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Last Time
The Successful Jump Frequency as an Activated Process

Energy Distributed among Particles in an Ensemble of Fixed Energy

The Square Well Approximation

The Harmonic Well Approximation

3.21 Spring 2001: Lecture 15

Many-Body Theory of Activated Processes at Constant Pressure

In areal system, an atom or a vacancy does not make a successful hop without affecting (or
getting effected by) its neighbors—all of the particles are vibrating and saddle point energy is
an oscillating target produced by the random vibrations of all the atoms. The energy-surface
that an atom, interstitial, or vacancy travels upon is a complicated and changing surface. If
there are N spherical particles, then there are 6 N-degrees of freedom to this surface, but it will
be assumed that the momentum variables can be averaged out so that only a 3N-dimensional
potential surface remains:
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Figure 15-1: A schematic representation of the 3/N-dimensional (positions) surface for
a crystal with N sites. The minima are located at P and () and it may be supposed,
for simplicity, that a particle that jumps from P to () does so along the trajectory S
crossing through a maximum of width § at the saddle point A* which is located at the
minium along the ridge S5*.

Effectively, the average over the momentum variables is supposed to account for events
such as increased probability of a hop by an interstitial or vacancy when the oscillations of
nearby host atoms cooperate to create an enlarged path (or reduced activation barrier).

The minima, or equilibrium values of momenta and positions, can be approximated by

harmonic wells:
3N 9

=1

(15-1)

where w; is the characteristic harmonic frequency of a particle oscillating near the i** minimum.

Considering the process of a single hop, consider the trajectory of the particle as illustrated
in Figure 15-1. It can be supposed that trajectory P — () is along the positive direction of the
coordinate ¢q;. This effectively turns the many-body problem into a one-dimensional problem
along the line S in Figure 15-1. Therefore, the rate of crossing can be related to the average
velocity in the activated state and the “effective width” in the activated state.?®

Let the first coordinate be in the direction of the crossing (parallel to S), then the average
(rms) momentum p; in that direction is related to the an average rate of attempts. The result
that was derived for the harmonic potential can be re-used in this case:

28Recall from the simulations in class that the particle spends most of its time in the well and most of the
rest of its time near the saddle points where the net velocity is small.
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KT 1
= 4/ — — (fraction of particles in activated state) (15-2)
m L

where L 4 is recognized to be the width § in Figure. 15-1.

However, in this case, the particle may have a different volume in the activated state
compared to the equilibrium state:?

AV = VA — Vel (15-3)

part part part

For the case where the volume may vary, but pressure is constant, the canonical constant
pressure partition function must be used:

Zp= Y e (15-4)

energies, volumes

Therefore I'y,,+ picks up an additional factor:

kT 1 e—PAk;g’;i% Za
m LA Zmin

(15-5)

Fpart -

It remains to evaluate the partition functions by summing over all energies: Z = E?N e~ Ewua) /KT
The usual strategy in evaluating the sum for a partition function is to replace it with an in-
tegration over a continuous variable: Y_.exp[—E;/kT| — [exp[—E(()/kT]d(, where ( is a
continuous variable that mimics the index :. However, because the atoms are part of a lattice,
the positions and momenta are quantized. Therefore, a trick must be employed to convert the
sum over quantized values to continuous values. The trick involves degeneracy and the Heisen-
berg uncertainty principle. The partition function is evaluated by passing to the classical limit
by dividing up the quantum phase space into cells of side-length equal to Planck’s constant, h:

29This is certainly important for the case for migrating particles that have a large compliance (low stiffness)
such as vacancies.
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Figure 15-2: lllustration of the trick used to evaluate the partition function by counting
degeneracy in quantum phase space with the uncertainty principle.

Because of the uncertainty principle:

Each elementary volume, (ApAg);, in phase space must be considered to have degeneracy:

Ap;Ag;
h

Therefore, in the classical limit, each elementary box dpdq will have a degeneracy of at least

1/h.

