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Vacancy Diffusion in a Substitutional Crystalline Alloy

3.21 Spring 2002: Lecture 5

Lattice Motion (Darken’s Analysis)

Consider the effect of the net motion of vacancies on a lattice.
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Lecture 5

From the perspective of the lab frame, the lattice appears to move with the velocity “marker

atoms.”
Because,

Jéattzce — —_DAVCA

the apparent flux in the laboratory frame is

(5-1)

J,l4ab = _-DAVCA + VinarkerCa (5'2>
The marker velocity must be related to the vacancy flux:
Jv (Area) At = number of sites destroyed
ber of A and B
_ number of A an (volume swept) (5-3)
volume
= (¢4 + ¢B)Vmarker (Area) At
Therefore
J Ja+J
Umarker = v - - At p (5'4)
ca+cp ca+cp
Putting this into Eq. 5-2,
Jigb = —Dy—L Ve, + Dp—2 Ve 5-5
A ACA-l-CB 4 BCA+CB b (5-5)
If Xy is small, and to good approximation Veg = —Vep:
Jit = —(DsXp+ DpX4)Vea (5-6)
which is Darken’s equation and defines the interdiffusivity D for diffusion in an alloy.

The Diffusivities
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‘ Definitions and Relations for Diffusivities

Symbol Name Relation Reference Frame

D Interdiffusion Coeflicient Jlab = _DVe Laboratory

D is the composition-dependent diffusion coefficient for the flux of concentration in a multi-
component alloy.

D; Intrinsic Diffusivity j}“tt"ce = —Di% Lattice
j}“b = —Di% + ve; | Laboratory

D= XD+ XpDy

D; is the diffusivity that is related to the concentration gradient through the historical form of
Fick’s first law. v is the velocity of the lattice planes with respect to the laboratory coordinates.
The lattice frame is fixed to the crystal lattice and can move relative to the laboratory frame
with velocity v. The X, are the mole fractions: X4 = ca/(ca + ¢p). The relationship to the
interdiffusion coefficient is for binary alloys.

Dr Self-Diffusivity ‘ D;=(1+ giﬁ;” )Df ‘ Either frame can be used

D is the intrinsic self-diffusivity in a homogeneous solution. Also called the isotope diffusivity,
reflecting the type of diffusion experiments which measure the self-diffusivity.
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Figure 5-1: Graphical representation of the composition dependence of the various
diffusivities.

Motion of Marker Atoms

Last time, an equation for the average velocity of a inert “marker” atom was derived:

latt latt latt
_ ']V _ ']A + JB 5.7
Umarker = - - ( - )
catcp ca+tcp
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Using the relationships for the intrinsic diffusivity,

DaVes+ DVep

ca+caB

Umarker =

Kirkendall Effect

For a nice historical discussion of the Kirkendall effect, see

Lecture 5

(5-8)

http://www.tms.org/pubs/journals/JOM /9706 /Nakajima-9706.html. This weblet does a nice
job of describing the intellectual resistance to the current understanding that the motion of
markers is related to the differences (Zinc has an intrinsic diffusivity about 2.5 times that of
Copper at the temperature of the Smigelskas-Kirkendall experiment, 785°C) in the intrinsic

diffusion coefficients during interdiffusion in an alloy.
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Figure 5-2: Experimental set-up and data from the Kirkendall experiment.
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Figure 5-3: Data from the Kirkendall experiment.
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The mechanism behind the marker motion can be understood physically by the removal of
lattice planes by vacancy absorption during dislocation climb on the side towards which the

marker moves and the emission of vacancies by climb on the other.
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Figure 5-4: lllustration of the lattice mechanism for the Kirkendall effect.

However, the Kirkendall effect can also be explained with a very simple analogy to the
interdiffusion of two gases with differing diffusivities. In fact, this phenomenon was known

before the Kirkendall controversy.
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Pg
initial conditon tdiffug"e membrane

Figure 5-5: Illustration of the gas diffusion analogy to the Kirkendall effect. Suppose only
the A gas can diffuse across the membrane, then an initial system that is in mechanical
equilibrium on the left will develop a spontaneous pressure difference as illustrated on
the right.

/Membrane moves

Figure 5-6: If the membrane can move (by analogy to the marker atoms) it will do so to
equilibrate the pressure. If the membrane cannot move, then it is possible for the fluid
on the left to cavitate.

It is clear from the figures that, in a lattice, there will be contribution of stress to the
driving force for diffusion.

Contribution of Stress to Diffusion
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© o

Figure 5-7: Origin of the the lattice stress contribution to diffusion.

