism, or motion  of a
chain-like groups of atoms

•Diffusion of small impurity atoms
The distribution of free volume in the amorphous structure means that there

is a distribution of “traps” in which the impurity atoms reside.
The traps fill up with Fermi-Dirac statistics, and D can be modelled as

A similar relation holds for diffusion of small impurity species in polymers.
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Diffusion in amorphous metals - experiments on H in Pd80Si20

•D increases strongly with hydrogen concentration,
  consistent with distribution of traps
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Diffusion in amorphous polymers

•single molecule of polyethylene with n = 50 is a self-avoiding random walk

•dilute solution of polymers in a solvent: polymer molecules diffuse by
Brownian motion.

•“good” solvents: chains more spread out and 

•“theta” solvents: chains more compact and Rh ~ Nb

Rh ~ N
3 5

b
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•D for polymer molecules in dilute solution is given by

Diffusion in polymer melts

•large number of long chains -> entanglements

•molecules move by “slithering” mechanism called reptation

D ~
kT

6πηRh
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Reptation model

• jump frequency n  will be inversely proportional to N

• reptation time for complete destruction of tube

• self-diffusivity of a chain in the melt is thus

ν =
ν0

N

τ rep ≈
N2

ν
=

N3

ν0

D =
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6
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