(15-7)

_E 1 o E(m 4;)
7 = e T X h3—N A e dpldp2 dpgqu]_dqz ce quN (15-8)
or
Y p2/(2m;)+6(a1.,92,-- 43 N)
h3N kT dpldpg c. dpgquldQQ - dQ3N (15—9)

Using the Harmonic approximations (Equation 15-1) for the minima and carrying out the
integration over the momenta independently:3°

pZ
30Note that ffooo ¢ TmFT dpy = /2mm1kT.
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2 kT 3N 3N 1 min
Z’min = ( ’n—h ) (H w_z e_Ek—T (15—10)

=1

where each of the w; is the natural frequency near the potential i" well in Equation 15-1.

Carrying out the same process for the activated state (which has one less degree of freedom)
except for the momentum p; that will have the slow mode as it traverses the saddle point,
there are 3N — 1 natural frequency and one averaged velocity near the saddle point.

5, (2nkT\*N 7! m SVl
Za =1L e 77 | | — 15-11
A ae ( h ) ( 27rkT> s wi (15-11)

=

The products over the vibrational modes can be related to the entropies of the states, i.e.,

3N-1 3N-1
(H wf) x (QW:T) e (15-12)

=2

Putting this all back into the expression for the rate of jumps,

mig ,mig mig mig
kT _(Epart+PA‘/part_Tspart) kT _Gpart

Fpart = Te kT = Fpart = 76 kT (15_]‘3)

Advanced Topic: Variational Flows
Suppose that the free energy for the entire system can be written as an integral over the
local volumes, to simplify the discussion consider one dimension:

Fle) = / F(c, ¢/ 0z, ) da (15-14)
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where f(c,c,z) represents an expression for the free energy density that might be a function
of the local concentration ¢(z,t), its spatial derivative dc/dz and possibly on position. F(c) is
a functional—it takes a function as an argument and returns a scalar quantity, the free energy
of the entire system at some time ¢. In other words, F(c) is a recipe for calculating the energy
for an arbitrary function ¢(z,t).

Recall the discussion in the first few lectures about the gradient and directional derivative.
One might consider if the field ¢(z,t) is changing or flowing with velocity v(z,t), how would
this affect the total energy F'?7 The recipe is:

F(c+vt) = /f(c+vt,8(c+vt)/8:c,x)dw (15-15)

The instantaneous change of F' due to the flow v can be obtained by taking the derivative with
respect to ¢t and evaluating at time ¢ = 0:

_oFr of of v
0 =% T / {acv+ 90c/dx 8:{:} e (15-16)

oF
ot

t=

Where % -v defines the “functional gradient” projected onto the velocity v—it is a directional
derivative.

Integrating by parts3!

or
ot

_6F of 8 of
=5 T / [ac O 880/89:} vk (15-17)

t=0

The part inside the brackets represents the gradients contribution local change of the field. If
this acts like a directional derivative, then the energy changes the fastest when v is ”antipar-
allel” to the local functional gradient:

voc—M[ﬁ—2 of }

dc Oz ddc/dx (15-18)

This is a rule for how to choose the flow so that the free energy deceases as quickly as
possible. Consider some examples that apply to diffusion. For a free energy density with a
simple minimum:

fle) = W(C — Cmin ) (15-19)

Since composition is locally conserved, then the flux must be antiparallel to the gradient of
local functional gradient:
of o0 Of

T@,t) = =MV | 5.~ b2 50c/0a

} = —MV f"(cmin)(c = Cmin) (15-20)

? part vanish, or the surface term may be
BC

31The boundary conditions may be chosen to make the "uv

considered to be small compared to the volume.
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The conservation principle implies:

Jc
— =V - Mf"(cmin)Ve (15-21)
ot
which is the diffusion equation with the thermodynamic factor.
Alternatively, one could consider the local energy density as being composed of the penalty

for being inhomogeneous, in this case the local free energy penalty goes like:

fle)=k (%)2 (15-22)

where k is a gradient energy coeflicient.
In this case, the gradient is not conserved, so the linear kinetic approximation for the
change in concentration field is:

8c__M{8f o of }:M(?Qc

ot e Oz dz?

dc Oz 8dc/dx (15-23)

which is another way to derive the diffusion equation. More details on this method can be
found in Appendix D of KPIM.



