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Last Time
Strategies for Solving Problems

Numerical Methods

Random Walks

A Puzzle: Why for a random walk is Vi = 07

3.21 Spring 2002: Lecture 10

The Successful Jump Frequency as an Activated Process

The treatment of diffusion as a statistical process permitted a physical correspondence
between the macroscopic diffusivity and microscopic parameters for, average jump distance
(r), jump correlation f, and the average frequency at which a jumper makes a finite jump T.

In this lecture, the statistical evaluation of microscopic process will be applied to the
successful jump frequency I'. A physical correspondence for I' that is related to microscopic
processes of attempt or natural atomic vibration frequency and the difference in energy between
the potential energy of site and the maximum value of the minimum potential energy (the

saddle energy) as the atom moves from one equilibrium site to the next.
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The result that will be obtain, that the frequency of successful hops,

_ Esaddle_EequilA

I'=ve — ®r (10—1)

is related to the natural frequency multiplied by a Boltzmann factor has remarkable general
application.

Distribution of Energy among Particles
A fundamental result from statistical mechanics is that for an ensemble of atoms at a fixed
temperature 7', that the energies of the atoms has a characteristic probability distribution:
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Figure 10-1: Schematic illustration of the distribution of energies at a fixed tempera-
ture, plotted for two different temperatures. P(E) = exp(—FE/kT)/Z where Z is the
normalizing factor (partition function) Z, such that 1 = ), P(E).

Below, the rate of successful jumps for simple models of activated processes will be derived.
Each derivation will depend on the distribution of energies given above. It will be supposed
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that a single atom will assume all possible values of energy with probabilities given by the
Boltzmann distribution over time (the ergodic assumption). In other words, the distribution
is considered to apply to the atoms at a time scale that is rapid compared to the natural
frequency of the atoms—mno correlation is made for the loss (or gain) of energy as an atom
hops from one equilibrium site to the next.

Activation Processes in Square Wells
Consider an ensemble of particles with distributed energies moving about on the following
energy landscape:
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Figure 10-2: Simple model of activated process occurring between two square wells with
an activation barrier of height E 4.

The characteristic time it takes a particle to cross the activated state is

LA m
cross ~ ~ L ') 10-2
T e VKT (10-2)
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where v,,s = 4/(v?) and m is the mass of the particle with characteristic thermal energy k7.

The total rate, R.,,.s, that particles cross the barrier is

(number of particles in activated state)

Rc'ross =
TC'I’OSS
Niot (probability of being in activated state)
= (10-3)
TC’I'OSS
kT 1 Zja
= NiotA| —
m LA Z'm,i'n,
where Z 4 and Z,,;, are the partition functions for the activated and minimum states.
The rate that single particle crosses, I, is:
kKT"'1 Z
=4/ —— 4 (10-4)
m LA Zmin
Zy [y e dz [
e kT ax E,_FE. . .
4 La = A T (10-5)
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Therefore,

kT ]_ A" “min
r— Hmee_% (10-6)

The term that multiplies the Arrhenius factor (the 1/T exponential) is the characteristic
time it takes a particle to make an attempt at the activated state.

Activation Processes in Harmonic Wells
Consider the following modification of the above simple case, the minima are treated as
harmonic wells:
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Figure 10-3: Modification to the simple square wells activated process by a harmonic
potential for the equilibrium and saddle points.

The minima can be approximated by

E(x) = Emin + g(l‘ - fcmin)z (10—7)

The analysis is similar to the case of the square wells, but for the ratio of the partition
functions:

_E(r)d
e T dz
24 _ Ji, (10-8)
Z,,nin _Emin LWZLZ." _:B(l_zmin)z
€ kT f*Lmin € KT dx
Approximating,
Lmin
2 _ﬁ(z_lmin)z o _ﬁ(l_ﬂmin)z
e T dr & e T dx (10-9)
—Lmin —oc

and carrying out the integration,
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ﬂ ]. _EA_Emin _EA_Emin
' =4/ — e kT = w,e kT 10-10
\Vom s (10-10)

where w, is the characteristic oscillating frequency at the minima of a particle with mass m
sitting in a well of curvature S.

Many-Body Theory of Activated Processes at Constant Pressure

In a real system, an atom or a vacancy does not make a successful hop without affecting (or

getting effected by) its neighbors—all of the particles are vibrating and saddle point energy is
an oscillating target produced by the random vibrations of all the atoms. The energy-surface
that an atom, interstitial, or vacancy travels upon is a complicated and changing surface. If
there are N spherical particles, then there are 6 N-degrees of freedom to this surface, but it will
be assumed that the momentum variables can be averaged out so that only a 3N-dimensional
potential surface remains:



92 MIT 3.21 Spring 2002 © W.C Carter Lecture 10

Figure 10-4: A schematic representation of the 3/N-dimensional (positions) surface for
a crystal with N sites. The minima are located at P and () and it may be supposed,
for simplicity, that a particle that jumps from P to () does so along the trajectory S
crossing through a maximum of width § at the saddle point A* which is located at the
minium along the ridge S5*.