Consider the additional discussion of elastic terms are included into a thermodynamic
framework that appears at the end of lecture 3. It was shown that:

Tds = du — pide; + PdA, — d;;de; 9)

(5-
where P is (minus) three times the trace of the stress tensor (the hydrostatic pressure), A, =
dV [V is the dilation, and € and & are the deviatoric strains and stresses.

If the entropy production in the absence of heat flow is considered:

To = —le,ul + Jvolvp - Jshearvorij (5_10)

Considering the combined effect of the motion of an interstitial, one can associate the
various flux terms with a single diffusing species, i.e.,

Jvol _ AQtataljl

5-11
Jshear = Agt()tal']l ( )
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In other words, the diffusion atoms carries a dilation and a strain along with it. In this case,
the entropy production in Eq. 5-12 can be factored:

Té = (Vi —aMQVP + A6V o5) ], (5-12)

The term inside the parenthesis becomes the generalized driving force for diffusion—it
contains chemical plus elastic terms.

Often the deviatoric terms can be neglected, for instance for an interstitial in a cubic
material, in this case (assuming ideal solution):

Jl - —Ml(kTVcl - AQC:[VP) (5—13)

Addendum:
Stresses, Thermodynamics and Number of Independent Variables in o;;

Sometime there is confusion associated with how to include stress properly into the driving
force. the stress tensor o;;. This is not really part of kinetics but thermodynamics, but a good
question nonetheless.

Stress is a generalized way to think of pressure in materials that can support shears—a
fluid is an example of a material that cannot sustain a shear at equilibrium. As a matter of
fact, there is a nice proof in Gibbs that shows that the lowest energy state of a material is one
that is in pure hydrostatic stress (pure pressure).

We have been writing the thermodynamic relation that relates the quasi-static changes in
the entropy and the internal energy and the various ways the system can perform work as:

TdS = dU — FdY; (5-14)

where the F;dY; are the various ways a system can store work. From the thermodynamics of
fixed composition fluids—which is usually taught, this is written as:

TdS = dU + PdV (5-15)

i.e. the pressure comes in with a funny minus sign compared to the other work terms as in a
more general case:

TdS = dU — Voydeij — Vgdg — V HidB; — 11;dN; (5-16)
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In the above equation,’ it would be a mistake to add the PdV term.
We are considering the appearance of the stress term in this question. Consider the term
representing stress:

=G = L) (517)
O = — ie., 0, = — = 0, = = -
TA; A, Ak
0]
O, 33
A A
—0 »)_’0 2
Z )/ 013
Oyz 6
O Oz 031 3
y > Oyy 022
21~'1
Xy,
X Oy = 011
Figure 5-8: lllustration of stress on an oriented volume element.

Oze Ozy Ogz
0ij = | Oy Oyy 0Oy (5-18)
Ozz Ozy Ozz

It is a requirement of mechanical equilibrium that the o;; tensor is symmetric—it is also
a guarantees that the quadratic form for energy at equilibrium will have real eigenvalues,
which is a little like the Onsager symmetry hypothesis. The symmetry reduces the number of
components from 9 to 6.

There is one special and very simple case of elastic stress, and that is called the hydrostatic
stress. It is the case of pure pressure and there are no shear (off-diagonal) stresses. (i.e., all
o;; = 0 for i # j, and 011 = 022 = 033). An equilibrium system composed of a body in a fluid
environment is always in hydrostatic stress:

—-P 0 0
O = 0 —-P 0 (5-19)
0 0 -—-P

If the body that is being stressed hydrostatically is isotropic, then its response is pure
dilation (in other words, it expands or shrinks uniformly and without shear):

9The extra volume terms come from the fact that we are writing the extensive entropy S instead of the
entropy density s.
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A/3 0 0
€5 = 0 A/3 0 (5-20)
0 0 A/3
where
av
A=— 5-21
s (5-21)
So, for the case of hydrostatic stress, the work term has a particularly simple form:
3 3
Vv ai'dei- = —PdV
NN 52

Voijde;; = —PdV summation convention

This expression is the same as the energy density for a compressible fluid, such as an ideal
gas.

Sometime, people like to include the PdV terms in thermodynamics of solids because it
makes them feel comfortable. The way to do this is do define the “deviatoric stress:”

Oze — -P Ozy Ozz
Oij = Oy oyy — P Oy (5-23)
Oz ayz Oz — -P

where P = traceo;;/3. Now since, dj; is a symmetric tensor with a zero trace, it only has
five independent components, but the expression for the second law in terms of the deviatoric
stress:

TdS = dU — VO',']'dGij =TdS =dU + PdV — V&,’jdeij (5—24)

still has six independent terms for the elastic energy.



