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Marker Motion and Kirkendall Effect

Stress and Diffusion

3.21 Spring 2002: Lecture 6

Electromigration

Electromigration is a kinetic effect that has consequences for the reliability of narrow con-
ductors. In electromigration, there is a contribution to the net flux of atoms due to a potential
difference across a conductor.
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Figure 6-1: lllustration of electromigration. If the dominant mobile charged species is
an electron, then when electrons (moving towards the anode) collide with lattice host
atoms and transfer momentum, a net flux of atoms is produced towards anode. To
conserve lattice sites, a counter-flux of vacancies develops—and if marker atoms are
present they will move in the direction of the vacancies. If there are no sources and sinks
for vacancies, the vacancies will condense onto the cathode. If the vacancies condense
as pores prior to reaching the cathode, the pores will grow and migrate towards the
cathode. If the dominant carriers are holes, then the vacancies will travel towards the
anode. If you are viewing this in html, click on the figure to see an in-situ example.

The same method of associating the various fluxes with a single identifiable mechanism that
was used in the analysis of stress-assisted diffusion can be used in the case of electromigration.
The generalized driving force will be shown to be the gradient in electrochemical potential,
w1+ eZ1¢, where e is the magnitude of charge on the electron, and Z; is the number of charges
on the diffusing ionic species.

Considering only motion of ions and counterflow of electrons, the generalized entropy pro-

duction is:1?

To=—-JiVu — J;V¢ (6-1)
The two fluxes are related through:
J, = eZ1J1 — eJejeat (6-2)
where J. s 1s the flux of electrons. Therefore,
Té =—0V(u+ eZ1¢) + edeect Vo (6-3)

the term inside the parenthesis is the electrochemical potential.

10 Assume interstitial diffusion, otherwise the chemical potential of the vacancy must be included.
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The generalized force-flux relationships are given by:

J1=—Mie1V(p + eZ1¢) — L1,V

6-4
Jelect - _Llev(ﬂl + eZl¢) - MePeV¢ ( )

The cross-term L;. comes from the momentum coupling of electrons and the lattice host
atoms—sometimes called the ‘electron wind.” This is made explicit by associating an effective
ionic charge interaction, Z¢, with L, so that the first equation in Eq. 6-4 becomes:

Ji = =M,V (uy + eZ%7 ) (6-5)

where Z¢/f = 7, — Z¢v is the effective charge on the diffusing species.

The interaction between the moving electrons and the host atoms is usually what one would
intuitively expect—the atoms are dragged along with the charge carriers.

Anisotropy and Kinetic Coefficients
From consideration of expressions for the entropy production such a Eq. 6-3 and the hy-
pothesis that the entropy production is always positive, it was reasoned that a flux would

be antiparallel to its driving force. However, it is not necessary that the they are exactly
antiparallel—only that there dot-product is negative. In anisotropic materials, the driving
forces and fluxes are not generally in the same direction as illustrated in the following figure:
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Figure 6-2: lllustration of a bar composed of alternating lays of a high-conductivity and
low-conductivity material. Near the center of the bar, the high-conductivity layers will
be at constant potential and therefore the gradient in potential (the driving force) will
be normal to the layers. However, the net flux in the bar is between the two ends and
not necessarily normal to the layers.

A linear relationship between the forces and fluxes will now include all of the vector com-
ponents:

JQE Rze Koy KRaz 6_,5
T
Jo, =7 | Kay Ryy Ky g_ (6-6)
JQZ Rgz Kyz Kzz 92
or in component form:
oT
J;=—-D;;— 6-7

for the case of mass diffusion, or just simply,*!

—

Jo = —kVT (6-8)

From Onsager’s hypotheses, k;; = k;; and k;; is positive definite.

These material coefficients are examples of tensors. Neumann’s principle implies that the
symmetry of the tensor must include any symmetry elements of the point group of the symme-
try of the underlying material. Note that Neumann’s principle implies that the tensors must
include—-this doesn’t note prevent them from having more symmetry than the underlying
material and, in fact, may be isotropic.

Some examples of material tensor properties include the following:

" The 1/T gets absorbed into the the thermal conductivity for the empirical law.



MIT 3.21 Spring 2002 © W.C Carter Lecture 6 41

Tensor type Linear Mapping Type Tensor Type
example example example
material response material property applied field
vector (rank 1) tensor (rank 2) vector (rank 1)
current electrical conductivity V¢

vector (rank 1)  tensor (rank 3) tensor (rank 2)
polarization piezoelectric constant — stress

tensor (rank 2)  tensor (rank 4) tensor (rank 2)
strain compliance (Ciji) stress

For example, the thermal conductivity of diamond is (in J/(msK)) approximately:

1000 O 0

KC-diamond — 0 1000 0 (6-9)
0 0 1000

but for graphite:

35 0 0
EC-graphite = 8 325 809 (6-10)

which reflects that the covalent (SP2) bonds for in-plane graphite couple more effectively
to phonons than the out-of-plane van der Waals bonds. Furthermore, it show the relative
effectiveness of thermal conductivity between SP3 and SP2 hybrids.

Considering the possible anisotropy of material coefficients, the general force-flux relations
will have tensors multiplying vector driving forces, e.g.

. vT
Ji = —Lig~5 = LiyVé — ... — LixVjix (6-11)

or

Ji, ng ng L% A 1 Y S o/ T
i3 Lgj Lz Lgs L3t Ly Lz .. 9y
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In general

JQ LQQ LQq LQl - LQN %

J Lo L v

=1 = & ¢ (6-13)
T Lyg Ly Vun

The off-diagonal tensors are related through their transposes by Onsager symmetry. The
diagonal matrices are symmetric and positive definite by positive entropy production.

il

Figure 6-3: Example calculation of a composite bar with components that have thermal
conductivities that differ by a factor of 100. The top row is an illustration of the same
material, but rotated with respect to the two thermal reservoirs that maintain a constant
high temperature on the left and low temperature on the right. The bottom and top
edge are coated with a thermally insulating layer. The second row illustrates the steady-
state temperature distribution. The bottom row is a plot of the intensity of thermal
flux.

