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3.21 Spring 2002: Lecture 1

e Class Structure (Described in Syllabus) Lectures will be mostly chalk on the board,
supplemented by computer simulations and graphics. This is a 15 unit class. You are
expected to spend 5 (waking) hours in lectures. The other ten hours should be occupied
by reading the text or any supplementary materials, reviewing or recopying your lecture
notes, and doing your homework. If you begin spending significantly more than 15
hours a week on this class, please confer with your classmates. The groups are designed
to reduce the amount of time spent on homework—not to increase it. If the the class is
generally spending more than 15 hours, let us know so we can adjust.

¢ Grading

2 exams 25%/exam Two exams will be in-class during the lecture period.

Homework 25% Class groups will be organized. Each group will turn in a joint home-
work and receive a single grade that is recorded for each member of the group.
Everyone in the group receives the same grade.

Class Participation 25% You will receive credit for asking good questions or making
good comments during lectures and recitations—if you state your name. You will
not receive credit for “showing oft”: a good question or a comment is one that
benefits most of your classmates. There will be random questions to students during
lectures. You should be prepared to answer simple questions succinctly or say that
you honestly don’t know—and call on a friend.

e Lecture Notes will often be found on the web. You can use them any way you wish.
The lecture notes will supplement (and sometimes correct) the textbook.

e The textbook (KPIM) for this course is being printed at CopyTech. You should be
able to buy a copy next week at CopyTech for a very modest price. You are expected to
read the book and understand the concepts that are covered in the lecture. Because the
book is still in revision, comments/corrections on the book in the form of writing will be
very welcome and will be regarded as class participation.

e Office hours can be found on the website.

Thermodynamics and Kinetics
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Joule/Kelvin

dU = 6W + 6Q (1-1)

Carnot/Clausius For the limiting case of a reversible process,

6Q
dsS = = 1-2
e (1)
Boltzmann
S(U) = klogwy (1-3)

Gibbs Rigorous and mostly complete foundation of equilibrium of materials.

Two fundamental results.

1. If an extensive quantity can be exchanged between two bodies, then a necessary con-
dition for equilitbrium is that the associated potential, which is an intensive quantity,
must have the same value in each body.
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2. If a system s in equilibrium with reservoir that maintains a constant potential (e.g.
P and T'), then there exists a free energy function for that system (e.g., G(P,T))
that is minimized at equilibrium. Therefore, a necessary condition for equilibrium s
that every small variation in G must be non-negative: (5G)P=const.,T=const. > 0.

'For a closed system, i.e., one that has a fixed number of atoms.
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Figure 1-1: Representation of all possible values of the molar free energy function that
is minimized at equilibrium.

The study of materials processes is a combination of Thermodynamics and Kinetics. Ki-
netics relies on thermodynamics as a rigorous foundation. Kinetics is less rigorous and more
approximate; but, perhaps applicable to more real systems.

Materials Processes

Complex interations involving a
space and time continuum of vari-
ables.

Precise stratements about equilib- | Approximate statements or models

Relatively few variables

rium states or quasistatic processes

for complex evolving systems

Powerful concepts and foundation,
but limited to ideal systems

Approximate but predicitive state-
ments for a wide range of phenom-
enae

Extending Thermodynamics to Kinetics
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Figure 1-2: If the two curves on the left represent the lowest possible values of an
appropriate thermodynamic function function that is minimized at equilibrium (such as

G(P,T) at a fixed value of P, T') and if each phase constrained to have a homogeneous
composition X, then these curves are the equilibrium values of the appropriate free

energy as a function of X (i.e., G(P, T, X)).

If the constraint that the system has a homogeneous composition is removed, then if any
combination of compositions X;—distributed among all possible phases in such a way that the
average composition is X,—has a lower free energy than any homogeneous system, then the
equilibrium free energy curve is the convex hull from below of all the homogenous free energy
curves (i.e., the single-phase compositions of the homogeneous molar free energy curves plus
the common tangent).

The values of ‘comparison’ free energies of systems constructed from linear combinations
of homogeneous equilibrium molar free energies is also bound from above—a set that is con-
siderably smaller than non-equilibrium values of that function which is minimized during an

approach to equilibrium.

Mathematical Background

Fields A field associates a physical quantity with a position, Z = (z,y, 2) at a time, t.> A field
may also be a function of time: f(Z,t) where f is the physical quantity that depends on

2Other (i.e., ¥ = (7,6,¢), etc.) or lower dimensional (i.e., # = (z,y), etc.) coordinate systems will be

employed when appropriate.



location and time.

Scalar Fields
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Tensor Fields
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Figure 1-3: Two representations of a scalar field in two-dimensions are illustrated in the
left and middle figures.

Every sufficiently smooth scalar field has a natural vector field associated with it: the
gradient field.

Consider a stationary scalar field ¢(Z) such as the one illustrated in Figure 2-1.

(24 Ut) =c(Z)+ Ve 7| At+... (1-4)
=0

The instantaneous rate of change of ¢ with respect to t is therefore:

i Ve v (1-5)

The gradient is parallel to the direction of steepest ascent.
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This can be generalized even further by considering a time-dependent field ¢(Z,t), the
instantaneous rate of change of ¢ with velocity &%) is

= _ve.
at €

v+ E (1_6)

e Continuum Limits Nature is fundamentally discrete, how is that we can discuss things

like derivates?

dy
dx

Figure 1-4: Infinitesimal volume with dimensions dz, dy, and dz located at Z.

Speciesi

AV

towards the point Z.

Figure 1-5: Behavior of the concentration at a point ¢(AV (%)) as the volume shrinks
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Jay E(&)(8(2 +5£l;2 + ...+ zx)dV )

c(Z) =lim AV — 0

¢(x)
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Figure 1-6: The function &(Z) performs a weighted sampling of points near ¥ = 0.

Fluxes Let AA be an oriented patch of area, AA = AAA = (Az, Ay, A,). IE M; is the rate at
which ¢ flows through a unit area, it follows that
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1~

Figure 1-7: The vector AA.

M;(AA) « |AA| (1-8)

The proportionality factor must be a vector field:

M;(AA) = J;AA (1-9)
This defines the local flux as the continuum limit of:
MABY _ Jiz)- (1-10)
Accumulation The rate at which ¢ accumulates in a volume AV = dzdydz (with outward oriented
normals) during time interval At is:
AM; = (i Flowing in ) — (¢ Flowing out ) + (Rate of Production ofi) (1-11)

SM; = —J(z + dz/2,0,0) - idydzAt+
j(w —dz/2,0,0) - idydzAt—
.+
.+

J(0,0,z — dz/2) - kdzdyAt

+pi(Z) AtAV

(1-12)
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where p,(Z) is the density of the rate of production of ¢ in AV.

Expanding to first order in dz, dy, dz, subtracting, and using the continuum limit,

Jc I

(1-13)

The rate of accumulation of the density of an extensive quantity s minus the divergence
of the flux of that quantity plus the rate of production
Note that Eq. 2-10 could have been derived directly from:

M; =~ fB(AV) @ ~dA+ [y pidV
= _fB(AV) Ji;ﬁdA + [ay £idV
= [a(=V - Ji + p)dV

(1-14)

where B(AV) is the oriented surface around AV and the



