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Thermodynamics as a Foundation for Kinetics

Gibbs Results for Equilibrium of Heterogenous Substances

Began Mathematical Background

3.21 Spring 2002: Lecture 2

Mathematical Background, cont’d

Fields

A field associates a physical quantity with a position, = (z,y, z) at a time, .} A field may
also be a function of time: f(Z,t) where f is the physical quantity that depends on location
and time.

1Other (i.e., 7 = (r,0,¢), etc.) or lower dimensional (i.e., £ = (z,y), etc.) coordinate systems will be
employed when appropriate.



2 MIT 3.21 Spring 2002 © W.C Carter Lecture 2

Scalar Fields

Vector Fields

Tensor Fields Sometimes an external (laboratory) coordinate system must be specified as
well as an internal (material) coordinate system, especially in those cases for which the
material coordinate system refers to a symmetry direction or the orientation of a plane
in the material. Tensors represent ways of connecting quantities to coordinate systems.
A vector is a simple tensor—-called a rank 1 tensor—-that connects a single value (i.e. a
magnitude) to a coordinate frame. A rank two tensor connects two coordinate systems—
for instance the stress o;; represents the magnitude of the total force in a particular
direction (the i-direction) distributed over a plane with a particular area (magnitude)
oriented with a particular normal vector in the j-direction.?

Fluxes

Flux is an important vector field quantity in kinetics and it is important to understand
it. It represents the rate at which “stuff” flows through a specified unit of area—an area is
oriented in space.

2For the stress tensor, the two coordinate systems (material and laboratory) are usually chosen to the
identical. This is the typical case for tensors in engineering applications, but it is not necessary.
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i~

Figure 2-1: The vector AA.

Let AA be an oriented patch of area, AA = AAA = (A;, Ay AL If M; is the rate at which

¢ flows through a unit area, it follows that

M;(AA) « |AA| (2-1)
The proportionality factor must be a vector field:
M;(AA) =J,-AA (2-2)
This defines the local flux as the continuum limit of:
Mi(AA) -

Accumulation
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Ju(X — dx/2)

Ju(X + dx/2)

Figure 2-2: Illustration of limiting method of finding accumulation related to the diver-
gence of the flux.

The rate at which ¢ accumulates in a volume AV = dzdydz (with outward oriented normals)
during time interval At is:

AM,; = (i Flowing in ) — (¢ Flowing out ) + (Rate of Production of 7) (2-4)
SM; = —J(z +dz/2,0,0) - idydzAt+
J(z — dz/2,0,0) - idydzAt—
.ot
2-5
. ) (25)
J(0,0,2z — dz/2) - kdzdyAt
+pi(Z)AtAV

where p;(Z) is the density of the rate of production of 7 in AV.
Expanding to first order in dz, dy, dz, subtracting, and using the continuum limit,

Oc >
—=_V. ; 2-

The rate of accumulation of the density of an extensive quantity is minus the divergence
of the flux of that quantity plus the rate of production
Note that Eq. 2-6 could have been derived directly from:
M; - fB(AV) ‘{l. -dA + fAV pidV
= — fB(AV) Ji;ﬁdA + fAV p:dV (2-7)

where B(AV) is the oriented surface around AV and the
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Conserved and Unconserved Quantities

Conserved quantities are those that do not vanish from or spring into existence at any time
or place. Therefore, the rate of production term in the accumulation must be identically equal
to zero—for conserved quantities:

oC;
ot

= -V Jy, (2-8)

where C; is the density (or concentration) of 7, or the continuum limit of N;/AV where N; is
the amount of 7. The number of atoms of a particular type is conserved.?
Molecules are not conserved if chemical reactions take place.

Internal energy is conserved:

ou >
—=-V_.J 2-9
ot v (2-9)
Examples of things that are not conserved include magnetization or spin density, atomic
order, and polarization. Entropy is not conserved, thus there must be an expression:
0s

where ¢ is the rate of entropy production per unit volume.

3Ignoring nuclear decay.
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Introduction to Irreversible Thermodynamics
Equation 2-10 may seem sensible, but is it possible to form a physical picture of what is
meant by the flux of entropy Jg?

Figure 2-3: Schematic picture of entropy flux and density of entropy production.

What is meant by the continuum limit of the entropy density, s?