Flux, Divergence, and Accumulation Revisited: The Diffusion Equation
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Figure 6-4: Consider rate of accumulation in a volume AV bounded by the surface

N, .
o = — / J; -ndA
ot B(AV)

With the divergence theorem,

o _ V. J.dV
ot AV

(6-14)

(6-15)

Consider shrinking AV towards a given point. Using the mean value theorem for integra-
tion, [ V- J can be replaced with V- JAV evaluated at some point within AV. Dividing both

sides of Eq. 6-15 by AV in this limit:

Bcz- =g
o =V

Using the form of Fick’s first law in the laboratory frame:

(6-16)
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J=-DVe (6-17)

Combining the above equations, a single equation involving the concentration and its deriva-
tives results:

oC ~
i V.-DVe (6-18)
which is the diffusion equation.

A diffusion equation represents a local relation between how fast a quantity is changing
and the divergence of its flux. Any quantity that is conserved will have a diffusion equation
and can be derived with the same simple steps used above.

Most analytic solutions to the diffusion equation are for the case of D being both uniform
and constant with respect to composition. As has been discussed previously, this is certainly
not the case for D. However, it would be useful to have the wealth of useful solutions that
apply for constant D to apply to materials problems of interest.!2 The solutions for constant
D are useful in limiting case where the concentration does not vary wildly. In this case, the
value of D can be replaced with levels of approximation to a constant concentration:

D(c) = Dy + %Ac +... (6-19)

where D, is the average value of D(c) taken over it maximum and minimum values, Ac = ¢—(c),
and

. 8D
D, = — 9
1= 50 - (e) (6-20)

The diffusion equation becomes:

12 Just about every moderately complicated diffusion problem (i.e., for various boundary and initial condi-
tions) has been solved previously. Carslaw and Jaeger’s book on solutions to the the thermal diffusion equation
and Crank’s book on concentration diffusion are excellent places to start a search for known solutions.
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0 ~ D 1
% = DoVt LAV e+ —
ot (e) ()
The first solution in a method of successive approximations in small Ac and small |V¢| is
simply,

Ve-DiVed ... (6-21)

5 = DyVZe (6-22)

which is the diffusion equation for constant diffusivity.

The Diffusion Equation for Constant Diffusivity

The diffusion equation has a intuitively useful geometrical interpretation:

C(x,t) Positive

Second Derivative

0C/ot>0

oC/ot<0

Negative
Second Derivativq|

Figure 6-5: Relation be the geometry of a concentration profile and its evolution. The
local time rate of change is proportional to the local second spatial derivative

Generally, because there are two spatial derivatives equation and one time derivative in
the diffusion equation, The specification of two spatial integration constants (the boundary
conditions) and one time integration constant (the initial conditions) are required when stating
a problem for solution..

Typically, boundary conditions (BCs) look like:

—

(Z=&)=c(t) o JE=7) a=J() (6-23)
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The BCs on the left are called Dirichlet and those on the right are called Neumann boundary
conditions. Boundary conditions are a function of time located at particular position in space.
Initial conditions (ICs) are a function of space specified at a particular instant of time:

C(l’,y, Zat = tO) = CO(maya Z) (6_24)

One very useful result of the diffusion equation being a linear partial differential equation
is superposition. Suppose p(z,t) and g(z,t) are both solutions to the diffusion equation, each
with their own initial and boundary conditions:

op  ~0%p
o = Pan (6:25)
with BC’s and IC:
p(z = a,t) =pu(t) plz=05,t) =p(t) p(z,t=0)=po(t) (6-26)
9 _ % (6-27)
ot~ 0x )

with BC’s and IC:
g(z = a,t) = qu(t) q(z =b,t) = q(t) gq(z,t =0) = qo(t) (6-28)
Then 7(z,t) = p(z,t) + ¢(z,t) is a solution for BC’s and IC:

r(z = a,t) = pa(t) + qu(t) r(z =0b,t) =rp(t) + @(t) r(z,t =0) = po(t) + qo(t) (6-29)

Steady-State Solutions
Steady-state solutions generally apply at long times.!
The steady-state condition is that the solution ceases to be a function of time:
dc
ot
13What is meant by long times will be made explicit later. Clearly, no steady state solutions should be
expected—in the strict sense-if the boundary conditions are functions of time.

3

0 (6-30)
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So, to take a simple example of a one-dimensional problem on a finite domain, with uniform
diffusivity and Dirichlet BCs:
Boundary conditions:

c(z=0,t) = Cy c(z =L,t) =CL (6-31)

dc - 5%
—=0=D— 6-32
ot Ox? ( )

Integrate once:
Jc
= 6-33
@ = o (6-33)
Integrate again,

a1z + ag = ¢(z) (6-34)

Plug in the two boundary conditions and solve for the two unknowns, a; and a, to find
the steady steady-state concentration profile:

CL—C
c(z) = Cy + LT% (6-35)
The steady-state flux across the region (0, L),
> ~ O, — C,
J(z) = —DLTO (6-36)

is uniform.
For another simple example of a steady state solution, suppose the diffusivity is now a
function of concentration, then the steady-state equation becomes:

Odc 0 ~, . 0c

Integrate once:

a; = D(c)— (6-38)
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Integrate again

D(c)de
ap = = - (6-39)
which shows that
. ‘L D(c)de
J(z) fco () (6-40)

must be generally independent of z as it must be for steady state solution in one dimension.