Effectively, the average over the momentum variables is supposed to account for events
such as increased probability of a hop by an interstitial or vacancy when the oscillations of
nearby host atoms cooperate to create an enlarged path (or reduced activation barrier).

The minima, or equilibrium values of momenta and positions, can be approximated by
harmonic wells:

3N 9
B(q:) = Epin ), —5—4; (10-11)
=1

where w; is the characteristic harmonic frequency of a particle oscillating near the i minimum.

Considering the process of a single hop, consider the trajectory of the particle as illustrated
in Figure 10-4. It can be supposed that trajectory P — @) is along the positive direction of the
coordinate ¢q;. This effectively turns the many-body problem into a one-dimensional problem
along the line S in Figure 10-4. Therefore, the rate of crossing can be related to the average
velocity in the activated state and the “effective width” in the activated state.?

ZRecall from the simulations in class that the particle spends most of its time in the well and most of the
rest of its time near the saddle points where the net velocity is small.
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Let the first coordinate be in the direction of the crossing (parallel to S), then the average
(rms) momentum p; in that direction is related to the an average rate of attempts. The result
that was derived for the harmonic potential can be re-used in this case:

ET 1
['=4/ T (fraction of particles in activated state) (10-12)
m La

where L 4 is recognized to be the width § in Figure. 10-4.

However, in this case, the particle may have a different volume in the activated state
compared to the equilibrium state:**

AV — A e (10-13)

part part ~ Vpart

For the case where the volume may vary, but pressure is constant, the canonical constant
pressure partition function must be used:

Tp = 3 e T (10-14)

energies, volumes

Therefore I'y,,+ picks up an additional factor:

kT 1 —PAVieri 74
ET

Ty = 4] = 10-15
part m LAe Zmin ( )

It remains to evaluate the partition functions by summing over all energies: 7 = Z?N e~ Ewua) /KT
The usual strategy in evaluating the sum for a partition function is to replace it with an in-
tegration over a continuous variable: > exp[—E;/kT] — [exp[—E(()/kT]d(, where ¢ is a
continuous variable that mimics the index :. However, because the atoms are part of a lattice,
the positions and momenta are quantized. Therefore, a trick must be employed to convert the
sum over quantized values to continuous values. The trick involves degeneracy and the Heisen-
berg uncertainty principle. The partition function is evaluated by passing to the classical limit
by dividing up the quantum phase space into cells of side-length equal to Planck’s constant, h:

24This is certainly important for the case for migrating particles that have a large compliance (low stiffness)
such as vacancies.
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Figure 10-5: lllustration of the trick used to evaluate the partition function by counting
degeneracy in quantum phase space with the uncertainty principle.

Because of the uncertainty principle:

Each elementary volume, (ApAg);, in phase space must be considered to have degeneracy:

Ap;Ag;
h

Therefore, in the classical limit, each elementary box dpdq will have a degeneracy of at least

1/h.

(10-17)

E; 1 o E(m 4;)
7 = e K x h3—N / / .. / e dpldpz dpgquldQQ P dqu (]_0—]_8)

or

_Xir/(2mi)+é(a1,a. - a3N)
h3N kT dpldp2 - dp3qu]_dq2 - dq;;N (]_0—]_9)

Using the Harmonic approximations (Equation 10-11) for the minima and carrying out the
integration over the momenta independently:2°

pZ
25Note that ffooo ¢ TmFT dpy = /2mm1kT.
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3N (/3N
Zmin = (277:T) (H i) e (10-20)
Wi

=1

where each of the w; is the natural frequency near the potential i*" well in Equation 10-11.

Carrying out the same process for the activated state (which has one less degree of freedom)
except for the momentum p; that will have the slow mode as it traverses the saddle point,
there are 3N — 1 natural frequency and one averaged velocity near the saddle point.

B orkT\ 3Nt m V-1
T4 = Le 7 — 10-21
AT e kT( h ) (\/27rkT> (11 WA (10-21)

%

The products over the vibrational modes can be related to the entropies of the states, i.e.,

3N-1 3N—-1
omkT A
(H w;“> = < Wh ) e F (10-22)

1=2

Putting this all back into the expression for the rate of jumps,

kT  (BpaiitPAVyari—TSpa %) kT Spart
kT = Fpart = _h e~ kT (10—23)

]-—‘part = T €
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