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Conjugate Forces, Fluxes and Empirical Flux Laws for Unconstrained Components

Quantity Flux ‘ Conjugate Force | Empirical Flux Law
Heat J_é) —%VT Fourier’s J_('g = —kVT
Mass j; —Vu; Modified® Fick’s form J:i = —M;c;Vu;
Charge j,; —V¢ Ohm’s j; = —pVo

3.21 Spring 2002: Lecture 3

Entropy Production for Simple Cases
If heat is the only quantity that is flowing:
. kIVTP
To="1""1 3-1
o= (31)
(3-2)

If diffusion is the only operating process:
Té = Mic;| V|

In general, the entropy production is the sum of all operating fluxes dotted into (minus)

the gradient of the associated potential.”

"If this is to be generalized to non-conserved quantities, then another term is included to account for the

local production of that non-conserved quantity,
A
To = -7 VT —J;-VF; — P(A) (3-3)
where P(A) is a positive definite operator, e.g.,
T , . o
To = — 7 VT —.J;-VF; —aAA (3-4)
(3-5)

J L :
Q-VT—JL--VFL-—%AZ
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Generalized Coupling for the Near-Equilibrium Case

Let I'; = —VF, represent the generalized driving forces for a system near equilibrium. A

system near equilibrium is one where the driving forces are all small, therefore we can expand
the fluxes in terms of these small driving forces:

JQ(FQ7I‘¢1’F1'7"- aFN) aJQFQ+6JQF +. _|_ggQI‘
JLI(FQ)anFi’-“ ;FN) = %FQ‘F F +...+ 6J FN

(3-6)
Jn(Cg, Ty Tiy... ,T) = FETq + G0y + ... + 52Ty
or,
Jo = Laglp (3-7)

It is important to remember the origin of the L;;. They are derived as the linear coefficients
of driving forces around the equilibrium state—i.e. the case of condition of small driving forces.
Remember that if a function, f(z,y,z) is expanded around a particular point up to linear

terms:
AF(& = Tayy — Yoy 2 = 20) =
0
) Ay + (8—f
T=To, Y=Yo, 2=2o Z

(g ) Az + (gf
z T=o, Y=Yo, 2=Z20o Y

) Az (3-8)

T=To, Y=Yo, Z=2Zo

The values of the linear terms are functions of the point about which they are expanded
(Zs, Yo, 2o), so in the expansion in Eq. 3-7, the linear coefficients L,z are also functions of the
particular equilibrium state about which the system is expanded. In other words, we should
expect the L,g to be functions of temperature, equilibrium chemical potential, pressure, etc.
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The entropy production for the near-equilibrium case is given by:

Té = LogTul > 0 (3-9)

Because the term on the right hand side must be positive definite and because each term is
real, it is necessary that the matrix L,z is symmetric; this is | Onsager’s Symmetry Relation |:

Lag = Lga (3-10)

Example: Thermal and Ionic Conducting Bar
Consider heat transport in a bar that can conduct both heat and electricity via ionic

conductivity:

Heat Conducting Bar

Ag

Figure 3-1: Thermal and ionic conducting bar with ends at two fixed temperatures.

vl

Jo = Loo—F— — Lo/Ve
. (3-11)

Jq = LqQT - quv¢

Suppose there is no electric current (perfect voltmeter), then
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Y 1

thus for the case of no electric current density,

L -vT
Jo = (LQQ - LLQ> (T) (3-13)
qq9

Therefore, the heat flux has two identifiable components, one that comes from the electrostatic
potential difference and one the comes from temperature difference. The “kinetic coefficients”
of the flux are related to combinations of the “direct effect coefficients” Lo and L, and the
indirect coefficients Ly, and L,g. Presumably, experiments could be performed on such a
system to verify whether the Onsager symmetry relation applies, i.e. if Lo, = Lyg.

A set of such physical experiments is considered below.
Seebeck, Peltier Effects and Thomson’s Second Relation

Consider the following experimental set-up:
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Reservoir Conductor 2

Conductor 1 t/ Potentiometer

Figure 3-2: Experimental set-up for the Seebeck effect. A potentiometer measures the
potential difference, A¢, between two conductor couples each at a different temperature.

In the Seebeck a potential difference is set up in response to the flow of heat between two
reservoirs.

The thermoelectric power is a relation between the potential difference and the temperature
difference:

A¢
€Seebeck = (E) o (3-14)

The J, = 0 indicates that the potentiometer is ideal. This quantity can be calculated using
equations 3-11 using an approximation for the gradients VI' ~ AT/ L, etc.

_ _LqQ
€Seebeck = T Ly

(3-15)

For the Peltier effect, the experimental set up is illustrated by:
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Reservoir Conductor 1 L Conductor 2
Battery

Figure 3-3: Experimental set-up for the Peltier effect. A perfect battery sets up a
specified potential potential difference, A¢. As current, J,, crosses the thermocouples,
heat is produced and consumed depending on which material has a higher Fermi energy.
Heat, Jg, flows between the two junctions to maintain a constant temperature.

The Peltier coeflicient is related to the ratio of the heat flux to the electric current:

Jo
HPeltier = <J_q)AT—0 (3-16)

Using equations 3-11, the Peltier coeflicient can be calculated in terms of the Onsager
coefficients:

Lq
HPeltier = (L—q> (3‘17)

qaq

If Onsager’s symmetry relation holds (L, = Lg,), then there must be a relation between
the Peltier and Seebeck coefficients:

Hpeltier = —€Seebeck | (3-18)

This relation is called Thomson’s second relation and has been repeatedly experimentally
verified and this can be considered experimental verification of Onsager’s symmetry relation.

One Independent Mobile Species
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Consider the case of one chemical species that can diffuse independently of all the others,
such as an interstitial carbon atom diffusing in BCC iron, or the case where a gaseous species
is diffusing through a quiescent gas mixture.

Suppose that the only driving force is the gradient in chemical potential of the interstitial
species, then

Jl = —L11V,u1 (3—19)
The chemical potential can be related to local concentration through the activity coefficient

71t
p1 = p1 + kT Inyicy (3-20)

Therefore, Vi can be related to Ve:

For the ideal case, the activity coefficient is independent of concentration, so

kT
Jl = —Lll—Vcl (3—21)
1
One would expect this relation to hold for very dilute alloys (Henry’s law) or self-interstitial
diffusion in a very pure alloy (Raoult’s law).
For the case of a non-ideal solution:

KT (81
Ji= —Ly— ( -n oy 1) Ve, (3-22)
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If this is compared to the most simple version of Fick’s first law, J; = —D;Ve¢;, D; is called
the intrinsic diffusivity and it is related to the Onsager coefficient as:
kT ( Oln~,
Dy = Ly1— 1 3-23
! e (8lnc1 + ) ( )

The atomic mobility be defined by the the Einstein relation between the average drift
velocity and the driving force, (v) = —M;V ;.
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Figure 3-4: The number of atoms that cross through a plane in a time At is the
concentration ¢ multiplied by the volume A(v)At.

<Npass—thru> = AAzc, = A(v)Atey (3-24)

Using the above equation, the flux must be related to the average velocity through the relation,
Jl == <’U>C]_ (3-25)
Therefore, using the Einstein drift velocity,

Lll = 01M1 (3—26)

and the relation between intrinsic diffusivity and mobility is
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Oln v,
D, = kT 1) M -2
! (Eﬂn c1 + ) ! (3-27)

If the solution is ideal—as in the case of mixture of radioisotopes of an otherwise identical
atomic species—then the diffusivity is called the self-diffusivity D7 and since the activity
coefficient is constant:

Dt = kT M, (3-28)