One way to find a meaningful picture of the entropy density is to assume that equilibrium
thermodynamics applies locally. Then, the expression for equilibrium changes,

dU = TdS — PdV + ) pdN, (2-11)
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can be rearranged to find an expression for entropy in terms of more intuitive quantities. It is
useful to write the above in terms of densities (dividing every extensive quantity by a reference
unit volume V,

Tds = du+ Pdv— Y pde; (2-12)

It is useful to generalize this to other thermodynamic systems of interest and write the above
equation as

Tds = du — Z F;dz, (2-13)

where the F; are generalized potentials and the z; are generalized displacements.

To illustrate how the assumption of local equilibrium will be used, consider a closed system
that does or receives no work from its surroundings—i.e. a system where entropy can only
increase according to the second law.

0
i dV —
7 /., sdV /V

closed closed

GdV — / Js - 1dA (2-14)
B(Vclosed)

where B(V_josea) is the surface of the closed volume V.44 and 7 is the outward normal of
that surface.

Supposing that the system does no work, only heat contributes to js = jU/T = jQ/T at
the surface:

Jo -7

0 sdV = / Gdv — / Jo 1y (2-15)
losed Vetosed B(Vclosed) T

at Jy

c

The last term is (minus) the total heat that enters the system:

0Qin _ _/ LRy _/ V-Jo gy (2-16)
at B(Vclased) T Vi T

closed
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(It is minus because if the jQ is in the same general direction a 7 then heat is leaving the
system.)

If the surface is uniformly at constant temperature, then

(9Stotal . 1 an _ / O'dV (2—17)
14

ot T ot

The term on the right of Eq. 2-17 is a measure of the irreversibility.
This leads to a fundamental postulate of irreversible thermodynamics: | > 0 everywhere. ‘

or

Os -
y= 22 Je > 2-1
6=5 +V Js20 (2-18)

Rewrite Eq. 2-18 using the assumption of local equilibrium (2-13):

= T5 T &

7

+V-J, (2-19)

To simplify writing, it is useful to introduce the “summation convention” where any re-
peated index becomes an implied sum. For instance, the dot-product can be written as
i b= Zf’ a;b; = a;b; where in the final term the repeated index i is summed over all of
its possible values; for instance, T'ds = du — F;dX; = dU — 0;jde;j — ¢dq — H;dB; — p;dc; where
o,; are the nine (3 x 3) components of the stress tensor, ¢;; are the nine components of the
strain tensor,* ¢ is the electrostatic potential and ¢ is charge density, H; and B; are the three
(i.e., z,y, z) components of the applied and induced magnetic fields, and p; and ¢; are the N
chemical potentials and concentrations of the ¢ independent chemical species.

Therefore, using the summation convention:

O':TE—Tat +VJS (2—20)

Using a version of the vector chain rule: V - AB=VA-B+ AV -B:

4For a discussion of stress and strain (and the number of their independent components) in this thermody-
namic discussion, refer to the addendum to this lecture.
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FoXi o (JE\ - o (F
T o —V-<T)—JZ-V(?) (2-21)
and
1 - Jy - 1
TV-JU =V. <?) —J;-V (f) (2-22)
in Eq. 2-20:
- 1 - F, . J,—FJ;
5 = . —_ )1 =J. - . i 2.9
o=J, V(T) J; V<T>+V (JS = ) (2-23)
Define:
> Ju—FJ; _Jg
Jo=——m=—+ 2-24
T T (2-24)
so that,
o= V(G -4V (E)

— Ju Ji Fi J;
=~ VI — - VF+ 55 VT
To =82l .NT —J;-VF,

=2V~ J;-VF; >0

(2-25)

Because T is always positive, this implies a relation between the fluxes and the gradients
of the potentials: Naively (but not necessarily), jQ, must be antiparallel to VT j;,
must be antiparallel to VF; for the entropy production to be everywhere positive.
Consider quantity on the right-hand-side of Eq. 2-25 term-by-term:
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Conjugate Forces, Fluxes and Empirical Flux Laws for Unconstrained Components
Quantity Flux ‘ Conjugate Force ‘ Empirical Flux Law
Heat J_(} —%VT Fourier’s J_(} = —kVT
Mass j; -V u; Modified® Fick’s form J; = —M;c;V
Charge j; -V¢ Ohm’s jq = —pVo




