- **Previous lecture**
- Diffusion mechanisms in crystals: vacancy, interstitial, intersticialcy
- Expressions for D:

Diffusivity of interstitial solute in bcc crystal

$$D = \frac{a^2}{6} \exp(s^m/k) \exp(-h^m/kT) \qquad f = 1$$

Self diffusion by vacancy mechanism

$$D = f a^{2} \exp \frac{-s_{v}^{m} + s_{v}^{f}}{k} \exp -\frac{h_{v}^{m} + h_{v}^{f}}{kT} \qquad f \quad 1 - \frac{2}{z}$$

Solute diffusion by vacancy mechanism: three-frequency model

- Background on defects in ionic crystals and Kröger-Vink notation
- Atomistic models for diffusion coefficients ionic crystals

 Intrinsic and extrinsic regimes in stoichiometric material
- Diffusion in nonstoichiometric oxides; the oxygen sensor
- Role of microstructure in diffusion: short-circuiting

KPIM Chapter 9

Cation diffusion in KCl with Ca impurities

Impurity incorporation
$$CaCl_2$$
 KCl $Ca_K^{\bullet} + 2Cl_{Cl}^x + V_K$

Schottky equilibrium
$$K_S = \left[V_K\right] \left[V_{Cl}\right] = \exp -\frac{g_S^f}{kT}$$

Neutrality condition
$$\left[V_K\right] = \left[V_{Cl}^{\bullet}\right] + \left[Ca_K^{\bullet}\right]$$

So we have
$$\left[V_{K}\right] = \frac{\left[\operatorname{Ca}_{K}^{\bullet}\right]}{2} 1 + \sqrt{1 + \frac{4K_{S}}{\left[\operatorname{Ca}_{K}^{\bullet}\right]^{2}}}$$

Intrinsic regime: impurity concentration is small or *T* is high and thus

$$\left[V_{\mathrm{K}}\right] = \sqrt{K_{\mathrm{S}}}$$

Extrinsic regime: impurity concentration is high or T is low and thus

$$\left[V_{\mathrm{K}}\right] = \left[\mathrm{Ca}_{\mathrm{K}}^{\bullet}\right]$$

Cation diffusion in KCI with Ca impurities, cont'd:

Temperature dependencies

Cation vacancy concentration

Cation diffusivity

Diffusion in nonstoichiometric oxides

— e.g., cation diffusion in FeO (note various valence states of Fe are possible)

FeO can be oxidized to make a cation deficient oxide $Fe_{1-x}O$

© S.M. Allen

Oxygen atom approaches, attracts two electrons from Fe²⁺ and gets ionized.

Oxygen-deficient crystal. Note cation vacancy and two ferric cations.

oxidation reaction: $\frac{1}{2}O_2 = O_0^x + V_{Fe} + 2h_{Fe}^{\bullet}$, where $h_{Fe}^{\bullet} = Fe_{Fe}^{\bullet} - Fe_{Fe}^x$

Diffusion in nonstoichiometric FeO, cont'd:

Oxidation reaction:
$$\frac{1}{2}O_2 = O_O^x + V_{Fe} + 2h_{Fe}^{\bullet}$$

Equilibrium constant for this reaction:
$$K_{eq} = \frac{\left[V_{\text{Fe}}\right] \left[h_{\text{Fe}}^{\bullet}\right]^2}{\sqrt{p_{O_2}}} = \exp \left[-\frac{G}{kT}\right]$$

Charge neutrality:
$$2[V_{\text{Fe}}] = [h_{\text{Fe}}^{\bullet}]$$

Cation vacancy concentration:
$$\left[V_{\text{Fe}}\right] = \left(1/4\right)^{1/3} \exp \left[-\frac{G}{3kT}\right] \left(p_{\text{O}_2}\right)^{1/6}$$

Diffusion in impure FeO will have three regimes:

- 1. High T, low oxygen pressure, dominated by Schottky defect equilibria
- 2. High oxygen pressure, dominated by oxidation reaction
- 3. Low *T*, low oxygen pressure, dominated by extrinsic impurities

Lecture 17

Diffusion in nonstoichiometric FeO, cont'd:

Cation diffusivity Arrhenius plot

MIT 3.21 Spring 2001

Position of middle segment will depend on oxygen pressure, hence this region will not be observable at low oxygen pressures or high impurity contents

Diffusion in ceramics: relevance

Microstructural processes

Densification of powder compacts by sintering

© S.M. Allen

Creep deformation at high temperatures

Grain growth

Solid—solid transformation kinetics, including oxidation of metals

Electrical conduction

Ionic conductors for chemical and gas sensors, solid electrolytes, fuel cells

The automotive oxygen sensor

sensors

The automotive oxygen sensor, cont'd:

TiO₂-based, works on *electronic* conduction that has p_{O2} dependence

ZrO₂–Y₂O₃-based, works on electrochemical potential difference between exhaust stream and ambient air

References for additional study:

KPIM Chapter 8

Chiang et al., *Physical Ceramics*, 1997.

Section 2.1 on Point Defects

Section 3.2 on Atomistic Diffusion Processes

Section 3.3. on Electrical Conductivity

Oxygen sensors, pp. 142–146 and pp. 234-235

Allen and Thomas, *The Structure of Materials*, 1999

Section 5.1.6 on Point Imperfections in Ionic Crystals